
1

Edited by:
Ping Ma,

University of Georgia,
United States

Reviewed by:
Lin Hou,

Tsinghua University,
China

Xiaoxiao Sun,
University of Arizona,

United States
Xin Xing,

Harvard University,
United States

*Correspondence:
Minghua Deng

dengmh@math.pku.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

 Bioinformatics and
Computational Biology,
 a section of the journal

 Frontiers in Genetics

Received: 13 August 2019
Accepted: 21 October 2019

Published: 20 November 2019

Citation:
Luo X, Chi W and Deng M (2019)

Deepprune: Learning Efficient
and Interpretable Convolutional

Networks Through Weight Pruning for
Predicting DNA-Protein Binding.

 Front. Genet. 10:1145.
 doi: 10.3389/fgene.2019.01145

Deepprune: Learning Efficient
and Interpretable Convolutional
Networks Through Weight Pruning
for Predicting DNA-Protein Binding
Xiao Luo 1†, Weilai Chi 2† and Minghua Deng 1,2*

1 School of Mathematical Sciences, Peking University, Beijing, China, 2 Center for Quantitative Biology, Peking University,
Beijing, China

Convolutional neural network (CNN) based methods have outperformed conventional
machine learning methods in predicting the binding preference of DNA-protein
binding. Although studies in the past have shown that more convolutional kernels
help to achieve better performance, visualization of the model can be obscured by
the use of many kernels, resulting in overfitting and reduced interpretation because
the number of motifs in true models is limited. Therefore, we aim to arrive at high
performance, but with limited kernel numbers, in CNN-based models for motif
inference. We herein present Deepprune, a novel deep learning framework, which
prunes the weights in the dense layer and fine-tunes iteratively. These two steps
enable the training of CNN-based models with limited kernel numbers, allowing easy
interpretation of the learned model. We demonstrate that Deepprune significantly
improves motif inference performance for the simulated datasets. Furthermore, we
show that Deepprune outperforms the baseline with limited kernel numbers when
inferring DNA-binding sites from ChIP-seq data.

Keywords: deep neural networks, motif inference, network pruning, convolutional neural networks,
interpretation

BACKGROUND
Determining how proteins interact with DNA to regulate gene expression is essential for fully
understanding many biological processes and disease states. Many DNA binding proteins have
affinity for specific DNA binding sites. ChIP-seq combines chromatin immunoprecipitation
(ChIP) with massively parallel DNA sequencing to identify DNA binding sites of DNA-associated
proteins (Zhang et al., 2008). However, DNA sequences directly obtained by experiments
typically contain noise and bias. Consequently, many computational methods have been
developed to predict protein-DNA binding, including conventional statistical methods (Badis
et al., 2009; Ghandi et al., 2016) and deep learning-based methods (Alipanahi et al., 2015; Zhou
and Troyanskaya, 2015; Zeng et al., 2016). Convolutional neural networks (CNNs) have attracted
attention for identifying protein-DNA binding motifs in many studies (Alipanahi et al., 2015;
Zhou and Troyanskaya, 2015). Genomic sequences are first encoded in one-hot format; then, a
1-D convolution operation with four channels is performed on them. For conventional machine
learning methods, the sequence specificities of a protein are often characterized by position

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

ORIGINAL REsEARCh

doi: 10.3389/fgene.2019.01145
published: 20 November 2019

https://creativecommons.org/licenses/by/4.0/
mailto:dengmh@math.pku.edu.cn
https://doi.org/10.3389/fgene.2019.01145
https://www.frontiersin.org/article/10.3389/fgene.2019.01145/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01145/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01145/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01145/full
https://loop.frontiersin.org/people/787485
https://loop.frontiersin.org/people/24580
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01145
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01145&domain=pdf&date_stamp=2019-11-20

DeeppruneLuo et al.

2

weight matrices (PWM) (Stormo, 2000). PWM has a direct
connection to CNN-based model since the log-likelihood of
the resulting PWM of each DNA sequence is exactly the sum
of a constant and the convolution of the original kernel on the
same sequence from the view of probability model (Ding et al.,
2018). Zeng et al. (2016) experimented with different structures
and hyperparameters and showed that the convolutional layers
with more kernels could obtain better performance. They also
showed that training models with gradient descent methods
is sensitive to weight initialization, showing, in turn, that
training could be obstructed at local optimum of loss function.
However, the use of too many kernels could introduce too much
noise and, thus, overfitting, leading to misinterpretation of the
model. By visualizing the recovery of the underlying motifs
in the models, we found that only the several best-recovered
motifs, in the sense of information content, could be equated
to the true motifs, demonstrating that most kernels only act
during the process of training by increasing generalization
ability in order to overcome the local optimum problem (Du
et al., 2018). Such kernels can be termed auxiliary kernels,
and these kernels produce noise and reduce performance
at the end of training. Neural networks with circular filters
(Blum and Kollmann, 2019) can address this problem, but
performance was only found to significantly improve in the
one-kernel CNN-based model. However, since some proteins
likely bind multiple motifs in the DNA sequence in omics data,
the one-kernel CNN-based model cannot meet the needs of
motif finding. Moreover, its overall performance is lower than
expected when kernel number is limited (e.g., 16). Luo et al,
(2019) replaced global max pooling with expectation pooling,
which is shown to increase the robustness for kernel numbers.
However, expectation pooling only increases model robustness;
it does not limit kernel numbers.

In contrast, neural network pruning can reduce kernel
numbers and by doing so, improve inferential performance
without harming accuracy in the field of computer vision (Han
et al., 2015a; Abbasi-Asl and Yu, 2017; Frankle and Carbin,
2018). Pruning methods can be classified into structured
and unstructured. The former refers to pruning at the level of
channels, or even layers, for which the original network structure
is still preserved (Hu et al., 2016; Li et al., 2016; Changpinyo
et al., 2017; He et al., 2017). The latter includes individual weight
pruning. Han et al. (Han et al., 2015b) developed a method
whereby network weights of small magnitude were pruned, and it
was very successful in highly compressed neural network models
(Han et al., 2015a). Unstructured pruning can ensure that models
will achieve sparse weight matrices which result in compression
and acceleration with dedicated hardware (Han et al., 2016).

With evidence that models with only a few kernels can
fit the PWM model very well, we propose a novel model,
termed Deepprune, which utilizes pruning techniques in
motif inference. Several assumptions underlie the design
of Deepprune. First, by its stronger representation and
optimization power, we believed that starting with training a
large and over-parameterized network could provide a model
with high performance. Second, for the PWM model, which
often characterizes sequence specificities, several kernels which

are viewed as motif detectors are enough for motif inference.
Third, the inclusion of too many auxiliary kernels leads to
misinterpretation of the model. Fourth, auxiliary kernels may
produce noise and lower performance at the end of training.
If the PWM model characterizes sequence specificities and
if no interaction among different motifs is considered, then
Deepprune achieves better performance with fewer kernels,
markedly exceeding baseline in simulated datasets. In spite
of the uncertainty of the true model, Deepprune still arrives
at better performance with the same kernel numbers in real
datasets, which shows the superiority of our model. Our model
can also find more accurate motifs by model visualization and
eliminate auxiliary kernels. All coding utilized to implement
Deepprune and all the figure reproductions in the paper is
available at https://github.com/klovbe/Deepprune.

METhODs

Detecting sequence Motifs With
Convolutional Neural Network
We adopt the simplest model in DeepBind as our basic neural
network architecture (Alipanahi et al., 2015). The sequences are
represented as numerical vectors. Each of the four nucleotides
is denoted as one of the four one-hot vectors [1,0,0,0], [0,1,0,0],
[0,0,1,0], and [0,0,0,1]. Consequently, a sequence X = X1,…, XL is
transformed into a 4 × Lmatrix S. We first add a 1-D convolutional
layer with rectified linear units (ReLU) activation serving as a
motif scanner layer (Radford et al., 2015), followed by a global
max pooling layer. Then we add a mask layer to prune the weights
according to some given criterion, which will be introduced in
the next section. The last layer is a fully connected layer with
sigmoid activation the output of which is the probability of a
sample being positive (Figure 1).

Formally, if the convolutional kernels are denoted by 4 ×
LF matrices F1, F2, …,Fd, in which LF is the length of the kernel,
we have

h pk S i p F k d Convolutionj ji
k

ji

() = + − =
==

∑ ,() , . ,()
1

4

1
11

1

0

L

pk pk

k k L

F

a h Activation

z a a

∑
=

=

max(,)()

max{ , ,,  −− + −

= ⋅

L k

k k k

F
Globalmax pooling

u z m MaskLayer

1, }()

()

pp C b w u DenseLayermotif k k
k

d

(|) (),S = +










=
∑σ

1

where wk and w are weights, b is bias and σ(x) denotes the sigmoid
function for classification. Compared to basic neural network
architectures, note that a mask layer is added because we want to
mask the kernels that have little impact on the performance at the
end of training. As a result, mk is set as 0 or 1, and mk = 0 means
that the information of the k-th kernel cannot pass through this

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://github.com/klovbe/Deepprune
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

3

layer. Because the calculation of each kernel is independent in the
convolutional layer, the pruned model can be viewed as a CNN-
based model with fewer kernels. Accordingly, we can prune our
network to get an efficient and interpretable architecture with
limited kernels.

Deepprune
In this work, we take iterative pruning on the weights of the
dense layer in the CNN-based model and drop the learning rate
of each pruning step gradually for fine-tuning. First, we utilize
2k × d convolutional kernels in our model, i.e., the large, over-
parameterized model. Half the number of kernels is pruned each
time, according to a certain criterion. In other words, the number
of values being 1 in the mask layer is halved each time. Since
weight pruning may lead to decreased performance, we then
fine-tune the pruned model to regain the lost performance. The
above two steps are iterated for k times and then the final model
is obtained. Deepprune first gives the weights in the architecture
an appropriate area from the global view and adjusts the weights
gradually by iterative pruning and fine-tuning. In this way,
we can overcome the drawback of easily stopping at the local
optima restricted by the local views in the original model with
limited kernel numbers by the strong ability of representation
in our model.

Three criteria are designed for Deepprune. For weight-based
Deepprune, we consider the weight of scores (i.e., wk) in the
dense layer. The weights with small magnitude are pruned as

m w median w

otherwise
k

k k= >





1
0

| | (| |)

in which the median operation takes the median of |wk|
corresponding to unpruned weights. However, the scale problem
below is not considered in the first criterion. We know that
b w uk k

k

d
+

=∑ 1
 is the input for the sigmoid activation layer

which predicts the label; that is to say wkuk determines the
importance of the k-th kernel. However, the score of the k-th
kernel can be multiplied by m if weights in the convolutional
layer are multiplied by m, and then the weight corresponding to
this kernel in the dense layer will shrink by training. As a result,
the score uk obtained in the mask layer also counts, and the
impact of the score over samples needs to be considered. For the
score-based criterion, the scores with small difference between
positive and negative samples are pruned.

m
AVG u AVG u

median AVG u AVG u
ot

k

P k N k

P k N k=
− >

−
1

0

| | |
(| |)

hherwise









in which AVGPuk means the average score over positive samples,
and AVGNuk means the average score over negative samples.
For the score-and-weight-based criterion, we directly consider

AVGPuk, which determines the input for the sigmoid activation
layer as

m
AVG u w AVG u w

median AVG u w AVGk

P k k N k k

P k k=
∗ − ∗ >

∗ −
1 | |

(| NN k ku w
otherwise

∗









|)
0

Implementation of the Models
The hyperparameters to train the simulated datasets contain the
length of convolutional kernels, learning rate, times of pruning k,
last pruned kernel number d, number of epochs, training batch
size, learning rate decay schedule, and the optimizer. First, we
train the basic model with 2k × d kernel numbers, and we get
Deepprune models with 2k–1 × d,…, d kernel numbers. We also
consider the strength of fine-tuning and denote the pruned
model without fine-tuning from the last pruned model (twice the
kernel numbers) as Deepprune-inter. To make a comparison, we
match our model with baseline, which is the basic model utilizing
identical kernel number trained directly without pruning.

For training, we used cross-entropy as a loss function without
any weight decay (i.e., L2 regularization over the weights), and
trained the model utilizing the standard backpropagation
algorithm and the Adam optimizer (Kingma and Ba, 2014). The
area under the ROC (AUC) (Fawcett, 2004; Davis and Goadrich,
2006) is utilized to assess prediction performance. We took
standard early stopping strategy to avoid overfitting (i.e., the
training will be stopped as long as the loss over the validation set
has stopped decreasing during continuous 15 epochs).

Our model is implemented with Keras for Python (Cholle,
2015).

Datasets
Simulated Datasets
For simulation, TRANSFAC database was utilized to evaluate
the performance of Deepprune (Wingender et al., 1996). Each
simulated data set includes both negative and positive samples,
or sequences. Each negative sample consists of independent
and identically distributed nucleotides obeying a multinomial
distribution with the probability of 0.25 for each {A, C, T,
G}. Each positive sample was built in the same manner as a
negative sample except that sequences from certain motifs
were inserted at some locations randomly. The sequences
inserted in the positive samples for the five simulated data sets
were listed below:

• Simulated dataset 1, 2, 3: Each sequence was generated from
either the first or the second motif. We chose motif for each
positive sample randomly with equal probability.

• Simulated dataset 4: Each sequence was generated from one
of the four given motifs; other rule is the same.

• Simulated dataset 5: Each sequence was generated from one
of the eight given motifs; other rule is the same.

The number of sequences in the training dataset and test
dataset is equal. We emphasized because a given protein may

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

4

bind to multiple motifs in the DNA sequence, our simulation
datasets were constructed reasonably.

Real Datasets
690 ChIP-seq ENCODE datasets utilized by DeepBind were
chosen to be real datasets (Alipanahi et al., 2015). Each dataset
corresponds to a specific DNA-binding protein. Its positive
samples are 101 bp DNA sequences confirmed to bind to a given
protein experimentally while its negative samples were constructed
through shuffling dinucleotides in the positive sequences. All the
datasets are available at http://cnn.csail.mit.edu/.

REsULTs

Deepprune Performs Better Than the
Baseline on the simulated Data
In this section, we use the simulated data to compare Deepprune
with baseline. Baseline is the simplest CNN model with no
hidden layers, in other words the architecture of Deepprune, but

without the mask layer, with batch size = 256, d = 4, and k = 6. All
the models in this paper are pruned from the basic model with
kernels (Table 1). We chose d = 4 for 101 bp sequences, which
can be divided into about 4 parts of 24 bp. If d < 4, the kernel
number may be less than the number of the underlying motifs.
Also, simulated dataset 5 can show how Deepprune performs
when the kernel number is half the number of the underlying
motifs. Several random seeds are set to evaluate the robustness of
the models' performance for the simulated datasets. Our baseline
is directly training the neural network without pruning, which
is the simplest model raised in DeepBind. Only weight-based
Deepprune is considered in this section.

Compared to the baseline model without pruning, we found
that Deepprune improved motif inference performance on first
three simulated datasets from Figure 2. Specifically, as kernel
number increases, the performance of baseline has a tendency to
improve, which is consistent with Zeng et al. (2016). However, as
kernel number decreases, the performance of Deepprune shows
a converse tendency such that the mean of AUC of Deepprune
shows significant improvement as the iteration continues.
What's more, variances of AUC of Deepprune are also more
robust. When compared with models with the same kernel
number, Deepprune shows its wonderful ability to limit kernels
for accuracy and robustness, showing that Deepprune works
effectively for motif inference.

Compared with the baseline, performance improvement was
notably evident on the simulated dataset 4 and 5 with a hard true
model, reflecting the excellence of Deepprune in cases with the
complex motif settings (Figure 3). Distinctly, the performance
of baseline with four kernels is close to that of random guess
on the complex datasets. This result shows that the baseline

TABLE 1 | Parameter settings for the simulated datasets.

Name Values

Batch size 256
Kernel length 24
Optimizer Adam with initial learning rate 0.01
Learning rate decay schedule Drops the learning rate by 1.2 every pruning

step
Random seed 0, 1, 2, 3, 4, 5, 6, 7, 8, 100, 123, 1,000, 1234,

10,000, 12,345, 100,000, 123,456, 1,000,000

FIGURE 1 | The architecture of Deepprune. The first layer is a convolutional layer. The second layer is a rectified linear units activation function followed by global
max pooling. A mask layer is added to prune the small-magnitude weights. The fourth layer is a dense layer which linearly combines the outputs of all the kernels.
The last layer is a sigmoid activation function which converts the values obtained in the dense layer to a value between 0 and 1 which corresponds to a probability.
Three pruning strategies are designed for Deepprune with different modes.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

http://cnn.csail.mit.edu/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

5

model with limited kernel numbers does not satisfy the need
for overcoming the local optimum problem and that it lacks
robustness to initialization. To our surprise, when the kernel
number is half that of the motif number, the performance of
Deepprune only drops a little, showing that the condition d =
4 is enough. What's more, fewer kernels helps to improve the
interpretation of our model. We also find that Deepprune-inter
always shows poorer results, no matter whether from the mean
AUC or the variation of AUC, which demonstrates that fine-
tuning is essential in Deepprune.

Comparison of Three Pruning Criteria
Next, we studied the effects of the three criteria on the
performance of Deepprune, as noted previously. We selected
three simulated datasets to determine the difference of three
different rules. If the scores are considered when pruning, then
all samples in the training set need to be calculated, which leads
to substantial calculation.

From Figure 4, when kernel number is high (e.g., 8 and 16),
the performance of the three methods is nearly identical. Thus,
the choice of three pruning methods is not crucial because the
restriction to the kernel number is loose. However, when the

kernel number is extremely limited, weight-based Deepprune
shows its superiority compared to the other two methods in
simulated dataset 1, in which the samples are hard to classify
because of the information entropy in the true model. It is likely
that weight-based Deepprune does not depend on samples which
may cause randomness. From the case study below, the weights
in the dense layer have a close magnitude, indicating that the
scaling problem of scoring is difficult to solve in the smooth
training process. Based on this observation, we select weight-
based Deepprune as default.

Performance on Real Datasets
We test the performance of DeepPrune on read data analysis in
this section. CNN parameters are set the same as those for the
simulated datasets, except the kernel length was changed to 15.

When the number of kernels is limited (i.e., four),
Deepprune achieves a statistically significant improvement in
AUC from one-sided Wilcoxon signed-rank test in Figure 5,
p=1.02×10–58, with a better performance on 77.10% of the
datasets [Table 2]. We also selected two representative real
datasets to show the superiority of Deepprune (Figure S5
and S6). Nevertheless, its accuracy is lower on 22.90% of the

FIGURE 2 | Weight-based Deepprune performs much better and is much robuster to different random initialization than baseline when kernel number is limited
in the first three simulated datasets. The x axis shows the kernel numbers utilized in the model, and the y axis shows the area under the receiver operating
characteristic curves (AUCs) obtained in testing. As kernel number decreases, the performance of Deepprune shows a converse tendency compared to baseline;
thus, as iteration continues in an upward gradient, the mean AUC of Deepprune significantly improves.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

6

datasets, which does not match our expectation. This may
be due to the non-convexity of the neural network model
where local optimum is obtained. So we select the datasets
for which our model's performance is lower, and we initialize
the training with several different random seeds. In some of
the selected datasets, the mean performance of DeepPrune
is almost as good as the baseline (Figure S2). However, a
consistent gap still appears in a small number of datasets in
which the baseline shows better performance than our method,
suggesting that the interaction of motifs is not considered in
our architecture. It follows that the proposed architecture
cannot represent the true model for some proteins in motif
inference, which, therefore, creates bias for Deepprune. The
fact that the performance of Deepprune gets worse when the
number of kernels increases in simulations while the trend is
opposite in real data also shows the above point. What's more,
Deepprune outperforms the network with circular filters
(Blum and Kollmann, 2019) significantly (Figure S4).

Case study
We selected several kernels to track the change of their
corresponding weights at different pruning stages in the dense
layer. In this section, we utilized simulated dataset 3 for we
only knew the true models in simulated datasets. We chose the
weights of four unpruned kernels and two pruned kernels at the
end of each fine-tuning step. All the weights were collected after

fine-tuning. It should be noted that the weights of the kernels in
the convolutional layer changed during fine-tuning.

From Table 3, we can see that the magnitude of weights is
gained step-by-step for four unpruned kernels, indicating that
kernels show their importance over a gradual upward gradient.
Before pruning, the weights of unpruned kernels are scrapped
by auxiliary kernels. After pruning auxiliary kernels, the weights
of unpruned kernels aren't affected any more, which shows the
superiority of Deepprune.

Model Visualization
Now we study the ability of Deepprune to recover the underlying
motifs more accurately. As in the last section, we utilized
simulated dataset 3 because we only knew the true motifs in
simulated datasets. Two models are both trained with the same
parameters in Table 1 and the kernel number is set as 4. The
sequence logos are generated from kernels the way introduced
in Section Sequence logos of the DeepBind (Alipanahi et al.,
2015) Supplementary Materials. The two best-recovered motifs,
from the perspective of information content, were compared to
the true motifs utilized on the simulated data. Their similarity
(E-value) were also calculated utilizing the Tomtom algorithm
(Gupta et al., 2007).

In Figure 5 the motifs recovered by Deepprune and the
baseline were both aligned to the true motifs. We clearly
found the sequence logos generated by Deepprune were

FIGURE 3 | Weight-based Deepprune performs much better and is much robuster to different random initialization than baseline when kernel number is limited in
the last two complex simulated datasets, even when kernel number is half the motif number at which time the performance of Deepprune only drops slightly.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

7

informative and accurate from the E-value. The base-
recovered motif by the baseline with four kernels exhibited
very bad performance and the short motif in simulated
dataset 3 could not be matched by four filters. In addition,
we found that the motif regions could be distinguished from
other regions which clearly obey background distribution.
Although the length of kernels is far beyond that of the true
motifs, the extra positions, which are not aligned to the true
motifs, do not contain any noise, owing to the ability of
Deepprune to lessen the impact of auxiliary kernels at the
end of training. We further explored the case of eight kernels
and found a consist pattern (Figure S3).

DIsCUssION

Regularization Behind Deepprune
L0, L1, and L2 regularizations are three significant shrinkage
methods for variable selection, and they are widely utilized in
deep learning (He et al., 2016; Liu et al., 2017; Luo et al., 2019).
However, the architecture of deep learning is multilayered
and complex. Thus, for the same result, all weights in the
architecture have the same infinite solution, e.g., the scaling

problem noted before. L1 and L2 regularization update the
original loss function by adding differentiable regularization
terms, while L0 regularization needs to be realized by pruning.
Actually, Deepprune adds L0 regularization to the weight in the

FIGURE 4 | Three models of Deepprune are compared on the simulated datasets. We show the performance of Deepprune based on different criteria with 4, 8,
and 16 kernels. The performance of three different criteria is almost identical to that with 8 and 16 kernels during iterative pruning. However, the final model with four
kernels shows that weighted-based Deepprune is superior to the other two methods in simulated dataset 1, but hard to classify owing to high entropy.

TABLE 2 | Performance of Deepprune on real data.

Kernel
number

Method AUC Percentage
improved

P-value

Circular filters 0.6923
Deepprune 0.8016 0.9826 7.22 × 10(–112)

Baseline 0.7785
4 Deepprune 0.8016 0.7710 1.02 × 10(–58)

Baseline 0.8169
8 Deepprune 0.8288 0.7174 6.44 × 10(–38)

Baseline 0.8432
16 Deepprune 0.8476 0.6826 2.63 × 10(–21)

Baseline 0.8602
32 Deepprune 0.8625 0.6681 3.25 × 10(–15)

Baseline 0.8728
64 Deepprune 0.8743 0.6507 1.20 × 10(–15)

Baseline 0.8809
128 Deepprune 0.8820 0.6986 4.41 × 10(–26)

256 0.8849

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

8

dense layer instead of the entire architecture. Iterative pruning
can help avoid wrong pruning for the greedy algorithm
compared with one-shot pruning, thus showing its superiority
in many tasks (Frankle and Carbin, 2018). Although L1 and
L2 penalties have been added to our model, the result shows
little difference.

Deep Models Are Necessary for Modeling
Transcription Factor -DNA specificities
Blum and Kollmann (Blum and Kollman, 2019) supposed
that deep models may be unnecessary for modeling
transcription factor-DNA specificities because they think
that biological sequences are not composed of complex
hierarchies of patterns as those in images. Deepprune can
improve the performance of motif inference on real-world
data compared with baseline, even with the same kernel
number. However, since the weights are pruned iteratively,
the performance of Deepprune does not change as what we
saw in the simulated datasets. If PWM characterizes the
specificities of motif inference and motif relationships are the
same with those in simulated datasets, we will most likely see
consistent performance in real-world and simulated datasets.
In actuality, however, about 23% of datasets have a decrease
compared to baseline with four kernels. As a result, we suspect
that the interaction of different motifs and other complex
relationships corresponding to motif inference need to be
considered. Actually we suggest using different architectures
to model different protein-binding problems. It is clear that
adding the hidden layer gives deep learning architectures
the ability to represent the interaction of different motifs
and sequences of recurrent neural network models from the
viewpoint of natural language processes, allowing various
representations with different parameters. However, based
on the results of our experiment, many biological sequences
cannot be modeled very well by the simple DeepBind model,
making it necessary to create deeper architectures to identify
the underlying model for some proteins.

TABLE 3 | Absolute value of weights of several kernels during different pruning stages in the dense layer.

Kernel number Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5 Kernel 6

256 0.9150 0.9019 0.7043 0.8112 0.2192 0.3582
128 0.9462 0.9294 0.7322 0.8344 0.2625 0.4015
64 0.9548 0.9364 0.7305 0.8252 0.2100 0.3750
32 0.9616 0.9403 0.7540 0.8387 0.0000 0.4433
16 0.9836 0.9504 0.8153 0.8589 0.0000 0.4584
8 1.0919 1.0501 0.9620 1.0249 0.0000 0.0000
4 1.2832 1.1979 1.2065 1.2542 0.0000 0.0000

FIGURE 5 | Motifs recovered by our model (the last two) and by baseline (the first) aligned to the true given motifs (top row). Utilizing Tomtom algorithm, the E-values
of the motifs recovered by Deepprune are 1.35 × 10–23, 2.27 × 10–7, respectively. At the same time, the ones recovered by baseline are 1.64 × 10–2.

FIGURE 6 | The performance of Deepprune with four kernels on real
datasets where kernel length = 15. Deepprune greatly increases the
AUC for real datasets. The AUC difference under the baseline (Init) and
Deepprune (Prune) is shown from the x axis. Deepprune is better than
baseline on 532 datasets, but worse than baseline with 158 datasets. This
figure clearly shows that Deepprune achieves better performance with
limited kernel number.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

9

Lottery Ticket hypothesis
Recently, the lottery ticket hypothesis has attracted attention
in the field of deep learning. This hypothesis holds that dense,
randomly initialized networks contain subnetworks that, when
trained in isolation (i.e., utilizing the same initialization),
reach test accuracy comparable to the original network in a
similar number of iterations (Frankle and Carbin, 2018). The
subnetworks are called winning tickets. Liu et al. (2018) even
suggested that the value of automatically structured pruning
algorithms sometimes lies in identifying efficient structures
and performing implicit architecture search, rather than
selecting "important" weights, irrespective of the initiation.
First, if the architecture of our pruned model is equal to that
of baseline, our result in the simulated dataset shows that
either weight or initiation also counts for the performance
of unstructured pruning algorithms. Second, we tried to find
our winning tickets by following the methods in the original
paper. We substituted the fine-tuning step in Deepprune for
retraining, which resets the remaining parameters to their
values before initial training. Experiments on real data with
winning tickets realize slightly better performance (mean AUC
is 0.8035 with four kernels), which shows that this hypothesis
may be true for Deepprune (Figure S1).

CONCLUsION
In this study, we proposed a novel deep-learning framework
called Deepprune, to improve the performance of predicting
the binding preference of DNA-protein binding. Deepprune
prunes weights of kernels in the dense layer and fine-tunes
iteratively by adding a mask layer in the architecture of
motif inference. Deepprune utilizes limited kernel number
in the convolutional layer, which shows the efficiency and
interpretability of our model. In this study, Deepprune is shown
to improve model performance compared with baseline with
the same limited kernel number, both in simulated and real-
world datasets. Our method improves performance without
changing the basic architectures or adding extra parameters at
the end of training (Figure 6).

To the best of our knowledge, we are the first to introduce
a pruning framework in the field of motif inference. Network
pruning has been widely applied in the framework of deep
learning for its ability to reduce storage and computation without
affecting accuracy. Although the architecture of motif inference is
very simple, network pruning is meaningful for the model since
the use of fewer kernels can still achieve better interpretation as
can be seen from model visualization.

The motif-finding problem remains unsolved. Deep
learning is very useful for complex structures and large datasets.
What's more, it has greatly improved the state-of-the-art in
many areas. Neural networks have achieved a lot of success,
such as DeepBind and DeepSEA for motif-finding. However,
in spite of the great achievements, deep learning is blamed
due to the lack of interpretability as well (Castelvecchi, 2016;
Zou et al., 2019). DeepBind shows its superiority compared

with conventional machine learning methods, which proves
that both deep and complex representation of the sequences
is essential for motif inference. Because the gap between the
performance on simulated and real-world datasets, we wonder
if this is due to the underlying model behind some of the real-
world datasets is complex.

Recently, many studies have investigated the interpretation
of neural networks and the underlying model behind
real-world datasets. They utilize complex models, such as
recurrent neural network (RNN) and the model with attention
mechanism, which comes from the field of natural language
processing, to represent the complex information of biological
sequences (Pan and Yan, 2017; Pan et al., 2018; Pan and Shen,
2018; Shen et al., 2018; Zuallaert et al., 2018; Li et al., 2019;
Luo et al., 2019). Actually, from the diversity of DNA-protein
binding, we suggest using different architectures to model
motif inference for specific proteins. Complex network
architectures combined with pruning technology can result
in approximating the true model of motif inference. Since
our basic architecture is simple, adding a hidden layer before
the dense layer and then adding an RNN layer after the
convolutional layer, as well as replacing global max pooling
with expectation pooling, can also be considered, but these
topics are outside the scope of the present paper.

DATA AVAILABILITY sTATEMENT
All code is public and can be found at https://github.com/klovbe/
Deepprune.

AUThOR CONTRIBUTIONs
XL, WC, and MD designed the experiments. XL drafted the
manuscript. WC carried out the experiments. XL and WC
analyzed the results. All authors read and approved the final
manuscript.

FUNDING
This study was supported by the National Key Basic Research
Project of China (No. 2015CB910303), The National Key Research
and Development Program of China (No.2016YFA0502303),
and the National Natural Science Foundation of China
(No.31871342).

ACKNOWLEDGMENTs
This manuscript has been released as a Pre-Print at https://www.
biorxiv.org/content/10.1101/729566v1

sUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2019.01145/
full#supplementary-material

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://github.com/klovbe/Deepprune
https://github.com/klovbe/Deepprune
https://www.biorxiv.org/content/10.1101/729566v1
https://www.biorxiv.org/content/10.1101/729566v1
https://www.frontiersin.org/articles/10.3389/fgene.2019.01145/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.01145/full#supplementary-material
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

DeeppruneLuo et al.

10

REFERENCEs
Abbasi-Asl, R., and Yu, B. Structural compression of convolutional neural

networks based on greedy filter pruning. [Preprint]. Available at: https://arxiv.
org/pdf/1705.07356.pdf

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning. Nat.
Biotechnol. 33, 831. doi: 10.1038/nbt.3300

Badis, G., Berger, M. F., Philippakis, A. A., Talukder, S., Gehrke, A. R., and Jaeger,
S. A. (2009). Diversity and complexity in dna recognition by transcription
factors. Sci. 324, 1720–1723. doi: 10.1126/science.1162327

Blum, C. F., and Kollmann, M. (2019). Neural networks with circular filters enable
data efficient inference of sequence motifs. Bioinf. 35, 3937–3943. doi: 10.1093/
bioinformatics/btz194

Castelvecchi, D. (2016). Can we open the black box of ai? Nat. News 538, 20. doi:
10.1038/538020a

Changpinyo, S., Sandler, M., and Zhmoginov, A. (2017). The power of sparsity
in convolutional neural networks. [Preprint]. Available at: https://arxiv.org/
pdf/1702.06257.pdf

Chollet, F. (2015). Keras.
Davis, J., and Goadrich, M. (2006). The relationship between precision-recall and

roc curves in Proceedings of the 23 international conference on Machine learning
(ACM, 2016), 233–240. doi: 10.1145/1143844.1143874

Ding, Y., Li, J.-Y., Wang, M., Tu, X., and Gao, G. (2019). An exact transformation
of convolutional kernels enables accurate identification of sequence motifs.
An exact transformation for CNN kernel enables accurate sequence motif
identification and leads to a potentially full probabilistic interpretation of
CNN. bioRxiv 163220. doi: 10.1101/163220

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018). Gradient descent
provably optimizes over-parameterized neural networks. arXiv preprint
arXiv:1810.02054.

Fawcett, T. (2004). Roc graphs: Notes and practical considerations for researchers.
Mach. Learn. 31, 1–38.

Frankle, J., and Carbin, M. (2018). The lottery ticket hypothesis: finding
sparse, trainable neural networks. [Preprint]. Available at: https://arxiv.org/
pdf/1803.03635.pdf

Ghandi, M., Mohammad-Noori, M., Ghareghani, N., Lee, D., Garraway, L., and
Beer, M. A. (2016). gkmsvm: an r package for gapped-kmer svm. Bioinf. 32,
2205–2207. doi: 10.1093/bioinformatics/btw203

Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., and Noble, W. S. (2007).
Quantifying similarity between motifs. Genome Biol. 8, R24. doi: 10.1186/
gb-2007-8-2-r24

Han, S., Mao, H., and Dally, W. J. (2015a). Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
[Preprint]. Available at: https://arxiv.org/pdf/1510.00149.pdf

Han, S., Pool, J., Tran, J., and Dally, W. (2015b). Learning both weights and
connections for efficient neural network, in Advances in neural information
processing systems, 1135–1143.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., and Horowitz, M. A. (2016). Eie:
efficient inference engine on compressed deep neural network, in 2016 ACM/
IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)
(IEEE), 243–254. doi: 10.1109/ISCA.2016.30

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and
pattern recognition, 770–778. doi: 10.1109/CVPR.2016.90

He, Y., Zhang, X., and Sun, J. (2017). Channel pruning for accelerating very
deep neural networks In Proceedings of the IEEE International Conference on
Computer Vision, 1389–1397. doi: 10.1109/ICCV.2017.155

Hu, H., Peng, R., Tai, Y.-W., and Tang, C.-K. (2016). Network trimming: a
data-driven neuron pruning approach towards efficient deep architectures.
[Preprint]. Available at: https://arxiv.org/pdf/1607.03250.pdf

Kingma, D. P., and Ba, J.Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic
optimization. [Preprint]. Available at: https://arxiv.org/pdf/1412.6980.pdf

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2016). Pruning filters
for efficient convnets. [Preprint]. Available at: https://arxiv.org/pdf/1608.08710.
pdf

Li, W., Wong, W. H., and Jiang, R. (2019). Deeptact: predicting 3d chromatin
contacts via bootstrapping deep learning. Nucleic Acids Res. 47, e60. doi:
10.1101/353284

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). Learning efficient
convolutional networks through network slimming in Proceedings of the
IEEE International Conference on Computer Vision. 2736–2744. doi: 10.1109/
ICCV.2017.298

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2018). Rethinking the
value of network pruning. [Preprint]. Available at: https://arxiv.org/
pdf/1810.05270.pdf

Luo, X., Tu, X., Ding, Y., Gao, G., and Deng, M. (2019). Expectation pooling: An
effective and interpretable pooling method for predicting dna-protein binding.
Bioinf. 658427. doi: 10.1093/bioinformatics/btz768

Pan, X., and Shen, H.-B. (2018). Predicting rna-protein binding sites and motifs
through combining local and global deep convolutional neural networks.
Bioinf. 34, 3427–3436. doi: 10.1093/bioinformatics/bty364

Pan, X., and Yan, J. (2017). Attention based convolutional neural network for
predicting rna-protein binding sites. [Preprint]. Available at: https://arxiv.org/
pdf/1712.02270.pdf

Pan, X., Rijnbeek, P., Yan, J., and Shen, H.-B. (2018). Prediction of rna-protein
sequence and structure binding preferences using deep convolutional
and recurrent neural networks. BMC Genomics 19, 511. doi: 10.1186/s128
64-018-4889-1

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. [Preprint].
Available at: https://arxiv.org/pdf/1511.06434.pdf

Shen, Z., Bao, W., and Huang, D.-S. (2018). Recurrent neural network for
predicting transcription factor binding sites. Sci. Rep. 8, 15270. doi: 10.1038/
s41598-018-33321-1

Stormo, G. D. (2000). Dna binding sites: representation and discovery. Bioinf. 16,
16–23. doi: 10.1093/bioinformatics/16.1.16

Wingender, E., Dietze, P., Karas, H., and Knu¨ppel, R. (1996). Transfac: a database
on transcription factors and their dna binding sites. Nucleic Acids Res. 24, 238–
241. doi: 10.1093/nar/24.1.238

Zeng, H., Edwards, M. D., Liu, G., and Gifford, D. K. (2016). Convolutional neural
network architectures for predicting dna–protein binding. Bioinf. 32, i121–
i127. doi: 10.1093/bioinformatics/btw255

Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., and Bernstein, B. E.
(2008). Model-based analysis of chip-seq (macs). Genome Biol. 9, R137. doi:
10.1186/gb-2008-9-9-r137

Zhou, J., and Troyanskaya, O. G. (2015). Predicting effects of noncoding variants
with deep learning–based sequence model. Nat. Methods 12, 931. doi: 10.1038/
nmeth.3547

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., and Telenti, A. (2019).
A primer on deep learning in genomics. Nat. Genet. 51, 12–18. doi: 10.1038/
s41588-018-0295-5

Zuallaert, J., Godin, F., Kim, M., Soete, A., Saeys, Y., and De Neve, W. (2018).
Splicerover: Interpretable convolutional neuralnetworks for improved splice
site prediction. Bioinf. 34, 4180–4188. doi: 10.1093/bioinformatics/bty497

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Luo, Chi and Deng. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1145

https://arxiv.org/pdf/1705.07356.pdf
https://arxiv.org/pdf/1705.07356.pdf
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1126/science.1162327
https://doi.org/10.1093/bioinformatics/btz194
https://doi.org/10.1093/bioinformatics/btz194
https://doi.org/10.1038/538020a
https://arxiv.org/pdf/1702.06257.pdf
https://arxiv.org/pdf/1702.06257.pdf
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1101/163220
https://arxiv.org/pdf/1803.03635.pdf
https://arxiv.org/pdf/1803.03635.pdf
https://doi.org/10.1093/bioinformatics/btw203
https://doi.org/10.1186/gb-2007-8-2-r24
https://doi.org/10.1186/gb-2007-8-2-r24
https://arxiv.org/pdf/1510.00149.pdf
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.155
https://arxiv.org/pdf/1607.03250.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1608.08710.pdf
https://arxiv.org/pdf/1608.08710.pdf
https://doi.org/10.1101/353284
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://arxiv.org/pdf/1810.05270.pdf
https://arxiv.org/pdf/1810.05270.pdf
https://doi.org/10.1093/bioinformatics/btz768
https://doi.org/10.1093/bioinformatics/bty364
https://arxiv.org/pdf/1712.02270.pdf
https://arxiv.org/pdf/1712.02270.pdf
https://doi.org/10.1186/s12864-018-4889-1
https://doi.org/10.1186/s12864-018-4889-1
https://arxiv.org/pdf/1511.06434.pdf
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1038/s41598-018-33321-1
https://doi.org/10.1093/bioinformatics/16.1.16
https://doi.org/10.1093/nar/24.1.238
https://doi.org/10.1093/bioinformatics/btw255
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1038/s41588-018-0295-5
https://doi.org/10.1038/s41588-018-0295-5
https://doi.org/10.1093/bioinformatics/bty497
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Deepprune: Learning Efficient and Interpretable Convolutional Networks Through Weight Pruning for Predicting DNA-Protein Binding

	﻿Background

	﻿Methods

	﻿Detecting Sequence Motifs With Convolutional Neural Network

	﻿Deepprune

	﻿Implementation of the Models

	﻿Datasets

	Simulated Datasets

	Real Datasets

	﻿Results

	﻿Deepprune Performs Better Than the Baseline on the Simulated Data

	﻿Comparison of Three Pruning Criteria

	﻿Performance on Real Datasets

	﻿Case Study

	﻿Model Visualization

	﻿Discussion

	﻿Regularization Behind Deepprune

	﻿Deep Models Are Necessary for Modeling Transcription Factor -DNA Specificities

	﻿Lottery Ticket Hypothesis

	﻿Conclusion

	﻿Data Availability Statement

	﻿Author Contributions

	﻿Funding

	﻿Acknowledgments

	﻿Supplementary Material

	References

