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Many long ncRNAs (lncRNA) make their effort by interacting with the corresponding RNA-
binding proteins, and identifying the interactions between lncRNAs and proteins is important 
to understand the functions of lncRNA. Compared with the time-consuming and laborious 
experimental methods, more and more computational models are proposed to predict 
lncRNA-protein interactions. However, few models can effectively utilize the biological 
network topology of lncRNA (protein) and combine its sequence structure features, and 
most models cannot effectively predict new proteins (lncRNA) that do not interact with any 
lncRNA (proteins). In this study, we proposed a projection-based neighborhood non-negative 
matrix decomposition model (PMKDN) to predict potential lncRNA-protein interactions by 
integrating multiple biological features of lncRNAs (proteins). First, according to lncRNA 
(protein) sequences and lncRNA expression profile data, we extracted multiple features of 
lncRNA (protein). Second, based on protein GO ontology annotation, lncRNA sequences, 
lncRNA(protein) feature information, and modified lncRNA-protein interaction network, 
we calculated multiple similarities of lncRNA (protein), and fused them to obtain a more 
accurate lncRNA(protein) similarity network. Finally, combining the similarity and various 
feature information of lncRNA (protein), as well as the modified interaction network, we 
proposed a projection-based neighborhood non-negative matrix decomposition algorithm 
to predict the potential lncRNA-protein interactions. On two benchmark datasets, PMKDN 
showed better performance than other state-of-the-art methods for the prediction of new 
lncRNA-protein interactions, new lncRNAs, and new proteins. Case study further indicates 
that PMKDN can be used as an effective tool for lncRNA-protein interaction prediction.

Keywords: lncRNA-protein interaction, feature projection, neighborhood completion, graph non-negative matrix 
factorization, kernel neighborhood similarity

INTRODUCTION
RNA represents the direct output of genomic encoded genetic information, and a large part of the 
regulatory capacity of cells focuses on the synthesis, processing, transportation, modification, and 
translation of RNA. With the continuous improvement of RNA analysis, cell type isolation, and 
culture technology, people’s understanding of many biological functions of RNA is also getting 
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higher and higher (DjebaliDavis and Merkel et al., 2012). Studies 
have shown that up to 85% of human genes are transcribed, but 
the proportion of RNA transcriptional codons encoding proteins 
is extremely low, suggesting that most RNA transcripts are 
non-coding (Fang and Fullwood, 2016). A large part of human 
genes plays their functions through non-coding RNA (ncRNA) 
(Mattick, 2005). Transcriptional ncRNA has similar chromosome 
modification functions to protein-coding genes. In multiple sites 
of human genome, the deletion of ncRNA will lead to the decline 
of the specificity of adjacent protein-coding genes (Ulf Andersson 
ørom et al., 2010). Long non-coding RNA (lncRNA) is an 
important type of ncRNA, which has more than 200 nucleotide 
transcripts and no obvious protein coding function (Volders 
et al., 2013). With the development of biological information, 
people are becoming more and more aware of the important role 
of lncRNA in various biological processes; lncRNA is involved 
in the regulation of gene expression and function of multiple 
networks, affects the formation of the kernel structure domain 
and whole chromosome state of transcription, and participates 
in the interaction of two different chromosomal regions through 
direct mechanisms regulating the chromosome structure 
(Batista and Chang, 2013). In addition, a growing number of 
studies have shown that mutations and disorders of lncRNA are 
associated with different human diseases. The primary structure, 
secondary structure, expression level of lncRNA, and changes in 
its homologous binding protein can lead to a variety of diseases 
ranging from neuropathy to cancer (Wapinski and Chang, 2011). 
Currently, more and more lncRNA have been discovered, but 
their functions and mechanisms are still poorly understood. In 
general, almost all lncRNA functions are expressed through the 
interaction with the corresponding RNA-binding proteins, and 
their functions and mechanisms depend on their interaction 
with various protein complexes in cells (Khalil and Rinn, 2011). 
Therefore, it is important to determine the potential interactions 
between lncRNAs and proteins to study the functions of 
lncRNA. It is expensive and time-consuming to detect large-scale 
lncRNA-protein interactions by experimental means, so a large 
number of computational models are proposed based on existing 
experimental data (Suresh et al., 2015).

Based on the physicochemical properties of peptide chains 
and nucleotide chains, Bellucci et al. (2011) proposed catRAPID 
in 2011, which combined secondary structure, hydrogen 
bonding, and van der Waals to predict the interactions between 
lncRNAs and proteins. Subsequently, Lu et al. (2013) proposed 
the lncPro model, which used the secondary structure, hydrogen 
bonds, van der Waals, and other features to encode nucleotide 
and amino acid sequences into feature vector, and calculated the 
interaction scores between lncRNAs and proteins by Fisher’s 
linear discriminant method. Suresh et al. (2015) proposed the 
RPI-Pred to predict the interactions between lncRNAs and 
proteins, which combined the secondary structural feature of 
RNA sequences with the three-dimensional structural feature 
of proteins and used support vector machine (SVM) model for 
prediction. Xiao et al. (2017) proposed a PLPIHS model, which 
constructed a heterogeneous model by using lncRNA-lncRNA 
similarity network, lncRNA-protein interaction network, and 
protein-protein interaction network, and then established a SVM 

classifier to predict lncRNA-protein interaction by HeteSim 
score. Subsequently, Deng et al. (2018) improved on PLPIHS 
and proposed a PLIPCOM model, which simultaneously 
obtained the low-dimensional features of lncRNA (protein) by 
restarted random walk and singular value decomposition on 
heterogeneous networks, and then used the gradient asymptotic 
tree algorithm to predict by combining the HeteSim score and 
low-dimensional features. Both algorithms achieved high AUC 
values, but they used the known lncRNA-protein interaction 
information to construct heterogeneous network, which also 
led to the reuse of the known interactions. Recently, Hu et al. 
(2018) proposed an ensemble strategy to predict potential 
lncRNA-protein interactions (HLPI-Ensemble), which used 
the strategy of random pairing to generate negative samples 
of lncRNA-protein interactions, and integrated support vector 
machine (SVM), random forest (RF), and extreme gradient 
enhancement (XGB) three mainstream machine learning 
algorithms to predict interaction scores. This ensemble learning 
strategy can not only improve the prediction performance of 
the model, but can also prevent the over-fitting of the model to 
some extent. Pan and Shen. (2017) used hybrid convolutional 
neural network and deep belief network to predict RNA-protein 
binding sites on RNAs, which used multimodal deep learning 
to fuse shared features of different sources of data, and found 
the explainable binding motifs. The above supervised learning 
method has achieved certain effects in predicting lncRNA-
protein interactions, but there are still some problems. First, the 
key to supervised learning is to construct as balanced as possible 
positive and negative samples, but at present, most databases 
only provide lncRNA-protein interaction information, while 
the construction of negative samples is still a problem. Second, 
lncRNA-protein interaction prediction problem is a serious 
unbalanced classification problem, and the known interaction 
accounts for less than 1% of the total lncRNA-protein pairs, 
while many supervisory models often choose the same number 
of positive and negative samples as training set and test set, 
which artificially reduces the prediction range of the model 
to some extent. Finally, both lncRNA and protein exist in a 
whole biological network, and the rational use of lncRNA 
(protein) network topology can greatly improve the predictive 
performance of the model.

Recently, many network-based models have been proposed for 
predicting lncRNA-protein interactions. Li et al. (2015) proposed 
a heterogeneous network model to predict lncRNA-protein 
interactions, which constructed a lncRNA similarity network 
using lncRNA expression profiles and protein similarity network 
using weighted protein-protein interactions (PPIs), then combined 
with known lncRNA-protein interaction network uses the restart 
random walk model to make predictions. Ge et al. (2016) proposed a 
binary network inference algorithm (LPBNI) using only the known 
lncRNA-protein interactions to infer potential lncRNA-associated 
proteins. Zheng et al. (2017) predicted potential lncRNA-protein 
interactions by fusing multiple network information. Specifically, 
based on protein sequence, protein domain, protein GO term and 
STRING dataset, the method constructed four protein similarity 
networks, respectively, and integrated with similarity network 
fusion algorithm (SNF), and then used random walk algorithm to 
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calculate the score. Recently, Zhang et al. (2018a) proposed a linear 
neighborhood propagation algorithm (LPLNP) to predict the 
potential lncRNA-protein interactions. Specifically, based on various 
feature extracted, LPLNP calculated the linear neighborhood 
similarity of the corresponding lncRNA (protein), and used the 
label propagation algorithm to calculate the interaction scores, and 
finally the linear combination of all prediction scores as the final 
result. Subsequently, Zhang et al. (2018b) proposed a sequence-
based feature projection ensemble learning algorithm (SFPEL-
LPI). Specifically, based on lncRNA sequences, protein sequences, 
and known lncRNA-protein interactions, SFPEL-LPI extracted a 
variety of lncRNA (protein) features and similarity information, 
and uses feature projection ensemble learning framework to predict 
lncRNA-protein interaction scores. Compared to LPLNP, SFPEL-
LPI has fewer parameters and higher precision and can predict 
new lncRNAs and new proteins. Most network-based models 
build similarity networks by mining lncRNA (protein) related 
information and use their network topological structure and 
known lncRNA-protein interaction information for prediction and 
have the advantage of not requiring negative sample construction. 
In addition, this type of method is also global; based on the 
prediction results, we can get the prediction ranking of all unknown 
interaction pairs, which is more convenient for us to study the 
higher-ranking unknown interaction. However, in addition to 
SFPEL-LPI, other network-based methods only focus on the 
construction of similarity networks and ignore important feature 
information. Although SFPEL-LPI makes use of both feature 
information and similarity information, it separates the lncRNA 
network and protein network for prediction, which also limits the 
improvement of model performance.

Based on this, this study proposes a projection-based 
neighborhood non-negative matrix factorization (PMDKN) to 
predict potential lncRNA-protein interactions in heterogeneous 
omics data, which is also applicable to the prediction of 
new lncRNAs and new proteins. First, based on the lncRNA 
sequences, lncRNA expression profile, and protein sequences, we 
extracted a variety of features of lncRNA and protein. Second, 
based on multiple features of lncRNA and protein, lncRNA 
sequences, gene ontology annotation of the protein and the 
modified lncRNA-protein interaction network, we calculated 
multiple similarities of lncRNA and protein and fused to obtain 
more accurate lncRNA (protein) similarity network. Finally, 
PMDKN uses these features and fused similarity network to 
predict lncRNA-protein interaction scores. The results indicate 
that PMDKN exhibits higher predictive performance than other 
state-of-the-art methods for the prediction of lncRNA-protein 
interactions, new lncRNAs, and new proteins. Case study further 
demonstrates that PMDKN can be an effective tool for lncRNA-
protein interaction.

MATeRIALs AND MeThODs

Dataset
The noncoding RNAs and protein related biomacromolecules 
interaction database (Npinter) (Wu et al., 2006) provides a 
large number of experimentally verified interactions between 

non-coding RNA and other biomolecules. So far, Npinter has 
been updated to version 3.0, which includes more lnRNA-protein 
interactions than the previous version (Hao et al., 2016). In order 
to evaluate the predictive performance of the algorithm, we 
performed cross-experiment using the interactive data provided 
in Npinter v2.0 (Yuan et al., 2013) as the benchmark dataset 
and used Npinter v3.0 to test the final prediction ability of the 
model. Li et al. ( 2015) extracted interactions from Npinter v2.0 
by limiting the organization to ‘Homo sapiens’ and ncRNA to 
‘NONCODE’ and processed 4,870 interactions between 1,113 
lncRNAs and 96 proteins. On this basis, Zhang et al. (2018a) 
deleted lncRNAs and proteins with no sequence information 
and only one interaction, resulting in 4,158 interactions between 
990 lncRNAs and 27 proteins. Meanwhile, various features and 
similarity information were extracted based on the sequence data 
of lncRNAs and proteins. In order to facilitate the experimental 
comparison, we used the dataset provided by Zhang et al. (2018a) 
as the benchmark DATASET 1 for verification.

In benchmark DATASET 1, all lncRNAs (proteins) interact 
with at least two proteins (lncRNAs), and the number of 
lncRNA-protein interactions is relatively dense. To investigate 
the predictive ability of the algorithm for sparse interactions, 
lncRNAs without sequence information were deleted from 
the data provided by Li et al., and a total of 4,679 interactions 
between 1,068 lncRNAs and 90 proteins were finally obtained. 
Meanwhile, sequence information of lncRNA and expression 
profile information of lncRNA in 24 human tissues and cells 
were extracted from the integrated knowledge database of non-
coding RNAs database (NONCODE) (Liu, 2004; Xie et al., 2013; 
Fang et al., 2018), and sequence information of protein and gene 
ontology annotation of protein were extracted from the protein-
protein interaction networks dataset (STRING 9.1) (Franceschini 
et al., 2012). Based on the relevant information of lncRNA and 
proteins, multiple features and similarities of lncRNA (proteins) 
were calculated to construct benchmark DATASET 2.

Features for lncRNAs and Proteins
Let  = { }l l lNl1 2, , ,  and  = { }p p pN p1 2, , ,  represent the 
set of Nl lncRNAs and Np proteins obtained, respectively. In 
this section, we introduce the three features of lncRNA, the two 
features of the protein, and the similarity of lncRNA and the 
similarity of protein.

Features of lncRNA
We extracted three features of lncRNA, namely expression 
profile feature and two sequence-based features: pseudo-k-tuple 
nucleotide composition (PseKNC) (Chen et al., 2014) and parallel 
related pseudo dinucleotide composition (PCPseDNC) (Guo 
et al., 2014). For lncRNA, k-mer (nucleotide sequence of length k) 
is generally used to describe the short-term ordered information 
of the sequences, while the overall or long-term information of 
the sequences is described by the physicochemical properties of 
nucleotides. PseKNC and PCPseDNC describe the lncRNA by 
integrating the short-term and long-term features of the sequences 
(Chen et al., 2014). We calculated the PseKNC and PCPseDNC of 
lncRNA using python “repDNA” package (Liu et al., 2015).
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Features of Protein
The hydrophilicity and hydrophobicity of proteins play an 
important role in protein folding, environmental and molecular 
interactions, and catalytic effects. Combining the frequency of 
regularization of 20 amino acids in the protein sequence and 
the distribution pattern of hydrophilicity and hydrophobicity 
along the protein chain, we calculated the characteristics of 
the two proteins, which are the amphiphilic pseudo amino 
acid composition (APseAAC) (Chou, 2001; Chou, 2005) and 
the combined triad descriptor (CTriad). Among them, Ctriad 
was proposed by Shen et al. (2007) to predict protein-protein 
interactions. First, in order to reduce the size of the feature space, 
20 amino acids were grouped into 7 classes according to the 
dipole and volume of the side chains. Second, using the classes of 
amino acids to distinguish any conjoint triad (combination of any 
three consecutive amino acids) and counting the frequency. f(vi)
i=1,2,.···,73 of the occurrence of the conjoint triad in the amino 
acid sequence, where vi represents the i-th conjoint triad. Finally, 
normalizing f(vi), we could get the conjoint triplet descriptor 
feature CTriad(P)=[q1,q2,···,q343] of protein P as follows:
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 represent the 

minimum and maximum frequencies of all conjoint triads, 
respectively. It should be noted that in order to prevent the over-
fitting problem caused by the lncRNA (protein) feature due to the 
high dimension, we use the PCA for dimensionality reduction on 
the high-dimensional features.

similarities for LncRNAs and Proteins
In this section, we introduce the lncRNA-lncRNA similarity and 
the protein-protein similarity.

lncRNA-lncRNA Sequence Similarity
Kirk et al. (2018) found that lncRNAs with related functions, 
although lacking linear homology, often have a similar k-tuple 
spectrum, which is related to lncRNA binding protein and its 
subcellular localization. Song et al. (2014) introduced a variety of 
alignment-free genome and metagenome comparison methods 
based on word frequency and proved that d2

*  has a stronger 
statistical ability to measure sequence correlation. Therefore, 
d2

*  was used in this study to calculate the sequence similarity 
between lncRNAs. For any two lncRNA sequences L1 and L2 with 
m and n nucleotides, respectively, the dissimilarity d L L2 1 2

* ,( )  is 
as follows:
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Where D L L2 1 2
* ,( )  represents the D2

*  statistic of L1 and L2, and 
pw

X  and pw
Y  respectively represent the probability of k-tuple w 

occurring in L1 and L2 of  lncRNA under the background model. 
m m k= − , n n k= − , X X mpw w w

X
˘

= − , Y Y npw w w
Y

˘

= − , where 
Xw and Yw represent the frequencies at which the k-tuples in the 
sequences L1 and L2 occur, respectively. Further, the similarity of 
L1 and L2 is ( ( ), )*1 2 1 2− d L L . We used the program provided by 
Ahlgren et al. (2016) to calculate the d2

*  similarity of lncRNA.

Protein-Protein Semantic Similarity
The semantic comparison of gene ontology annotations provides 
a quantitative method for calculating the semantic similarity of 
gene products (Yu et al., 2010). There are currently two classic 
methods for computing the semantic similarity of GO annotation 
items: information-based methods (Jiang and Conrath, 1997; 
Lin, 1998; Resnik, 1999) and graph-based (Wang et al., 2007) 
methods, respectively. In this study, the graph-based method was 
first used to calculate the semantic similarity of GO items, and 
then the semantic similarity of proteins was calculated according 
to the association between protein and GO items. Specifically, 
any GO item A could be expressed as DAG(A)=(A,TA,EA), where 
TA represents the set containing item A and all its ancestor items 
in the GO diagram, and EA represents the set connecting all edges 
of GO item in DAG(A). Then, for any two GO annotation items 
A and B, their semantic similarity could be defined as:
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( ) + ( )

∈∑ t T
A B

A

S t S t

SV A SV B
TB

 

Where, SA(t) and SB(t) represent the S-value of GO item t related to 

item A and item B respectively, and SV A S t
t T

A

A

( ) = ( )
∈

∑  represents 

the semantic value of GO item A. At this point, according to 
the correlation between protein and GO term, we can get the 
semantic similarity of protein. We use R package “protr” to obtain 
semantic similarity of proteins; more details are shown in (Xiao 
et al., 2015).

Kernel Neighborhood Similarity
In Section “Features for lncRNAs and Proteins”, we obtained 
three features of lncRNA and two features of protein, and the 
known lncRNA-protein interaction network also contains 
important lncRNA (protein) feature information. Based on 
these feature vectors, there are many methods for calculating 
similarities, such as Gaussian, linear neighborhood similarity 
(Zhang et al., 2018a) (LNS), and so on. Here, we adopt kernel 
neighborhood similarity (KSNS) (Ma et al., 2018a; Ma et  al., 
2018b), which not only considers the neighbor and non-
neighbor similarity of samples hierarchically, but also explores 
nonlinear relations, which was well applied to a variety of 
biological problems. It should be noted that the currently known 
lncRNA-protein interaction matrix is incomplete. Therefore, in 
order to reduce the error caused by information loss, we first 
use the Weighted K nearest neighbor profiles (WKNNP) (Xiao 
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et al., 2018) to complete the known interaction matrix, and then 
calculated the KSNS of lncRNA(protein) interaction profile.

Based on the above steps, we obtained a total of 5 similarities 
of lncRNAs and 4 similarities of proteins, which reflected the 
similarity relationship of lncRNAs (proteins) from different 
perspectives. Due to the limitations of data and the selection of 
computational methods, these similarity networks may contain 
noise. Hence, we adopted a clusDCA proposed by Wang et al. 
(2015) for similarity network fusion, which can not only eliminate 
network noise and effectively capture network topology, but also 
have high computational efficiency in large-scale networks. The 
general procedure for predicting lncRNA-protein interaction 
using PMDKN is shown in Figure 1.

Prediction of lncRNA-Protein Interaction
Based on various features of lncRNA (protein) and the integrated 
lncRNA (protein) similarity network, we proposed projection-
based neighborhood non-negative matrix factorization (PMDKN) 
to predict potential lncRNA-protein interactions. FLi i

N{ } =1

1  
represents the N1 feature matrices of lncRNA, FPi i

N{ } =1

2  represents 
the N2 feature matrices of protein, similarity matrix of lncRNA and 
protein are SL and SP respectively, A represents known lncRNA-
protein interaction matrix, and A  represents lncRNA-protein 
interaction matrix completed by WKNNP.

First, we mapped lncRNA and protein to the common non-
negative space Rd, that is, any lncRNA li and protein pj can be 
represented by non-negative latent vectors 

u R
i

d∈ ×1  and 

FIGURe 1 | Flow chart of lncRNA-protein interaction prediction by PMDKN algorithm. As shown in the figure, we first calculated three features of lncRNAs and 
two features of proteins, and then calculated five similarities of lncRNAs and four similarities of proteins according to lncRNA sequence, protein GO annotation  and 
their features.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1148

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


lncRNA-Protein Interaction PredictionMa et al.

6

v R
j

d∈ ×1 . For simplicity, we further denote the latent vectors 

of all lncRNAs and all proteins by U = ( ) ∈ ×u u RN
T N d

l
l

1 , ,

 and 
V = ( ) ∈ ×v v RN

d N
h

p
1 , , , then, the product of the U and V can 

be used to approximate the modified interaction matrix Ā. Since 
the observed interactions have been verified by experiments 
and have higher reliability than the unknown interactions, the 
observed lncRNA-protein interactions are assigned a higher level 
of importance and can be obtained as follows:

 
min C A UV VU V

T
F F, || || || || || ||1

2 2
2 2 2

 −( ) + +( )



γγ
U F 

  

 s.t.   U V≥ ≥0 0,   (1)

where C is the importance level distribution matrix, that is, if 
there is interaction between the lncRNA li and the protein pj, Ci,j= 
δ, otherwise, Ci,j = 1, where δ > 1 is an important level parameter. 
||·||F denotes the F-norm and γ denotes the regularization 
parameter of latent vectors.

In addition, in order to integrate different types of lncRNA 
features, we project all lncRNA features onto the non-negative 
space Rd, and required the difference between it and U to be as 
small as possible, so as to obtain:

min  PL i i i
T

F
i

N

ii
|| kFL PL U || PLαα ηη − +

=∑ 2

1
12

1 µ || ( ,:) ||22

11

1

k

r

i

N
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






 s.t.  iPL ≥ 0  (2)

where FL Ri
N dl li∈ ×  represents the i-th feature matrix of lncRNA, 

dli represents the dimension of the feature, and PL Ri
r dli∈ ×  

represents the corresponding projection matrix. In order to 
facilitate calculation and convenient interpretation, PLi is required 
to be non-negative. The Weight vector α α α α= ( )1 2 1

, , , N  
controls the effect of different feature projections on U. The 
projection index parameter η > 1 is the index of α, indicating that 
all features contribute to the generation of U. µ is the regularization 
parameter of projection matrix, and P(k,:) is the k-th row of the 
matrix P. ||PLi(k,:)|| represents the 1 -norm of the vector PLi(k,:) 

(ie, || ,: || ,P k P k j
j

( ) = ( )∑1 ), ensuring that the projection vector 

PLi(k,:) is as sparse as possible, and 
k

r

iPL k
=

∑ ( )
1

1
2|| ,: ||  is equivalent 

to the square of the 1 2, -norm of the matrix PLi. Therefore, 
equation (2) can be expressed as follows:

 
min  iPL i i i

T
F

i

N

i
i

|| FL PL U PLαα ηη − +
= =∑ || ||2

1
1 2
2

2
1 µ || ,

11

1N∑




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 s.t.  iPL ≥ 0  (3)

Similarly, for proteins, we have:

 
min  PP j j j

T
F

j

N

j
jj

FP PP V PPββηη || |||| || ,− +
= =∑ 2

1
1 2
2

2
2 µ

11

2N∑




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 s.t. PPj ≥ 0  (4)

where FPj
N dp pj∈

×
R  represents the j-th feature matrix of the 

protein, and non-negative matrix PP Rj
r dpi∈ ×  represents 

the corresponding projection matrix. The weight vector 
β β β β= ( )1 2 2

, , , N  controls the effect of feature projection on V.
It is generally believed that lncRNAs with higher similarity 

are more likely to interact with the same protein, but due to the 
incomplete data set, the similarity network of lncRNAs (proteins) 
obtained may contain noise. In order to eliminate the influence 
of non-neighborhood noise and improve the prediction accuracy, 
we only consider strong neighborhood similarity relationship of 
the samples. Therefore, lncRNA neighborhood similarity matrix  
( SL ) was constructed as follows:

 
SL

SL if l N l or l N l
i j

i j j i i
,

,                  

 
=

∈ ( ) ∈ ( )j

0                                     otherwise 





  (5)

Among them, SLi j,  represents the local similarity of 
lncRNA li and lj, and N(li) represents the K neighbor sets 
closest to lncRNA li. In order to adaptively select the number of 
neighbors according to the sample size, we make K Nl= ×0 3. ,
  ⋅   indicates rounding up. It is known from equation (5) that 
SL  is a symmetric matrix. According to lncRNAs with higher 

similarity, their features are as close as possible; we have:

λλ λλ
2

2

i j

i j i j F
T

l
T

lSL u u tr U D SL U tr U LP∑∑ − = −( )( ) =, || || λ UU( )   
  (6)

Where tr ⋅( )  represents the trace of the matrix, λ  is 
the neighborhood Laplacian regularization parameter, and 
LP DL SLl = −  is the Laplacian matrix of the lncRNA. The diagonal 
matrix D diag dL dL dLl Nl

= ( )1 2, , ,

, whose diagonal elements 

are  dL SLi

k

i k= ∑ , , respectively. Similarly, we can calculate the 

neighborhood similarity matrix SP  of the protein as follows:

 

SP
SP f p N p or p N p

i j
i j j i i j

,
,          

         
=

∈ ( ) ∈ ( )i

0      otherwise






 (7)

Furthermore, the objective function can be obtained as follows:

 

λ
2

i j

i j j F
T

p
T

pSP p p tr V D SP V tr V LP V∑∑ − = −( )( ) = ( ), i
2

λλ λλ

 
  (8)

where  LP D SPp p= −  is the Laplacian matrix of the protein. The 
diagonal matrix D diag dP dP dPp N p

= ( )1 2, , ,

, whose diagonal 
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elements are  dP SPi

k

i k= ∑ , , respectively. Combined with the 

above formulas, the objective function of PMKDN algorithm can 
be obtained as follows:

 

min 1
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 (9)

We use the two-step method to solve (9). First, by fixing αi, βj, 
and using the Lagrangin multiplier and the KKT condition, we 
can get the iterative formula of U, V, PLi and PPj as follows:

 

U 1
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Then, fix U, V, PLi and PPj, and let a FL PL Ui i i
T

F= − ≥|| ||2 0 , 
b FP PP Vj j j

T
F= − ≥|| ||2 0 , C1 represents the terms unrelated to αi and 

βj (3.8). We can get the objective function about αi and βj as follows:
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Using the Lagrangian multiplier, the iterative formula for αi 
and βj can be obtained as follows:
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 (14)
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According to (14) and (15), αi and βj always satisfy non-
negative constraints. In formula (9), U and V are obtained based 
on the decomposition of the known lncRNA-protein interaction 
matrix. In order to reduce the prediction error of the new 
lncRNA (lncRNA without any protein interaction information) 
and the new protein, we utilized the method proposed by Liu 
et al. (2016), that is, the lncRNA(protein) was modified by using 
the neighborhoodlatent vectors. Let ũi the modified latent vector 
of lncRNA li, which can be calculated as follows:

u
u

i

i

=
                                                         

,

,if A

QL
SL i s u

j

N

i j

i
s

s N l

p

i

=

∈

∑ >

( )+

1

0

1
(( )∑











                            otherwise


 (16)

where, the first item Ai j
j

N p

,
=∑ >

1
0  indicates that the latent 

vector of lnRNA with protein interaction remain unchanged. 
The second term refers to the modification of latent vector of 
lncRNAs without protein interaction, where N+(li) refers to the 
set composed of K lncRNAs with the highest similarity to li 
among lncRNA sets with protein interaction. In order to make the 
number of neighbors automatically adapt to the size of samples, 
we set K Nl= × ( )max 5 0 1, . , where Q SL i si

s N di

= ( )
∈ ( )+∑ ,  

represents the normalized term. Similarly, we modified the latent 
vector of proteins as follows:
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 (17)
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By using the modified latent vector    

U =  u u uNl1 2, , ,  of lncRNA 

and the modified latent vector 
  

V = 



v v vN p1 2, , ,  of protein, we can 

obtain the final lncRNA-protein interaction score Y = UV T .

Algorithm
In the process of model derivation, we assume that the features 
of lncRNA and protein are non-negative, so the original 
features need to be normalized before algorithm calculation. 
Let F̂ RN M∈ ×  represent the original feature matrix of lncRNA 
(protein), where ˆ

,Fi j  represents the j-th dimension of the i-th 
sample, then the normalized feature matrix F is as follows:

 

F

F F

F F

i j

i j j

j j

,
, .

. .

ˆ ˆ

ˆ ˆ( )
=

− ( )
− ( )
min

max min
 (18)

Where, min (F.j) and max (F.j) represent the minimum and 
maximum of the j-th dimension, respectively. Algorithm 1 

summarizes the general process of solving lncRNA-protein 
interaction prediction by KDMPN.

ResULTs AND DIsCUssION

experimental settings
According to previous studies, the performance of the interactive 
prediction method was evaluated by the 5-fold cross validation 
(CV), and the area under ROC curve (AUC), area under 
Precision-Recall curve (AUPR), and F1 value (F1) were used as 
evaluation indexes. Since the known lncRNA-protein interactions 
were much less than the unknown lncRNA-protein interactions, 
AUPR was usually used as the most important evaluation index 
to punish false positives (Zhang et al., 2018a; Zhang et al., 2018b).

In addition, in order to eliminate the influence of random 
partition on the results in the crossover experiment, we selected 
the method of Liu et al. (2016), set 5 random seeds for CV, and took 
the mean value of the cross experiment results under all random 
seeds as the final prediction result. Specifically, the lncRNA-protein 
interaction matrix A RN Nl p∈ ×  has Nl rows for lncRNAs and Np 
columns for proteins. In order to investigate the prediction ability 
for lncRNA-protein interactions, new lncRNAs and new proteins, 
we performed CV under three different settings, as follows:

1. CVa: CV on known lncRNA-protein interaction pairs. 
Specifically, we randomly divided the known lncRNA-protein 
interactions into 5 equal parts. Take turns to select one and 
all the unknown interactions to form the test set and the 
remaining four and all the unknown interactions to form the 
training set (that is, change the 1 corresponding to the test set 
in A into 0 as the training set).

2. CVl: CV on lncRNAs. Specifically, all lncRNAs are randomly 
divided into five equal parts; one is selected as a test set in turn, 
and the remaining four are training sets (that is, all the rows 
corresponding to the test set in A were changed to zeros).

3. CVp: CV on proteins. Specifically, all proteins are randomly 
divided into five equal parts; one is selected as a test set in turn, 
and the remaining four are training sets (that is, all the columns 
corresponding to the test set in A were changed to zeros).

It should be noted that with regard to CVa, we selected all 
zeros in A as the test set. For example, for DATA2, the test set 
of each crossover experiment contains 4,870/5 = 947 known 
interactions and 97,658 unknown interactions (that is, the ratio 

ALGORIThM 1 | KDMPN

Input: Known lncRNA-protein interaction matrix A; Modified lncRNA-protein 
interaction matrix Ā; Importance level parameter δ; LncRNA original feature 

matrix FLl
i

N
{ }

=1

1

; Protein initial feature matrix FPj
j

N
{ }

=1

2

; LncRNA similarity 

matrix SL; Protein similarity matrix SP; Potential subspace regularization 

parameter r; Projection index parameter η>1; Projection matrix regularization 
parameter µ; Neighborhood Laplacian regularization parameter λ; Potential 
subspace regularization parameter γ.
Output: LncRNA latent vector Ũ; Protein latent vector V ; Predictive 
interaction matrix Y ; LncRNA feature projection matrix PLi i

N{ } =1

1 ; Protein 

feature projection matrix PPj j

N{ } =1

2 ; LncRNA projection parameter α i i

N{ } =1

1 ; 

Protein projection parameter β j j

N{ } =1

2 .
Initialize:
1 The importance level distribution matrix C

N Nl p
( ) ×

 is calculated from δ and 

A, andthe normalized lncRNA feature matrix FLi i

N{ } =1

1  and the protein projection 

matrix FPj j

N{ } =1

2

 are obtained by using Equation (18) for FLi
i

N
{ }

=1

1

 and FPl
i

N
{ }

=1

2

. Based on SL and SP, the neighborhood similarity matrices SL  and SP  of 

lncRNA and protein were obtained using equations (5) and (7), respectively. 
Initialize U V, || PLi i

N{ } =1

1  and PPj j

N{ } =1

2  using the random number of the [0, 1] 
interval.

2 for i N← 12 1, , ,  do
Fix PLi and U, calculate αi according to formula (14).

end for
for i N← 12 2, , ,  do

Fix PPj and V, calculate βj according to formula (15).
end for

repeat
3 Fix α i i

N{ } =1

1  and PLi i

N{ } =1

1 , Update U according to formula (10).

4 Fix β j j

N{ } =1

2

 and PPj j

N{ } =1

2 , Update V according to formula (11).

5 for i N← 12 1, , ,  do

 Fix α i i

N{ } =1

1  and U, Update PLi according to formula (12).
Fix PLi and U, Update αi according to formula (14).

end for

6 for j N← 12 2, , ,  do

Fix β j j

N{ } =1

2  and V, Update PPj according to formula (13).
Fix PPj and V, Update βj according to formula (15).

end for
until Converges
7 Ũ was obtained by completing the subspace feature U of lncRNA 
according to formula (16).
8 V  was obtained by completing the subspace feature V of protein 
according to formula (17).
9 Y =  UVT
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of positive and negative examples is approximately 1:100). This 
selection method ensures that all the unknown interactions 
can be included in each crossover experiment, which expands 
the search range and is also in line with the actual situation.

Parameter setting
The PMDKN algorithm have six parameters, namely the projection 
index parameter η, the projection regularization parameter μ, 
the latent vector regularization parameter γ, the neighborhood 
Laplacian regularization parameter λ, the potential subspace 
dimension d, and the known interaction important level parameter 
δ. Among them, μ and γ control the influence of feature projection, 
γ controls subspace feature contribution, λ describes the effect of 
similarity network, and δ controls the importance level of observed 
interaction. In order to study the effect of parameters on the 
prediction results, we calculated all the parameter combinations. 
Specifically, η was selected from {2,3,4,5,6}, μ was selected  
from {10-3,10-2,10-1,100,101}, γ was selected from {10-3,10-2,10-

1,100,101}, and λ was selected from {2-2,2-1,2021,22,23}; according to 
the previous research (Zheng et al., 2013, Liu et al., 2016, Xiao et al., 
2018), for methods based on matrix decomposition, the potential 
subspace dimension d = 100, δ was selected from {1,2,⋯, 6}.

It should be noted that unlike DATASET 1, DATASET  2 
contained more lncRNAs and proteins, and the initially 
constructed lncRNA (protein) similarity network did not 
utilize any known interaction information and therefore has 

higher predictive value. In addition, since CVa, CVl, and CVp 
are considered the predictive power of the algorithm for new 
interactions, new lncRNAs, and new proteins, respectively, 
we believe that the three experimental setups are equally 
important for algorithm evaluation. Therefore, based on 
DATASET 2, for the combination of different parameters, 
the average evaluation index of the algorithm under the 
three experimental settings is the final evaluation standard. 
We take AUPR as the evaluation index, and the influence of 
the analysis parameters on the prediction results was shown  
in Figure 2.

As shown in Figure 2, the optimal parameters obtained by the 
PMDKN algorithm are η = 5, µ = 100, λ = 1, γ = 1, δ = 2, and 
the average optimal AUPR value under the three experimental 
settings is 0.4735. Specifically, we first analyze the influence of the 
projection parameters η and µ. Fixed λ = 1, γ = 1, δ = 2, and calculate 
the AUPR value of the model under all possible combinations of η 
and µ. As shown in (A) of Figure 2, as η becomes larger, the AUPR 
value of the model increases, but the overall AUPR value of the 
model fluctuates a little. Then, we fixed η = 5, µ = 100, γ = 1, δ  = 2, 
and analyzed the influence of the change of λ on the AUPR value. 
As shown in (B) of Figure 2, when λ increases, the AUPR value of 
the model first becomes larger and then decreases, and when λ = 1, 
the AUPR value is the largest. Similarly, as shown in (C) in Figure 2,  
when γ < 1, the change of AUPR was relatively flat; when γ > 1, 
the AUPR value decreased sharply with the increase of gamma. In 

FIGURe 2 | The influence of parameters on the AUPR value of PMDKN. Among them, (A) represents the influence of the projection parameters µ and η on the 
AUPR value. (B) shows the effect of the neighborhood Laplacian regularization parameter λ. (C) shows the effect of the feature regularization parameter γ. (D) 
indicates the effect of observing the important level parameter δ.
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(D), δ = 1 indicates that the known interactions and the unknown 
interactions are equally important, and the corresponding 
AUPR value of the model is only 0.42; however, when δ =  2, 
the model has the maximum AUPR value, which further 
emphasized that the setting of δ is necessary to improve the  
performance of the model.

Based on the above discussion, in the following study, we select η = 
5, µ = 100, λ = 1, γ = 1,  d = 100, and δ = 2 as parameters of PMDKN.

Comparison With state-of-the-Art 
Prediction Methods
In order to evaluate the predictive ability of PMDKN algorithm 
equitably, we conducted 5-fold cross validation on DATASET 
1 and DATASET 2, and compared them with the following 
methods: SFPEL-LPI (Zhang et al., 2018b), LPLNP (Zhang 
et al., 2018a), LPBNI (Ge et al., 2016), and LKSNF (Ma et al., 
2018b). Since DATASET 1 itself was the benchmark dataset for 
SFPEL-LPI, LPLNP, and LKSNF, we do not need to re-extract 
the features. For DATASET 2, we calculated the PCPseDNC and 
SCPseAAC of lncRNA according to the requirements of SFPEL- 
LPI, and calculated the PCPseAAC and SCPseAAC of the protein. 
Since SWSS similarity leads to the reuse of known interaction 
information, only the Smith Waterman similarity of lncRNA 
(protein) were calculated. For LPLNP and LKSNF, we calculated 
the sequence feature and expression profile feature of lncRNA 
and the CTD of the protein according to their requirements. 
While LPBNI only uses known lncRNA-protein interactions for 
prediction, we did not need to extract additional information. 
According to previous studies, LPLNP, LPBNI, and LKSNF only 
predicted the unknown interaction of lncRNA-protein, while  
SFPEL-LPI not only predicted unknown lncRNA-protein 
interactions, but also predicted new lncRNA and new protein. 
Therefore, based on DATASET 1 and DATASET 2, we perform 
CVa on all models, and CVl and CVp on SFPEL-LPI. We performed 
the crossover experiment using the experimental setup in Section 
“Experimental Settings” and used the mean of the five-fold 
crossover experimental results of the five random seeds as the 
evaluation index of the algorithm, and the parameters of these 
models were selected using the recommended parameters.

Table 1 shows the comparison of predictive performance of 
PMDKN and other state-of-the-art methods for new lncRNA-
protein interaction prediction. It can be seen that, no matter in 
DATASET 1 or DATASET 2, the AUPR, AUC, and F1 values 
of PMDKN are higher than other models. Specifically, on 
DATASET 1, as for the most important evaluation index AUPR, 
PMDKN can reach 0.4959, which increases by 50.46%, 8.37%, 
4.31%, and 6.07%, respectively, compared with LPBNI’s 0.3296, 
LPLNP’s 0.4576, LKSNF’s 0.4754, and SFPEL-LPI’s 0.4675. 
Regarding the commonly used evaluation index AUC, PMDKN 
can reach 0.9223, which is higher than 0.8546 of LPBNI, 0.9095 
of LPLNP, 0.9150 of LKSNF, and 0.9201 of SFPEL-LPI. The F1 
value of PMDKN can reach 0.4814, which is 24.04%, 6.50%, 
4% and 3.37%, respectively, compared with 0.3881 for LPBNI, 
0.4520 for LPLNP, 0.4629 for LKSNF, and 0.4657 for SFPEL-LPI. 
In DATASET 2, the AUPR of PMDKN could reach 0.4808, which 
improved by 40.67%, 2.45%, 6.18%, and 14.07%, respectively, 
compared with 0.3418 of LPBNI, 0.4693 of LPLNP, 0.4528 of 

LKSNF, and 0.4215 of SFPEL-LPI. The AUC value of PMDKN 
can reach 0.9732, higher than 0.9340 of LPBNI, 0.9700 of LPLNP, 
0.9710 of LKSNF, and 0.9728 of SFPEL-LPI. The F1 value of 
PMDKN can reach 0.4761, which is 19.71%, 3.37%, 2.67%, and 
7.04%, respectively, compared with 0.3977 for LPBNI, 0.4606 
for LPLNP, 0.4637 for LKSNF, and 0.4448 for SFPEL-LPI. These 
demonstrate that the PMDKN algorithm of this paper has good 
predictive power for unknown lncRNA-protein interactions.

The prediction of new lncRNAs and new proteins are also the 
important criterion for evaluating the performance of the method. 
Among the four comparison algorithms above, only SFPEL-
LPI performs the prediction of new lncRNA and new protein. 
Therefore, we only compare the prediction performance of SFPEL-
LPI and PMDKN on CVl and CVp. As shown in Table 2, except 
for the F1 value of PMDKN on DATASET 2, which is 0.4864, 
slightly lower than the 0.4892 of SFPEL-LPI, PMDKN was better 
than SFPEL-LPI for other evaluation indicators, especially for the 
prediction of new proteins (CVp). Specifically, on DATASET 1, 
the AUPR values of PMDKN for CVl and CVp can reach 0.6301 
and 0.4918, which is 30.92% and 49.71%, respectively, relative to 
SFPEL-LPI of 0.4813 and 0.3285. The AUC values of the PMDKN 
algorithm for CVl and CVp can reach 0.8907 and 0.7843, which are 
7.52% and 17.66% higher than the 0.8284 and 0.6666 of SFPEL-
LPI, respectively. The F1 value of the PMDKN algorithm for CVl 
and CVp can reach 0.6081 and 0.5251, which is 23.32% and 38.95% 
higher than the 0.4931 and 0.3779 of SFPEL-LPI, respectively. 
Similarly, in DATASET 2, the AUPR value and AUC value of CVl 
of PMDKN were higher than SFPEL-LPI, especially for CVp, the 
AUPR value, AUC value, and F1 value of PMDKN could reach 
0.4604, 0.9019, and 0.4818, respectively, improving 281.13%, 
37.78%, and 148.35% compared with the 0.1208, 0.6546, and 
0.1940 of SFPEL-LPI.

Comparative Analysis of Model stability
Due to technical limitations, some noises may be hidden 
in the known lncRNA-protein interactions, such as lack of 
interaction information, unreal interaction information 
and so on. In order to test the dependence of the prediction 
performance of the model on the known interactions, 
according to the method of Zhang et al. (2018b), we randomly 
deleted some of the known interactions to represent the missing 

TABLe 1 | Comparison of predicted performance of new lncRNA-protein 
interactions based on DATASET1 and DATASET2.

DATA Method AUPR AUC F1 value

DATASET 1 LPBNI 0.3296 0.8546 0.3881
LPLNP 0.4576 0.9095 0.4520
LKSNF 0.4754 0.9150 0.4629
SFPEL-LPI 0.4675 0.9201 0.4657
PMDKN 0.4959 0.9223 0.4814

DATASET 2 LPBNI 0.3418 0.9340 0.3977
LPLNP 0.4693 0.9700 0.4606
LKSNF 0.4528 0.9710 0.4637
SFPEL-LPI 0.4215 0.9728 0.4448
PMDKN 0.4808 0.9732 0.4761

In the above table, the best results under the current metric are shown in bold on 
each data set.
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information and randomly added the nonexistent interactions 
to represent the false interactions, and then studied the 
change of prediction performance of the model. Since only 
a few interactions have been detected at present, it indicates 
that there are still a large number of interactions that have 
not been discovered. Therefore, we deleted 20% of the known 
lncRNA-protein interactions and added 5% of the interactions 
that actually do not exist as noise. At this point, the test set of 
the model becomes 20% known interactions and all unknown 
interactions. As shown in Figure 3, on the disturbance dataset 
of DATASET 1, the AUC values of LPBNI, LKSNF, LPLNP, 
SFPEL-LPI, and PMDKN are 0.8417, 0.8980, 0.8856, 0.9077, 
and 0.9116, respectively, and the AUPR values are 0.2776, 
0.2564, 0.2431, 0.2596, and 0.3392. On the perturbed data set 
of DATASET 2, the AUC values of LPBNI, LKSNF, LPLNP, 
SFPEL-LPI, and PMDKN were 0.9297, 0.9707, 0.9646, 0.9687, 

and 0.9714, respectively, and the AUPR values were 0.2969, 
0.2662, 0.2526, 0.2415, and 0.4081, respectively. Comparing 
the results of Table 1, it can be seen that the introduction of 
partial noise in the perturbed dataset leads to a decrease in the 
AUPR and AUC values of all prediction models, but PMDKN 
still achieves satisfactory results and outperforms LPBNI, 
LKSNF, LPLNP, and SFPEL-LPI.

Case study
LncRNA-protein interactions in DATASET 1 and DATASET 
2 used in this paper were extracted from Npinter2.0, and the 
current version of Npinter has been updated to Npinter v3.0 
(Hao et al., 2016). Compared with version 2.0(Yuan et al., 
2013), Npinter v3.0 contains more lncRNAs, more proteins, 
and more interactive information. To test the predictive 
ability of new proteins, we extracted 95 new proteins that 

TABLe 2 | Comparison of predicted performance of new lncRNAs and new proteins based on DATASET1 and DATASET2.

DATA Method CVl CVp

AUPR AUC F1 value AUPR AUC F1 value

DATASET 1 SFPEL-LPI 0.4813 0.8284 0.4931 0.3285 0.6666 0.3779
PMDKN 0.6301 0.8907 0.6081 0.4918 0.7843 0.5251

DATASET 2 SFPEL-LPI 0.4756 0.9446 0.4892 0.1208 0.6546 0.1940
PMDKN 0.4794 0.9465 0.4864 0.4604 0.9019 0.4818

In the above table, the best results under the current metric are shown in bold on each data set.

FIGURe 3 | Prediction performance of the model on disturbed data set. Among them, (A) shows the ROC curve and AUC value of the five methods after 
DATASET1 adds noise. (B) shows the P-R curve and AUPR values of the five methods after DATASET1 is added with noise. (C) shows the ROC curve and AUC 
value of the five methods after DATASET2 adds noise. (D) indicates the P-R curve and AUPR value of the five methods after DATASET2 is added with noise.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1148

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


lncRNA-Protein Interaction PredictionMa et al.

12

did not exist in DATASET 2 from Npinter v3.0, extracted the 
amino acid sequence and gene ontology annotation of these 
new proteins, and combined with DATASET2 information 
to predict the interactions between these new proteins and 
lncRNAs. For the prediction score of each new protein, we 
calculated its AUPR and AUC values, and calculated the 
hit rate of the top 10, 20, 50, and 100 candidate lncRNAs 
(Nourania et al., 2016). For the new protein pi, the hit rate 
hit(pi) can be expressed as follows:

 

hit p
Cand p Test p

Test p
i

i i

i

( ) =
( ) ( )

( )
|

| |



 

Among them, Cand (pi) represents the candidate lncRNA set 
of protein pi, and in this paper Cand (pi) represents the top-10, 
top-20, top-50, top-100 candidate lncRNAs sorted according to 
the predicted score, respectively. Test (pi) represents the set of 
lncRNAs for all interactions of protein pi in Npinter v3.0. | |⋅  
indicates the number of elements. As SFPEL-LPI can predict 
new proteins and new lncRNAs, the predicted results of SFPEL-
LPI and PMDKN were compared. The predicted scores, actual 
labels and evaluation indicators of 95 new proteins are shown in 
Supplementary Table 1. The average AUPR value, the average 
AUC value, the average hit rate of the top-10, top-20, top-50, and 
top-100 predicted by SFPEL-LPI and PMDKN for 95 proteins are 
shown in Figure 4.

As shown in Figure 4, for the prediction of new proteins, 
PDMKN not only has higher AUPR and AUC values than 
SFPEL-LPI, but also the top 10, 20, 50, 100 hit ratios of candidate 

lncRNAs are much higher than SFPEL-LPI. Specifically, the 
average AUPR and AUC values for PMDKN were 0.204 and 
0.839, respectively, which were 20.66% and 8.49% higher 
than 0.169 and 0.773 for SFPEL-LPI, respectively. The hit 
rates of candidate lncRNAs in the top-10, top-20, top-50 and 
top-100 reached 42.8%, 47.1%, 52.1%, 57.2%, and increased 
by 266.32%, 264.37%, 125.75%, and 80.68%, respectively, 
compared with the 11.7%, 12.9%, 23.1%, and 31.7% of SFPEL-
LPI, which further demonstrated that PMDKN had strong 
predictive ability.

DIsCUssION
In this study, we proposed a new lncRNA-protein interaction 
prediction model, which not only can predict the unknown 
interactions between lncRNAs and proteins, but also has 
strong prediction ability for new lncRNAs and new proteins. 
To fairly evaluate the predictive performance of the model, 
we performed three 5-fold cross-validation on the two 
benchmark datasets, namely, CVa for the new lncRNA-
protein interactions, CVi for the new lncRNAs, and CVp for 
the new proteins. The results show that, on DATASET 1, 
the AUPR values of PMDKN under the three experimental 
settings could reach 0.4959 (on CVa), 0.6301 (on CVl), and 
0.4918(on CVp) respectively; on DATASET 2, the AUPR 
values of PMDKN under the three experimental settings can 
reach 0.4808 (on CVa), 0.4794 (on CVl), and 0.4604 (on CVp) 
respectively, higher than other state-of-the-art methods. In 
the case study, 95 new proteins were predicted, and the results 

FIGURe 4 | Comparison of SFPEL-LPI and PMDKN prediction results for new proteins. The AUPR and AUC values in the figure represent the average AUPR and 
average AUC values predicted by PMDKN for 79 proteins, respectively. Top-10 hitrate, Top-20 hitrate, Top-50 hitrate, and Top-100 hitrate represent the mean hit 
rates of the first 10, 20, 50, and 100 candidate lncRNAs, respectively.
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showed that for the top-10 candidate lncRNAs, the hit rate 
of PMDKN algorithm could reach 42.8%, much higher than 
other method. Therefore, PMDKN can be used as an effective 
tool for lncRNA-protein interaction prediction.

The good performance of PMDKN may have the following 
reasons: First, feature extraction and network construction. We 
extract multiple features to describe lncRNA and protein in 
all directions and integrate multiple infomation to construct a 
more accurate lncRNA (protein) similarity network, effectively 
avoiding the over-fitting problem that may be caused by the 
information deviation of a single data source. Second, the 
use of neighborhood information. We modified the initial 
lncRNA-protein interaction network to overcome the network 
sparsity problem, and used the adaptive neighborhood 
completion strategy to eliminate the errors caused by the lack of 
information in the latent vectors of new lncRNAs (new protein), 
so as to ensure the predictive ability of new proteins and new 
lncRNAs. Finally, the construction of the ensemble predictive 
model. We combine the multiple sequence features of lncRNA 
(protein) and the integrated similarity networks to construct 
the predictive model, which distinguishes positive and negative 
observations by setting important levels and establishes the 
relationship between features and potential vectors through 
the projection of the features, so as to improve the accuracy of 
model prediction.
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