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Gut microbiomes are integral microflora located in the human intestine with particular 
symbiosis. Among all microorganisms in the human intestine, bacteria are the most 
significant subgroup that contains many unique and functional species. The distribution 
patterns of bacteria in the human intestine not only reflect the different microenvironments 
in different sections of the intestine but also indicate that bacteria may have unique biological 
functions corresponding to their proper regions of the intestine. However, describing the 
functional differences between the bacterial subgroups and their distributions in different 
individuals is difficult using traditional computational approaches. Here, we first attempted 
to introduce four effective sets of bacterial features from independent databases. We 
then presented a novel computational approach to identify potential distinctive features 
among bacterial subgroups based on a systematic dataset on the gut microbiome 
from approximately 1,500 human gut bacterial strains. We also established a group of 
quantitative rules for explaining such distinctions. Results may reveal the microstructural 
characteristics of the intestinal flora and deepen our understanding on the regulatory role 
of bacterial subgroups in the human intestine.

Keywords: gut microbiome, bacteria feature, pattern, rule, multi-class classification

INTRODUCTION
Gut microbiome refers to the integral microflora that is located in the human intestine and has symbiosis 
with human beings (Arumugam et al., 2011;Yatsunenko et al., 2012). According to recent publications, 
the identified microflora in the human intestine contains tens of trillions of microorganisms including 
bacteria, fungi, protists, archaea, and viruses (Yatsunenko et al., 2012). Among different subgroups 
of microorganisms, bacteria are the most significant subgroup that contains unique and functional 
species between 300 and 1000 (Barcenilla et al., 2000;Chadchan et al., 2019). More than 60% of all 
microorganisms can be clustered into different bacterial subgroups. In different sections of the human 
intestine, the species distributions of bacteria are quite different (Reichardt et al., 2014). For instance, 
in the gut, almost all the identified bacteria are anaerobes; however, in the cecum, aerobic bacteria, 
another subgroup of bacteria, are predominant (Wells et al., 1987; Kelly et al., 2004). Such distribution 
patterns of bacteria in the human intestine not only reflect the different microenvironments in 
different sections of the intestine but also indicate that bacteria may have their unique biological 
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functions corresponding to their proper regions of the intestine. 
The symbiosis of human beings and bacterial subgroups/clusters 
maintains the stability of the intestinal microenvironment 
(Arumugam et al., 2011;Yatsunenko et al., 2012).

In general, the biological functions of symbiotic gut bacteria 
can be summarized into three major aspects: intestine immune 
regulation (Kelly et al., 2005), nutrition metabolism regulation 
(Ramakrishna, 2013), and regulation of gut–brain axis (Foster and 
McVey Neufeld, 2013; Plummer et al., 2013). First, the gut bacteria 
can initiate and activate the humoral and adaptive immune 
responses in the specific region of the gut (Slack et al., 2009; 
Bunker et al., 2015). As one of the major subgroups of immune 
response-associated processes in the intestinal immune system, 
cytokine-associated biological processes are important; different 
subgroups of gut bacteria have been confirmed to increase 
different subgroups of cytokines (Atarashi et al., 2013; Schirmer 
et al., 2016). In addition, most bacteria, such as filamentous 
bacteria, can activate the musical immune responses, indicating 
that different subgroups of bacteria can have different biological 
contributions to immune regulatory processes (Wu et al., 2010). 
Different subgroups of bacteria also contribute to the digestion 
and absorption of nutrients through specific nutrition-associated 
biological functions. For instance, saccharolytic fermentation 
is a specific fermentation process that helps synthesize unique 
subtypes of short-chain fatty acids, which are required by 
various organs, such as the brain, liver, and kidney, and cannot 
be synthesized independently (Miller and Wolin, 1979; Windey 
et al., 2012). Different subgroups of gut bacteria contribute to the 
manufacture of different nutrient subtypes (Windey et al., 2012). 
Thus, the collaborative contribution of different gut bacterial 
subgroups can maintain the nutrition supply and physical health 
of human beings. Importantly, the direct relationship between 
the gut bacteria and the central nervous system, known as the 
gut–brain axis, has been confirmed in recent studies (Ghaisas 
et al., 2016; Kohler et al., 2016). Early in 2004, an independent 
experiment confirmed that germ-free mice, which do not have 
gut microbiome, exhibited improved hypothalamic–pituitary 
axis response compared with normal controls (Riediger et al., 
2004). This study directly confirms that the gut microbiomes have 
potential causal effects on the central nervous system.

Bacterial distribution in the human intestine is significantly 
diverse and exerts various biological effects on human health. 
However, describing the functional differences between the 
bacterial subgroups and their distributions in different individuals 
is difficult using traditional computational approaches. Therefore, 
we attempted to introduce four effective sets of features from 
four independent databases, namely, the Antibiotic Resistance 
Genes Database (ARGD) (Liu and Pop, 2009), the Comprehensive 
Antibiotic Resistance Database (CARD) (McArthur et al., 2013; Jia 
et al., 2017), the Virulence Factor Database (VFDB) (Liu et al., 2019), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) database 
(Kanehisa, 2002; Tanabe and Kanehisa, 2012). The combination 
of features may comprehensively describe the biological functions 
of different bacterial subgroups and screen their most critical 
differences. In the present study, using the dataset established by a 
systematic analysis on the gut microbiome from approximately 1500 
human gut bacteria phyla (Zou et al., 2019), we presented a novel 

computational approach to identify the potential distinctive features 
among bacterial subgroups and established a group of quantitative 
rules for explaining such distinctions. We only focused on three 
bacterial subgroups, namely, Actinobacteria, Bacteroidetes, and 
Firmicutes, due to the quantitative characteristics of the sequencing 
data. Our results may reveal the microstructural characteristics of 
the intestinal flora and deepen our understanding on the regulatory 
role of bacterial subgroups in the human intestine.

MATeRIAlS AND MeTHODS

Datasets
We downloaded the functional annotations of human gut bacteria 
from the China National GeneBank under Project ID: CNP0000126 
(https://db.cngb.org/search/project/CNP0000126/) (Zou et al., 
2019). Each human gut bacteria were encoded with 342 Antibiotic 
Resistance Genes Database (ARDB) annotation features, 259 
CARD annotation features, 243 KEGG annotation features, and 
149 VFDB annotation features (a total of 993 features). We analyzed 
three human gut bacteria phyla with number of strains greater 
than 100, namely, 235 Actinobacteria, 447 Bacteroidetes, and 
796 Firmicutes. Fusobacteria with six strains and Proteobacteria 
with 36 strains were excluded. The goal was to find the functional 
difference among different human gut bacterial phyla.

Features from different databases have their independent 
biological significance. The first database (ARDB) was built up to 
provide a basic summary for antibiotic resistance and facilitate the 
identification and annotation of novel drug resistance associated 
genes (Liu and Pop, 2009). Features in such database describes 
the gene ontology, COD&COG taxonomy, KEGG pathway 
information (McArthur et al., 2013; Jia et al., 2017), and mutation 
resistance information of all the annotated genes (Liu and Pop, 
2009). Using such features, we can easily describe the biological 
functions of effective genes and the potential pathogenic effects 
of specific mutations, classifying mutant and wild-type genes into 
different types (Liu and Pop, 2009). As for the second database, 
CARD, it summarizes all the characterized, peer-reviewed 
resistance determinants and associated antibiotics based on 
Antibiotic Resistance Ontology (ARO) and AMR gene detection 
models (McArthur et al., 2013; Jia et al., 2017). Features of such 
database mainly focused on the description of drug resistance 
characteristics of different microbial strains (McArthur et al., 
2013; Jia et al., 2017). Deferentially, the next database named 
as VFDB (Liu et al., 2019) turns out to be an integrated and 
comprehensive online resource for bacterial pathogenic analysis. 
Features from such databases describe the virulence factors and 
potential pathogens of various microbial types (Liu et al., 2019). 
As for the last database, as we have mentioned above, KEGG 
database (McArthur et al., 2013; Jia et al., 2017) mainly focuses on 
the functional description of potential microbial genes. Features 
of such database describe the unique functional characteristics.

Feature Ranking
Of the extracted 993 features from different sources, some 
features  were redundant and not informative. To select the 
important features that contribute most to the classification 
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tasks, we applied Monte Carlo feature selection (MCFS) (Cai 
et al., 2018; Chen et al., 2018a; Pan et al., 2018; Chen et al., 2019a; 
Chen et al., 2019c; Chen et al., 2019e; Li et al., 2019; Pan et al., 
2019a; Pan et al., 2019b) to analyze these features and rank them 
according to their importance. MCFS is a supervised feature 
selection method based on multiple decision trees (Draminski 
et al., 2008). MCFS first generates s bootstrap sample sets and 
m feature subsets from the original data. A decision tree is 
grown for each combination of the bootstrap set and feature 
subset. Accordingly, t×m trees are constructed in total and used 
to calculate relative importance (RI) score for each feature with 
the assumption that the important features should be frequently 
involved in many growing decision trees. For each feature, RI 
score is calculated based on the following components: 1) number 
of splits involved in all nodes of t×m trees; 2) information gain by 
each split; and 3) classification accuracies of individual decision 
trees. Its calculation formula is as follows:
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where IG(ng(τ)) stands for the gain information of node ng(τ), 
(no.in ng(τ)) the number of samples in node ng(τ), no.in τ the 
number of samples in tree τ, wAcc the weighted accuracy of 
decision tree τ. u, and v represent two regular factors, which were 
all set to one in this study. After obtaining the RI score of each 
feature, all features were ranked by the decreasing order of their 
RI scores. MCFS was implemented and downloaded at http://
www.ipipan.eu/staff/m.draminski/mcfs.html.

Incremental Feature Selection
After ranking the input features by using MCFS, we determined 
whether all these features are necessary for classifying 
Actinobacteria, Bacteroidetes, and Firmicutes. We applied 
incremental feature selection (IFS) (Zhang et al., 2015a; Zhang 
et al., 2015b; Zhou et al., 2015; Chen et al., 2017b; Chen et al., 
2017c; Liu et al., 2017; Chen et al., 2018b; Zhang et al., 2018; 
Chen et al., 2019d; Wang and Huang, 2019) with a classifier to 
the ranked features and selected the discriminate features with 
the best performance. Basing on the ranked features from MCFS, 
we constructed a series of feature subsets with step 1, e.g., the 
first feature subset has the top 1 feature, and the second subset 
has the top 1 and 2 features. For each feature subset, we trained 
a classifier on the samples consisting of features from the feature 
subset and evaluated the classification performance by 10-fold 
cross-validation. After running the process for all feature subsets, 
we selected the feature subset with the best performance (i.e., 
highest Matthews correlation coefficient); this feature subset was 
called the optimum feature subset.

Rule learning
Many different supervised classifiers, including black-box and 
interpretable rule-based methods, exist. Black-box methods 
cannot explain their predictions in a manner that humans can 
understand, and rule-based methods can supply classification 

reasons in a way understandable to humans. In this study, we used 
an interpretable rule-based classification method with repeated 
incremental pruning to produce error reduction (RIPPER) 
(Cohen, 1995; Li et al., 2019; Pan et al., 2019a) (i.e., Jrip algorithm) 
to classify the samples from three bacterial groups, namely, 
Actinobacteria, Bacteroidetes, and Firmicutes. In addition, a rule 
usually consists of if-then statement; simply put, if conditions A 
and B are met, then we make a certain prediction of yes or no. 
RIPPER is a greedy method for learning classification rules. 
This method first generates a good rule covering some samples 
in the training set. These covered samples are removed, and the 
remaining training set is used for the next rule. This process of 
rule generation is repeated until all samples are covered by the 
learned rules or predefined stop conditions are met. Lastly, the 
learned rules are further pruned using reduced error pruning.

To quickly implement the RIPPER algorithm mentioned 
above, a tool “JRip” in Weka (Witten and Frank, 2005) was 
directly employed in this study. For convenience, its default 
parameters were used.

Performance Measurement
We used RIPPER as a multiclassification method to classify samples 
from Actinobacteria, Bacteroidetes, and Firmicutes. The 10-fold 
cross-validation was adopted for performance evaluation (Huang 
et al., 2009; Huang et al., 2010; Cai et al., 2012; Chen et al., 2013; 
Zhang et al., 2015a; Zhao et al., 2018; Zhang et al., 2019; Zhao et al., 
2019), and the performance measurements should be appropriate 
for multiclass classification. Several measurements were employed 
in this task. They can be divided into two categories. The first 
measurement category was for each phylum, such as individual 
accuracy, precision, recall (same as individual accuracy), and 
Matthews correlation coefficient (MCC) (Matthews, 1975). The 
other measurement category fully evaluate the performance of 
the classification method, including overall accuracy and MCC 
in multi-class (Gorodkin, 2004), as detailed in previous works 
(Chen et al., 2017a; Li et al., 2018; Chen et al., 2019b; Chen et al., 
2019c; Cui and Chen, 2019; Pan et al., 2019a; Pan et al., 2019b). 
Because MCC in multi-class is widely accepted to be a balanced 
measurement even if the dataset is of great imbalance, it was 
selected as the key measurement in our study.

ReSUlTS
In this study, we extracted 993 features to represent each sample. 
These features consist of 342 ARDB features, 259 CARD features, 
243 KEGG features, and 149 VFDB features, wherein the names 
and values are given in Supplementary Table S1. Then, several 
advanced computational methods were adopted to analyze these 
features. The entire procedures are illustrated in Figure 1. Clearly, 
not all features have the same importance for distinguishing 
samples from different bacterial groups; as such, the features 
are ranked and selected using the RI scores from MCFS. The RI 
scores of individual features are given in Supplementary Table 
S2. A total of 432 of all 993 features have RI scores larger than 
zero and thus have discriminated ability for different bacterial 
groups. Other features were discarded in the following analysis.
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To further select the optimum features from the 432 
features, we used IFS with RIPPER for sample classification. 
RIPPER was trained and evaluated on the samples consisting 
of features from individual feature subsets by 10-fold cross-
validation. As shown in Figure 2, among the top 432 features, 
the best MCC in multi-class of 0.998 and an overall accuracy 
of 0.999 were obtained when the top 153 features were used. 
The individual accuracy (recall), precision and MCC for each 
phylum are shown in Figure 3. It can be seen that each of 
these measurements was larger than 0.990, indicating the good 
performance of RIPPER on top 153 features. In particular, we 

obtained a high MCC in multi-class of 0.991 and an overall 
accuracy of 0.995 when only the top 25 features were used. The 
detailed predicted results were counted as a confusion map, as 
shown in Figure 4. Its performance on each phylum is shown 
in Figure 3, which was a little lower than that of the RIPPER 
with top 153 features; however, it was still very high. The 
corresponding performance of the RIPPER with the number of 
features ranging from 1 to 432 are shown in Supplementary 
Table S3. The results indicate that the interpretable rule-based 
method RIPPER is close to perfectly classify the samples from 
Actinobacteria, Bacteroidetes, and Firmicutes.

FIgURe 1 | A flow chart to illustrate the procedures of identifying microbiota signature and functional rules for bacterial subtypes in human intestine. Bacteria in 
three human gut bacteria phyla were represented by four types of features. These features were analyzed by the Monte Carlo feature selection method, resulting in 
a feature list. For some top features, an extensive analysis was performed. Furthermore, the incremental feature selection method, incorporating the rule learning 
algorithm (RIPPER algorithm), was applied on the feature list to construct optimal classification rules, which were also extensively analyzed.

FIgURe 2 | Optimal performance of IFS with RIPPER algorithm. The RIPPER algorithm provided the highest MCC (0.998) when top 153 features were used.
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As mentioned above, RIPPER with top 25 features yielded 
quite high performance. To indicate the importance of these 25 
features, we did the following test: 1000 feature subsets containing 
25 features were randomly produced. RIPPER was trained on the 
samples represented by features from each of these feature subsets 
and evaluated by 10-fold cross-validation. Obtained MCCs in 
multi-class are illustrated in a box plot, as shown in Figure 5, in 
which the MCC in multi-class yielded by the RIPPER with top 
25 features is also listed. It can be observed that all MCCs in 

multi-class on randomly produced feature subsets were lower than 
that yielded by the RIPPER with top 25 features. It is suggested 
that top 25 features were very important for identifying bacteria 
in different phyla. Therefore, we established five significant 
classification rules on all bacteria represented by top 25 features, 
as listed in Table 1, to elucidate how RIPPER can make accurate 
prediction. The details of these learned rules are discussed below. 
The results demonstrate the satisfactory discriminate powers of 
the five produced classification rules for different bacterial groups.

FIgURe 4 | Confusion matrix yielded by the RIPPER algorithm with top 25 features. The accuracy of Bacteroidetes reached 1.000, while those of two other phyla 
were higher than 0.970, indicating the high performance of RIPPER algorithm with top 25 features.

FIgURe 3 | Performance of RIPPER algorithm with top 25 and 153 features on each phylum. The RIPPER algorithm with top 153 features provided nearly perfect 
classification, while the RIPPER algorithm yielded a little lower performance.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1474

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Signature and Functional Rules of Bacterial SubtypesChen et al.

6

DISCUSSION
In this study, we attempted to integrate different feature sets from 
ARGD (Liu and Pop, 2009), CARD (McArthur et al., 2013; Jia 
et al., 2017), VFDB (Liu et al., 2019), and KEGG (Kanehisa, 2002; 

Tanabe and Kanehisa, 2012) databases. Basing on these collective 
features and original datasets, we accurately distinguished the 
common gut bacteria into three major clusters: Actinobacteria, 
Bacteroidetes, and Firmicutes. We not only identified the crucial 
features from the four known datasets that contributed most to 
such clustering but also set up a novel quantitative rule set for the 
accurate clustering of gut bacteria. All the predicted results (i.e., 
features and rules) were supported by solid experimental evidence 
presented in literature. We screened the top features and rules in 
our optimal prediction list for further discussion and analyses 
below due to page limitation.

Analysis of Optimal Features for Subtyping 
of gut Bacteria
Using machine learning models, we screened a group of proper 
features to distinguish three common gut bacterial subgroups. 
The first significant distinctive feature (F_740) is a metabolism 
describing feature: glycan biosynthesis and lipopolysaccharide 
biosynthesis associated metabolism. According to recent 
publications, bacteria from Actinobacteria (King et al., 2009; 
Alshalchi and Anderson, 2015), Bacteroidetes (Jacobson et al., 
2018), and Firmicutes (d'Hennezel et al., 2017) participate in 
these biological processes. In contrast to Actinobacteria and 
Bacteroidetes, Firmicutes directly promotes the biosynthesis of 
lipids and contributes to the pathogenesis of obesity (d'Hennezel 
et al., 2017). The activation of such metabolic processes was 
finally decided by the relative abundance of Firmicutes compared 
with the other bacterial phyla. Therefore, F_740 could be a novel 
and effective feature for subtyping different bacterial subgroups.

The following feature marked as F_602 describes cell growth 
and death-associated processes, including apoptosis. In general, the 
balance between cell growth and death in the intestine is usually 
regulated and maintained by inflammatory reactions (Neurath et al., 
1998; Pickard et al., 2017) and lipopolysaccharide production (Guo 
et al., 2013). The production of lipopolysaccharides is significant 
for the survival of gut cells. According to recent publications, 
lipopolysaccharide production is correlated with the relative 
abundance ratio between Bacteroidetes and Firmicutes (Jeong et al., 
2015; Kim et al., 2016). Therefore, the stable status of cell growth and 
death-associated processes may be sufficiently effective and sensitive 
for evaluating the relative abundance of such two major bacterial 
subtypes, thereby validating the efficacy of our new method.

F_823 describes the general protein digestion and absorption 
processes of the digestive system, and different bacterial subgroups 
play different roles in the digestion and absorption of different 
nutrients (Flint et al., 2012; Valdes et al., 2018). For example, 
the digestion and absorption of lipids and proteins as a proper 
instance again; as such, different subgroups of bacteria contribute 
differently to such processes. In contrast to fat metabolism, a case 
of protein metabolism, the high abundance of bacterial subgroups, 
such as Bacteroidetes, indicates the high activation status of protein 
digestion and absorption (Turnbaugh et al., 2006). Therefore, 
F_823, as an indicator of the activity degree of protein metabolism, 
may contribute to the distinction of different bacterial subgroups.

F_608, as a complicated feature describing the formation 
of biofilm, was screened to distinguish different gut bacterial 

TABle 1 | Five classification rules produced by the RIPPER algorithm for 
Actinobacteria, Bacteroidetes, and Firmicutes.

Rules Criteria Bacteria group

Rule 1 Genetic Information Processing: Folding, sorting, and 
degradation: Proteasome > = 1

Actinobacteria

Rule 2 (Human Diseases: Drug resistance: Cationic 
antimicrobial peptide (CAMP) resistance < = 0)
and
(Genetic Information Processing: Folding, sorting, 
and degradation: Protein processing in endoplasmic 
reticulum > = 2)

Actinobacteria

Rule 3 (Cellular Processes: Transport and catabolism: 
Peroxisome < = 0)
and
(Genetic Information Processing: Folding, sorting, 
and degradation: Protein processing in endoplasmic 
reticulum > = 2)
and
(Human Diseases: Drug resistance: Cationic 
antimicrobial peptide (CAMP) resistance < = 1)

Actinobacteria

Rule 4 Organismal Systems: Digestive system: Protein 
digestion and absorption > = 1

Bacteroidetes

Rule 5 others Firmicutes

FIgURe 5 | Box plot to show the performance of RIPPER algorithm with 25 
features that are randomly selected from all features. The green star strands for 
the MCC in multi-class yielded by RIPPER algorithm with top 25 features, which 
is higher than all other MCCs in multi-class on randomly selected 25 features.
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subgroups. In 2015, a systematic review on microbial biofilms 
and associated gut diseases confirmed that the abundances of 
Firmicutes and Bacteroidetes rather than that of Actinobacteria 
are functionally related to biofilm. The relative contributions of 
the three clusters of gut bacteria on biofilm regulation would 
be quite different (von Rosenvinge et al., 2013). Therefore, the 
biological characteristics of gut biofilm may also be a potential 
biomarker for the distinction of different bacteria subgroups.

The finally discussed high-ranked feature, named as F_756, 
describes the biosynthesis of steroid hormone. In 2013, a review on 
gut microbiome summarized the specific role of steroid hormones 
in the interactions between the gut bacteria and host humans 
(Garcia-Gomez et al., 2013). According to this review, only 
bacteria from clusters such as Actinobacteria, Proteobacteria, and 
Firmicutes were confirmed to participate in the biosynthesis and 
metabolism of steroid hormone to date. However, Bacteroidetes 
does not. In addition, the dominant phyla, such as Actinobacteria 
and Firmicutes, can express hydroxysteroid dehydrogenase; this 
phenomenon is essential for steroid hormone metabolism (Kisiela 
et al., 2012). Therefore, such feature has significant functional 
importance for bacterial subgrouping.

Analysis of the Optimal Rules for gut 
Bacteria Subtyping
The use of our newly presented computational approaches to 
determine the optimal features has been validated by recent 
publications. Apart from such qualitative analysis results, 
quantitative analysis was performed to distinguish different 
bacterial subgroups. Based on Jrip algorithm, also known as the 
RIPPER algorithm, we identified five effective rules for explaining 
the distinction of bacterial subgroups.

The first rule contains one feature describing the biological 
processes of proteasomes involving folding, sorting, and 
degradation of functional proteins. According to recent publications, 
proteasomes are self-compartmentalized proteolytic organelles only 
identified in Archaea, Actinobacteria, and eukaryotes but not in 
Bacteroidetes or Firmicutes (Valas and Bourne, 2008; Ziemski et al., 
2018). Therefore, regarding such feature as a quantitative parameter 
 for the identification of Actinobacteria is quite reasonable.

The next rule indicates cationic antimicrobial peptide 
(CAMP) resistance (F12) and protein folding in the endoplasmic 
reticulum as another two quantitative parameters for the 
recognition of Actinobacteria subgroup. According to recent 
reports, cationic antimicrobial peptides mediate the bacterial 
resistance against most Actinobacteria and Firmicutes (Anaya-
Lopez et al., 2013). Therefore, the first parameter may distinguish 
Actinobacteria and Firmicutes from other bacterial subgroups. 
As for the next parameter, Actinobacteria has a specific structure 
called peroxisomes, sharing similar biological functions with 
the endoplasmic reticulum (Duhita et al., 2010; Gabaldon and 
Capella-Gutierrez, 2010). Therefore, the combination of the two 
parameters refers to the accurate identification of Actinobacteria, 
thereby validating the efficacy and accuracy of our prediction.

Next, the third rule has three parameters involved in 
protein modification. Apart from parameters F24 and F12, the 
effective parameter F7 describes the transport and catabolism of 

peroxisomes, which were identified and discussed to be unique 
in Actinobacteria, thereby validating our prediction (Duhita 
et al., 2010; Gabaldon and Capella-Gutierrez, 2010).

The fourth rule is associated with the differential performance 
of the general protein digestion and absorption processes of the 
digestive system with different distribution patterns of bacteria. 
The high activation status of protein digestion and absorption 
pattern in the gut indicate the abundance of Bacteroidetes 
(Turnbaugh et al., 2006), corresponding with our rules.

Overall, all optimal features and rules for the distinction 
of different bacterial subgroups are accurate and efficient 
with solid publication supports. The accurate clustering of gut 
bacteria is the foundation for microbiome studies of the human 
intestine. For a long time, applying microbiome clustering 
based on sequencing data is difficult and time consuming due 
to the complicated described feature sets. Here, with the help 
of machine learning models, we identified the core features for 
microbiome distinction and set up a group of accurate distinctive 
rules for explaining such clustering problem. Therefore, using 
proper machine learning models, the present study reveals an 
accurate and elaborate panorama for gut microbe and provides a 
novel tool for further studies on the microbiome.
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