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Convolutional neural network (CNN) based methods have outperformed conventional 
machine learning methods in predicting the binding preference of DNA-protein 
binding. Although studies in the past have shown that more convolutional kernels 
help to achieve better performance, visualization of the model can be obscured by 
the use of many kernels, resulting in overfitting and reduced interpretation because 
the number of motifs in true models is limited. Therefore, we aim to arrive at high 
performance, but with limited kernel numbers, in CNN-based models for motif 
inference. We herein present Deepprune, a novel deep learning framework, which 
prunes the weights in the dense layer and fine-tunes iteratively. These two steps 
enable the training of CNN-based models with limited kernel numbers, allowing easy 
interpretation of the learned model. We demonstrate that Deepprune significantly 
improves motif inference performance for the simulated datasets. Furthermore, we 
show that Deepprune outperforms the baseline with limited kernel numbers when 
inferring DNA-binding sites from ChIP-seq data.

Keywords: deep neural networks, motif inference, network pruning, convolutional neural networks, 
interpretation

BACKGROUND
Determining how proteins interact with DNA to regulate gene expression is essential for fully 
understanding many biological processes and disease states. Many DNA binding proteins have 
affinity for specific DNA binding sites. ChIP-seq combines chromatin immunoprecipitation 
(ChIP) with massively parallel DNA sequencing to identify DNA binding sites of DNA-associated 
proteins (Zhang et al., 2008). However, DNA sequences directly obtained by experiments 
typically contain noise and bias. Consequently, many computational methods have been 
developed to predict protein-DNA binding, including conventional statistical methods (Badis 
et al., 2009; Ghandi et al., 2016) and deep learning-based methods (Alipanahi et al., 2015; Zhou 
and Troyanskaya, 2015; Zeng et al., 2016). Convolutional neural networks (CNNs) have attracted 
attention for identifying protein-DNA binding motifs in many studies (Alipanahi et al., 2015; 
Zhou and Troyanskaya, 2015). Genomic sequences are first encoded in one-hot format; then, a 
1-D convolution operation with four channels is performed on them. For conventional machine 
learning methods, the sequence specificities of a protein are often characterized by position 
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weight matrices (PWM) (Stormo, 2000). PWM has a direct 
connection to CNN-based model since the log-likelihood of 
the resulting PWM of each DNA sequence is exactly the sum 
of a constant and the convolution of the original kernel on the 
same sequence from the view of probability model (Ding et al., 
2018). Zeng et al. (2016) experimented with different structures 
and hyperparameters and showed that the convolutional layers 
with more kernels could obtain better performance. They also 
showed that training models with gradient descent methods 
is sensitive to weight initialization, showing, in turn, that 
training could be obstructed at local optimum of loss function. 
However, the use of too many kernels could introduce too much 
noise and, thus, overfitting, leading to misinterpretation of the 
model. By visualizing the recovery of the underlying motifs 
in the models, we found that only the several best-recovered 
motifs, in the sense of information content, could be equated 
to the true motifs, demonstrating that most kernels only act 
during the process of training by increasing generalization 
ability in order to overcome the local optimum problem (Du 
et al., 2018). Such kernels can be termed auxiliary kernels, 
and these kernels produce noise and reduce performance 
at the end of training. Neural networks with circular filters 
(Blum and Kollmann, 2019) can address this problem, but 
performance was only found to significantly improve in the 
one-kernel CNN-based model. However, since some proteins 
likely bind multiple motifs in the DNA sequence in omics data, 
the one-kernel CNN-based model cannot meet the needs of 
motif finding. Moreover, its overall performance is lower than 
expected when kernel number is limited (e.g., 16). Luo et al, 
(2019) replaced global max pooling with expectation pooling, 
which is shown to increase the robustness for kernel numbers. 
However, expectation pooling only increases model robustness; 
it does not limit kernel numbers.

In contrast, neural network pruning can reduce kernel 
numbers and by doing so, improve inferential performance 
without harming accuracy in the field of computer vision (Han 
et al., 2015a; Abbasi-Asl and Yu, 2017; Frankle and Carbin, 
2018). Pruning methods can be classified into structured 
and unstructured. The former refers to pruning at the level of 
channels, or even layers, for which the original network structure 
is still preserved (Hu et al., 2016; Li et al., 2016; Changpinyo 
et al., 2017; He et al., 2017). The latter includes individual weight 
pruning. Han et al. (Han et al., 2015b) developed a method 
whereby network weights of small magnitude were pruned, and it 
was very successful in highly compressed neural network models 
(Han et al., 2015a). Unstructured pruning can ensure that models 
will achieve sparse weight matrices which result in compression 
and acceleration with dedicated hardware (Han et al., 2016).

With evidence that models with only a few kernels can 
fit the PWM model very well, we propose a novel model, 
termed Deepprune, which utilizes pruning techniques in 
motif inference. Several assumptions underlie the design 
of Deepprune. First, by its stronger representation and 
optimization power, we believed that starting with training a 
large and over-parameterized network could provide a model 
with high performance. Second, for the PWM model, which 
often characterizes sequence specificities, several kernels which 

are viewed as motif detectors are enough for motif inference. 
Third, the inclusion of too many auxiliary kernels leads to 
misinterpretation of the model. Fourth, auxiliary kernels may 
produce noise and lower performance at the end of training. 
If the PWM model characterizes sequence specificities and 
if no interaction among different motifs is considered, then 
Deepprune achieves better performance with fewer kernels, 
markedly exceeding baseline in simulated datasets. In spite 
of the uncertainty of the true model, Deepprune still arrives 
at better performance with the same kernel numbers in real 
datasets, which shows the superiority of our model. Our model 
can also find more accurate motifs by model visualization and 
eliminate auxiliary kernels. All coding utilized to implement 
Deepprune and all the figure reproductions in the paper is 
available at https://github.com/klovbe/Deepprune.

METhODs

Detecting sequence Motifs With 
Convolutional Neural Network
We adopt the simplest model in DeepBind as our basic neural 
network architecture (Alipanahi et al., 2015). The sequences are 
represented as numerical vectors. Each of the four nucleotides 
is denoted as one of the four one-hot vectors [1,0,0,0], [0,1,0,0], 
[0,0,1,0], and [0,0,0,1]. Consequently, a sequence X = X1,…, XL is 
transformed into a 4 × Lmatrix S. We first add a 1-D convolutional 
layer with rectified linear units (ReLU) activation serving as a 
motif scanner layer (Radford et al., 2015), followed by a global 
max pooling layer. Then we add a mask layer to prune the weights 
according to some given criterion, which will be introduced in 
the next section. The last layer is a fully connected layer with 
sigmoid activation the output of which is the probability of a 
sample being positive (Figure 1).

Formally, if the convolutional kernels are denoted by 4 × 
LF matrices F1, F2, …,Fd, in which LF is the length of the kernel, 
we have
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where wk and w are weights, b is bias and σ(x) denotes the sigmoid 
function for classification. Compared to basic neural network 
architectures, note that a mask layer is added because we want to 
mask the kernels that have little impact on the performance at the 
end of training. As a result, mk is set as 0 or 1, and mk = 0 means 
that the information of the k-th kernel cannot pass through this 
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layer. Because the calculation of each kernel is independent in the 
convolutional layer, the pruned model can be viewed as a CNN-
based model with fewer kernels. Accordingly, we can prune our 
network to get an efficient and interpretable architecture with 
limited kernels.

Deepprune
In this work, we take iterative pruning on the weights of the 
dense layer in the CNN-based model and drop the learning rate 
of each pruning step gradually for fine-tuning. First, we utilize 
2k × d convolutional kernels in our model, i.e., the large, over-
parameterized model. Half the number of kernels is pruned each 
time, according to a certain criterion. In other words, the number 
of values being 1 in the mask layer is halved each time. Since 
weight pruning may lead to decreased performance, we then 
fine-tune the pruned model to regain the lost performance. The 
above two steps are iterated for k times and then the final model 
is obtained. Deepprune first gives the weights in the architecture 
an appropriate area from the global view and adjusts the weights 
gradually by iterative pruning and fine-tuning. In this way, 
we can overcome the drawback of easily stopping at the local 
optima restricted by the local views in the original model with 
limited kernel numbers by the strong ability of representation 
in our model.

Three criteria are designed for Deepprune. For weight-based 
Deepprune, we consider the weight of scores (i.e., wk) in the 
dense layer. The weights with small magnitude are pruned as
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in which the median operation takes the median of |wk| 
corresponding to unpruned weights. However, the scale problem 
below is not considered in the first criterion. We know that 
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 is the input for the sigmoid activation layer 

which predicts the label; that is to say wkuk determines the 
importance of the k-th kernel. However, the score of the k-th 
kernel can be multiplied by m if weights in the convolutional 
layer are multiplied by m, and then the weight corresponding to 
this kernel in the dense layer will shrink by training. As a result, 
the score uk obtained in the mask layer also counts, and the 
impact of the score over samples needs to be considered. For the 
score-based criterion, the scores with small difference between 
positive and negative samples are pruned.
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in which AVGPuk means the average score over positive samples, 
and AVGNuk means the average score over negative samples. 
For the score-and-weight-based criterion, we directly consider 

AVGPuk, which determines the input for the sigmoid activation 
layer as
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Implementation of the Models
The hyperparameters to train the simulated datasets contain the 
length of convolutional kernels, learning rate, times of pruning k, 
last pruned kernel number d, number of epochs, training batch 
size, learning rate decay schedule, and the optimizer. First, we 
train the basic model with 2k × d kernel numbers, and we get 
Deepprune models with 2k–1 × d,…, d kernel numbers. We also 
consider the strength of fine-tuning and denote the pruned 
model without fine-tuning from the last pruned model (twice the 
kernel numbers) as Deepprune-inter. To make a comparison, we 
match our model with baseline, which is the basic model utilizing 
identical kernel number trained directly without pruning.

For training, we used cross-entropy as a loss function without 
any weight decay (i.e., L2 regularization over the weights), and 
trained the model utilizing the standard backpropagation 
algorithm and the Adam optimizer (Kingma and Ba, 2014). The 
area under the ROC (AUC) (Fawcett, 2004; Davis and Goadrich, 
2006) is utilized to assess prediction performance. We took 
standard early stopping strategy to avoid overfitting (i.e., the 
training will be stopped as long as the loss over the validation set 
has stopped decreasing during continuous 15 epochs).

Our model is implemented with Keras for Python (Cholle, 
2015).

Datasets
Simulated Datasets
For simulation, TRANSFAC database was utilized to evaluate 
the performance of Deepprune (Wingender et al., 1996). Each 
simulated data set includes both negative and positive samples, 
or sequences. Each negative sample consists of independent 
and identically distributed nucleotides obeying a multinomial 
distribution with the probability of 0.25 for each {A, C, T, 
G}. Each positive sample was built in the same manner as a 
negative sample except that sequences from certain motifs 
were inserted at some locations randomly. The sequences 
inserted in the positive samples for the five simulated data sets 
were listed below:

• Simulated dataset 1, 2, 3: Each sequence was generated from 
either the first or the second motif. We chose motif for each 
positive sample randomly with equal probability.

• Simulated dataset 4: Each sequence was generated from one 
of the four given motifs; other rule is the same.

• Simulated dataset 5: Each sequence was generated from one 
of the eight given motifs; other rule is the same.

The number of sequences in the training dataset and test 
dataset is equal. We emphasized because a given protein may 
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bind to multiple motifs in the DNA sequence, our simulation 
datasets were constructed reasonably.

Real Datasets
690 ChIP-seq ENCODE datasets utilized by DeepBind were 
chosen to be real datasets (Alipanahi et al., 2015). Each dataset 
corresponds to a specific DNA-binding protein. Its positive 
samples are 101 bp DNA sequences confirmed to bind to a given 
protein experimentally while its negative samples were constructed 
through shuffling dinucleotides in the positive sequences. All the 
datasets are available at http://cnn.csail.mit.edu/.

REsULTs

Deepprune Performs Better Than the 
Baseline on the simulated Data
In this section, we use the simulated data to compare Deepprune 
with baseline. Baseline is the simplest CNN model with no 
hidden layers, in other words the architecture of Deepprune, but 

without the mask layer, with batch size = 256, d = 4, and k = 6. All 
the models in this paper are pruned from the basic model with 
kernels (Table 1). We chose d = 4 for 101 bp sequences, which 
can be divided into about 4 parts of 24 bp. If d < 4, the kernel 
number may be less than the number of the underlying motifs. 
Also, simulated dataset 5 can show how Deepprune performs 
when the kernel number is half the number of the underlying 
motifs. Several random seeds are set to evaluate the robustness of 
the models' performance for the simulated datasets. Our baseline 
is directly training the neural network without pruning, which 
is the simplest model raised in DeepBind. Only weight-based 
Deepprune is considered in this section.

Compared to the baseline model without pruning, we found 
that Deepprune improved motif inference performance on first 
three simulated datasets from Figure 2. Specifically, as kernel 
number increases, the performance of baseline has a tendency to 
improve, which is consistent with Zeng et al. (2016). However, as 
kernel number decreases, the performance of Deepprune shows 
a converse tendency such that the mean of AUC of Deepprune 
shows significant improvement as the iteration continues. 
What's more, variances of AUC of Deepprune are also more 
robust. When compared with models with the same kernel 
number, Deepprune shows its wonderful ability to limit kernels 
for accuracy and robustness, showing that Deepprune works 
effectively for motif inference.

Compared with the baseline, performance improvement was 
notably evident on the simulated dataset 4 and 5 with a hard true 
model, reflecting the excellence of Deepprune in cases with the 
complex motif settings (Figure 3). Distinctly, the performance 
of baseline with four kernels is close to that of random guess 
on the complex datasets. This result shows that the baseline 

TABLE 1 | Parameter settings for the simulated datasets.

Name Values

Batch size 256
Kernel length 24
Optimizer Adam with initial learning rate 0.01
Learning rate decay schedule Drops the learning rate by 1.2 every pruning 

step
Random seed 0, 1, 2, 3, 4, 5, 6, 7, 8, 100, 123, 1,000, 1234, 

10,000, 12,345, 100,000, 123,456, 1,000,000

FIGURE 1 | The architecture of Deepprune. The first layer is a convolutional layer. The second layer is a rectified linear units activation function followed by global 
max pooling. A mask layer is added to prune the small-magnitude weights. The fourth layer is a dense layer which linearly combines the outputs of all the kernels. 
The last layer is a sigmoid activation function which converts the values obtained in the dense layer to a value between 0 and 1 which corresponds to a probability. 
Three pruning strategies are designed for Deepprune with different modes.
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model with limited kernel numbers does not satisfy the need 
for overcoming the local optimum problem and that it lacks 
robustness to initialization. To our surprise, when the kernel 
number is half that of the motif number, the performance of 
Deepprune only drops a little, showing that the condition d = 
4 is enough. What's more, fewer kernels helps to improve the 
interpretation of our model. We also find that Deepprune-inter 
always shows poorer results, no matter whether from the mean 
AUC or the variation of AUC, which demonstrates that fine-
tuning is essential in Deepprune.

Comparison of Three Pruning Criteria
Next, we studied the effects of the three criteria on the 
performance of Deepprune, as noted previously. We selected 
three simulated datasets to determine the difference of three 
different rules. If the scores are considered when pruning, then 
all samples in the training set need to be calculated, which leads 
to substantial calculation.

From Figure 4, when kernel number is high (e.g., 8 and 16), 
the performance of the three methods is nearly identical. Thus, 
the choice of three pruning methods is not crucial because the 
restriction to the kernel number is loose. However, when the 

kernel number is extremely limited, weight-based Deepprune 
shows its superiority compared to the other two methods in 
simulated dataset 1, in which the samples are hard to classify 
because of the information entropy in the true model. It is likely 
that weight-based Deepprune does not depend on samples which 
may cause randomness. From the case study below, the weights 
in the dense layer have a close magnitude, indicating that the 
scaling problem of scoring is difficult to solve in the smooth 
training process. Based on this observation, we select weight-
based Deepprune as default.

Performance on Real Datasets
We test the performance of DeepPrune on read data analysis in 
this section. CNN parameters are set the same as those for the 
simulated datasets, except the kernel length was changed to 15.

When the number of kernels is limited (i.e., four), 
Deepprune achieves a statistically significant improvement in 
AUC from one-sided Wilcoxon signed-rank test in Figure 5, 
p=1.02×10–58, with a better performance on 77.10% of the 
datasets [Table 2]. We also selected two representative real 
datasets to show the superiority of Deepprune (Figure S5 
and S6). Nevertheless, its accuracy is lower on 22.90% of the 

FIGURE 2 | Weight-based Deepprune performs much better and is much robuster to different random initialization than baseline when kernel number is limited 
in the first three simulated datasets. The x axis shows the kernel numbers utilized in the model, and the y axis shows the area under the receiver operating 
characteristic curves (AUCs) obtained in testing. As kernel number decreases, the performance of Deepprune shows a converse tendency compared to baseline; 
thus, as iteration continues in an upward gradient, the mean AUC of Deepprune significantly improves.
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datasets, which does not match our expectation. This may 
be due to the non-convexity of the neural network model 
where local optimum is obtained. So we select the datasets 
for which our model's performance is lower, and we initialize 
the training with several different random seeds. In some of 
the selected datasets, the mean performance of DeepPrune 
is almost as good as the baseline (Figure S2). However, a 
consistent gap still appears in a small number of datasets in 
which the baseline shows better performance than our method, 
suggesting that the interaction of motifs is not considered in 
our architecture. It follows that the proposed architecture 
cannot represent the true model for some proteins in motif 
inference, which, therefore, creates bias for Deepprune. The 
fact that the performance of Deepprune gets worse when the 
number of kernels increases in simulations while the trend is 
opposite in real data also shows the above point. What's more, 
Deepprune outperforms the network with circular filters 
(Blum and Kollmann, 2019) significantly (Figure S4).

Case study
We selected several kernels to track the change of their 
corresponding weights at different pruning stages in the dense 
layer. In this section, we utilized simulated dataset 3 for we 
only knew the true models in simulated datasets. We chose the 
weights of four unpruned kernels and two pruned kernels at the 
end of each fine-tuning step. All the weights were collected after 

fine-tuning. It should be noted that the weights of the kernels in 
the convolutional layer changed during fine-tuning.

From Table 3, we can see that the magnitude of weights is 
gained step-by-step for four unpruned kernels, indicating that 
kernels show their importance over a gradual upward gradient. 
Before pruning, the weights of unpruned kernels are scrapped 
by auxiliary kernels. After pruning auxiliary kernels, the weights 
of unpruned kernels aren't affected any more, which shows the 
superiority of Deepprune.

Model Visualization
Now we study the ability of Deepprune to recover the underlying 
motifs more accurately. As in the last section, we utilized 
simulated dataset 3 because we only knew the true motifs in 
simulated datasets. Two models are both trained with the same 
parameters in Table 1 and the kernel number is set as 4. The 
sequence logos are generated from kernels the way introduced 
in Section Sequence logos of the DeepBind (Alipanahi et al., 
2015) Supplementary Materials. The two best-recovered motifs, 
from the perspective of information content, were compared to 
the true motifs utilized on the simulated data. Their similarity 
(E-value) were also calculated utilizing the Tomtom algorithm 
(Gupta et al., 2007).

In Figure 5 the motifs recovered by Deepprune and the 
baseline were both aligned to the true motifs. We clearly 
found the sequence logos generated by Deepprune were 

FIGURE 3 | Weight-based Deepprune performs much better and is much robuster to different random initialization than baseline when kernel number is limited in 
the last two complex simulated datasets, even when kernel number is half the motif number at which time the performance of Deepprune only drops slightly.
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informative and accurate from the E-value. The base-
recovered motif by the baseline with four kernels exhibited 
very bad performance and the short motif in simulated 
dataset 3 could not be matched by four filters. In addition, 
we found that the motif regions could be distinguished from 
other regions which clearly obey background distribution. 
Although the length of kernels is far beyond that of the true 
motifs, the extra positions, which are not aligned to the true 
motifs, do not contain any noise, owing to the ability of 
Deepprune to lessen the impact of auxiliary kernels at the 
end of training. We further explored the case of eight kernels 
and found a consist pattern (Figure S3).

DIsCUssION

Regularization Behind Deepprune
L0, L1, and L2 regularizations are three significant shrinkage 
methods for variable selection, and they are widely utilized in 
deep learning (He et al., 2016; Liu et al., 2017; Luo et al., 2019). 
However, the architecture of deep learning is multilayered 
and complex. Thus, for the same result, all weights in the 
architecture have the same infinite solution, e.g., the scaling 

problem noted before. L1 and L2 regularization update the 
original loss function by adding differentiable regularization 
terms, while L0 regularization needs to be realized by pruning. 
Actually, Deepprune adds L0 regularization to the weight in the 

FIGURE 4 | Three models of Deepprune are compared on the simulated datasets. We show the performance of Deepprune based on different criteria with 4, 8, 
and 16 kernels. The performance of three different criteria is almost identical to that with 8 and 16 kernels during iterative pruning. However, the final model with four 
kernels shows that weighted-based Deepprune is superior to the other two methods in simulated dataset 1, but hard to classify owing to high entropy.

TABLE 2 | Performance of Deepprune on real data.

Kernel 
number

Method AUC Percentage 
improved

P-value

Circular filters 0.6923
Deepprune 0.8016 0.9826 7.22 × 10(–112)

Baseline 0.7785
4 Deepprune 0.8016 0.7710 1.02 × 10(–58)

Baseline 0.8169
8 Deepprune 0.8288 0.7174 6.44 × 10(–38)

Baseline 0.8432
16 Deepprune 0.8476 0.6826 2.63 × 10(–21)

Baseline 0.8602
32 Deepprune 0.8625 0.6681 3.25 × 10(–15)

Baseline 0.8728
64 Deepprune 0.8743 0.6507 1.20 × 10(–15)

Baseline 0.8809
128 Deepprune 0.8820 0.6986 4.41 × 10(–26)

256 0.8849
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dense layer instead of the entire architecture. Iterative pruning 
can help avoid wrong pruning for the greedy algorithm 
compared with one-shot pruning, thus showing its superiority 
in many tasks (Frankle and Carbin, 2018). Although L1 and 
L2 penalties have been added to our model, the result shows 
little difference.

Deep Models Are Necessary for Modeling 
Transcription Factor -DNA specificities
Blum and Kollmann (Blum and Kollman, 2019) supposed 
that deep models may be unnecessary for modeling 
transcription factor-DNA specificities because they think 
that biological sequences are not composed of complex 
hierarchies of patterns as those in images. Deepprune can 
improve the performance of motif inference on real-world 
data compared with baseline, even with the same kernel 
number. However, since the weights are pruned iteratively, 
the performance of Deepprune does not change as what we 
saw in the simulated datasets. If PWM characterizes the 
specificities of motif inference and motif relationships are the 
same with those in simulated datasets, we will most likely see 
consistent performance in real-world and simulated datasets. 
In actuality, however, about 23% of datasets have a decrease 
compared to baseline with four kernels. As a result, we suspect 
that the interaction of different motifs and other complex 
relationships corresponding to motif inference need to be 
considered. Actually we suggest using different architectures 
to model different protein-binding problems. It is clear that 
adding the hidden layer gives deep learning architectures 
the ability to represent the interaction of different motifs 
and sequences of recurrent neural network models from the 
viewpoint of natural language processes, allowing various 
representations with different parameters. However, based 
on the results of our experiment, many biological sequences 
cannot be modeled very well by the simple DeepBind model, 
making it necessary to create deeper architectures to identify 
the underlying model for some proteins.

TABLE 3 | Absolute value of weights of several kernels during different pruning stages in the dense layer.

Kernel number Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6

256 0.9150 0.9019 0.7043 0.8112 0.2192 0.3582
128 0.9462 0.9294 0.7322 0.8344 0.2625 0.4015
64 0.9548 0.9364 0.7305 0.8252 0.2100 0.3750
32 0.9616 0.9403 0.7540 0.8387 0.0000 0.4433
16 0.9836 0.9504 0.8153 0.8589 0.0000 0.4584
8 1.0919 1.0501 0.9620 1.0249 0.0000 0.0000
4 1.2832 1.1979 1.2065 1.2542 0.0000 0.0000

FIGURE 5 | Motifs recovered by our model (the last two) and by baseline (the first) aligned to the true given motifs (top row). Utilizing Tomtom algorithm, the E-values 
of the motifs recovered by Deepprune are 1.35 × 10–23, 2.27 × 10–7, respectively. At the same time, the ones recovered by baseline are 1.64 × 10–2.

FIGURE 6 | The performance of Deepprune with four kernels on real 
datasets where kernel length = 15. Deepprune greatly increases the 
AUC for real datasets. The AUC difference under the baseline (Init) and 
Deepprune (Prune) is shown from the x axis. Deepprune is better than 
baseline on 532 datasets, but worse than baseline with 158 datasets. This 
figure clearly shows that Deepprune achieves better performance with 
limited kernel number.
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Lottery Ticket hypothesis
Recently, the lottery ticket hypothesis has attracted attention 
in the field of deep learning. This hypothesis holds that dense, 
randomly initialized networks contain subnetworks that, when 
trained in isolation (i.e., utilizing the same initialization), 
reach test accuracy comparable to the original network in a 
similar number of iterations (Frankle and Carbin, 2018). The 
subnetworks are called winning tickets. Liu et al. (2018) even 
suggested that the value of automatically structured pruning 
algorithms sometimes lies in identifying efficient structures 
and performing implicit architecture search, rather than 
selecting "important" weights, irrespective of the initiation. 
First, if the architecture of our pruned model is equal to that 
of baseline, our result in the simulated dataset shows that 
either weight or initiation also counts for the performance 
of unstructured pruning algorithms. Second, we tried to find 
our winning tickets by following the methods in the original 
paper. We substituted the fine-tuning step in Deepprune for 
retraining, which resets the remaining parameters to their 
values before initial training. Experiments on real data with 
winning tickets realize slightly better performance (mean AUC 
is 0.8035 with four kernels), which shows that this hypothesis 
may be true for Deepprune (Figure S1).

CONCLUsION
In this study, we proposed a novel deep-learning framework 
called Deepprune, to improve the performance of predicting 
the binding preference of DNA-protein binding. Deepprune 
prunes weights of kernels in the dense layer and fine-tunes 
iteratively by adding a mask layer in the architecture of 
motif inference. Deepprune utilizes limited kernel number 
in the convolutional layer, which shows the efficiency and 
interpretability of our model. In this study, Deepprune is shown 
to improve model performance compared with baseline with 
the same limited kernel number, both in simulated and real-
world datasets. Our method improves performance without 
changing the basic architectures or adding extra parameters at 
the end of training (Figure 6).

To the best of our knowledge, we are the first to introduce 
a pruning framework in the field of motif inference. Network 
pruning has been widely applied in the framework of deep 
learning for its ability to reduce storage and computation without 
affecting accuracy. Although the architecture of motif inference is 
very simple, network pruning is meaningful for the model since 
the use of fewer kernels can still achieve better interpretation as 
can be seen from model visualization.

The motif-finding problem remains unsolved. Deep 
learning is very useful for complex structures and large datasets. 
What's more, it has greatly improved the state-of-the-art in 
many areas. Neural networks have achieved a lot of success, 
such as DeepBind and DeepSEA for motif-finding. However, 
in spite of the great achievements, deep learning is blamed 
due to the lack of interpretability as well (Castelvecchi, 2016; 
Zou et al., 2019). DeepBind shows its superiority compared 

with conventional machine learning methods, which proves 
that both deep and complex representation of the sequences 
is essential for motif inference. Because the gap between the 
performance on simulated and real-world datasets, we wonder 
if this is due to the underlying model behind some of the real-
world datasets is complex.

Recently, many studies have investigated the interpretation 
of neural networks and the underlying model behind 
real-world datasets. They utilize complex models, such as 
recurrent neural network (RNN) and the model with attention 
mechanism, which comes from the field of natural language 
processing, to represent the complex information of biological 
sequences (Pan and Yan, 2017; Pan et al., 2018; Pan and Shen, 
2018; Shen et al., 2018; Zuallaert et al., 2018; Li et al., 2019; 
Luo et al., 2019). Actually, from the diversity of DNA-protein 
binding, we suggest using different architectures to model 
motif inference for specific proteins. Complex network 
architectures combined with pruning technology can result 
in approximating the true model of motif inference. Since 
our basic architecture is simple, adding a hidden layer before 
the dense layer and then adding an RNN layer after the 
convolutional layer, as well as replacing global max pooling 
with expectation pooling, can also be considered, but these 
topics are outside the scope of the present paper.
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