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A multitude of model and non-model species studies have now taken full advantage of 
powerful high-throughput genotyping advances such as SNP arrays and genotyping-by-
sequencing (GBS) technology to investigate the genetic basis of trait variation. However, 
due to incomplete genome coverage by these technologies, the identified SNPs are 
likely in linkage disequilibrium (LD) with the causal polymorphisms, rather than be causal 
themselves. In addition, researchers could benefit from annotations for the identified 
candidate SNPs and, simultaneously, for all neighboring genes in genetic linkage. In such 
case, LD extent estimation surrounding the candidate SNPs is required to determine 
the regions encompassing genes of interest. We describe here an automated pipeline, 
“LD-annot,” designed to delineate specific regions of interest for a given experiment and 
candidate polymorphisms on the basis of LD extent, and furthermore, provide annotations 
for all genes within such regions. LD-annot uses standard file formats, bioinformatics tools, 
and languages to provide identifiers, coordinates, and annotations for genes in genetic 
linkage with each candidate polymorphism. Although the focus lies upon SNP arrays and 
GBS data as they are being routinely deployed, this pipeline can be applied to a variety 
of datasets as long as genotypic data are available for a high number of polymorphisms 
and formatted into a vcf file. A checkpoint procedure in the pipeline allows to test several 
threshold values for linkage without having to rerun the entire pipeline, thus saving the user 
computational time and resources. We applied this new pipeline to four different sample 
sets: two breeding populations GBS datasets, one within-pedigree SNP set coming from 
whole genome sequencing (WGS), and a very large multi-varieties SNP dataset obtained 
from WGS, representing variable sample sizes, and numbers of polymorphisms. LD-annot 
performed within minutes, even when very high numbers of polymorphisms are investigated 
and thus will efficiently assist research efforts aimed at identifying biologically meaningful 
genetic polymorphisms underlying phenotypic variation. LD-annot tool is available under a 
GPL license from https://github.com/ArnaudDroitLab/LD-annot.

Keywords: linkage disequilibrium, candidate SNP, SNP annotation, bioinformatics tool, variant call format (VCF), 
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INTRoDUCTIoN
The progress in molecular technologies enabled the study of 
genetic variants at the genome level, in both model and non-
model species, such as Genome-Wide Association Studies 
(GWAS) identifying genetic variants likely involved in variation 
of interesting quantitative traits or in adaptation to environmental 
stress. Among those molecular techniques, SNP genotyping 
chips and genotyping-by-sequencing (GBS) approaches [also 
addressing the related reduction site-associated DNA sequencing 
(RADseq) in this paper] are often deployed to efficiently screen 
genomes at the population level and test for relationships between 
genetic polymorphisms and either quantitative characteristics or 
environmental conditions (i.e. Keller et al., 2013; Narum et al., 
2013; Sonah et al., 2015; Carter et al., 2018; Torkamaneh et al., 
2018;). GBS is based on sequencing genome subparts using 
restriction enzymes and insert size selection (Elshire et al., 2011) 
and yields thousands of genetic variants randomly distributed 
over the genome. SNP genotyping chips are based on allele-
specific hybridization and traditionally include SNPs previously 
identified and selected to be regularly distributed across the 
genome (Carvalho et al., 2007; Bai et al., 2018). Both techniques 
usually result in thousands of SNPs successfully genotyped.

Research projects based on either of these variant detection 
approaches often investigate the genomic basis of trait variations 
related to agronomic performance in cultivated plants or animals 
(Carter et al., 2018; Torkamaneh et al., 2018;), the dispersion of 
invasive species (White et al., 2013; Roe et al., 2018), or species’ 
adaptation (Hess et al., 2012; Keller et al., 2013), for instance. 
Such studies typically use regression models to select candidate 
SNPs presenting significant trait variations between distinct 
genotypic classes. However, these polymorphisms might not 
be directly responsible for phenotypic variations but in linkage 
disequilibrium (LD) with larger genomic regions encompassing 
untested genetic variants that might be truly causal for the 
studied phenotypic variation.

LD is the non-random assortment of alleles between 
neighboring loci due to the short physical distance limiting 
recombination between them during meiosis. This phenomenon 
results in a systemic association between alleles of the same 
parental origin. For biallelic loci, LD is often estimated using 
the correlation coefficient (denoted r2) between two alleles at 
two different loci (Hill and Robertson 1968). This estimate 
varies with the recombination coefficient which is a function of 
physical distance between markers (Hill and Robertson 1968). 
However, the recombination coefficient actually fluctuates along 
the genome, with regions known to present lower recombination 
coefficients than others, such as centromeric regions for instance 
(Smith et al., 2005). In addition, r2 is also impacted by inbreeding 
which results in lower genetic diversity that in turn leads to 
homozygosity hiding recombination events. Hence, r2 also varies 
between populations according to population demographic 
history (Reich et al., 2001), even within species. Similarly, the r2 
estimator presents a variability related to allele frequencies (minor 
allele frequency, MAF) (VanLiere and Rosenberg 2008) or sample 
size effect (Jorgenson and Witte 2006). Despite its limitations, 
the r2 estimate remains largely used and most interesting when 

scanning GWAS results, for instance, since the correlation 
between two SNPs is still indicative of a mathematical link (Bush 
and Moore 2012), either reflecting a true low recombination rate 
between them or not.

Candidate polymorphisms, identified from GWAS or FST-
based outlier analyses for instance, most often need to be further 
studied with additional approaches such as gene expression 
profiling among individuals with contrasting trait expression or 
genetic engineering for instance, to corroborate these variants’ 
involvement in trait variation (Ermann and Glimcher 2012). In 
these regards, annotations of genes encompassing or overlapping 
DNA segments harboring SNPs in LD with these candidate 
ones (referred as genes in genetic linkage with candidate SNPs 
in this paper) are crucial to support their biological significance 
and help prioritize subsequent investigations. Given the r2 
variability among populations and markers subsets, estimating 
an experiment-specific LD on both sides of one candidate 
SNP is an adequate procedure to find the nearby genes that 
are genetically linked to this candidate and select significant 
annotations. Even though a number of softwares and packages 
dedicated to genomic polymorphisms annotation already exist 
(Wang et al., 2010; Rope et al., 2011; Cingolani et al., 2012), 
they either only consider the sequences encompassing the 
candidate SNPs (Wang et al., 2010; Cingolani et al., 2012) or use 
LD estimates from a different population, usually a population 
of reference such HapMapII or the 1000 Genomes Project in 
Humans (Johnson et al., 2008; Machiella and Chanock 2015), 
thus leading to limited or biased results. Furthermore, candidate 
polymorphisms found lying outside gene sequence boundaries 
are often annotated using the closest gene annotation in non-
human organisms, without estimating in the specific experiment 
the genomic regions in genetic linkage with those (e.g. Stanton-
Geddes et al., 2013). Thus, we developed a new bioinformatics 
annotation tool that estimates LD in order to gather annotations 
from regions genetically linked to candidate polymorphisms, 
thus strengthening their potential and help prioritizing them for 
further analyses.

MATeRIALS AND MeThoDS

Tested Datasets
When studying relationships between genetic markers and 
quantitative traits, research efforts usually involve testing 
and genotyping (1) hundreds to thousands of outbred 
individuals from natural populations, or (2) the progeny of 
a controlled cross between two individuals differing widely 
(i.e. segregating) for the trait of interest. In the first approach, 
individuals are sampled and later phenotyped in controlled 
and uniform conditions to perform a GWAS identifying 
candidate polymorphisms. In the second approach, a progeny 
is also assessed in controlled and uniform conditions, and the 
co-segregation of alleles and trait values allows to identify 
candidate SNPs. Both approaches have different assumptions 
regarding the levels of LD; average LD is usually moderate 
to low in association tests while very high in F1 progenies 
where many candidate SNPs are found in complete or nearly 
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complete LD. Here, we tested our annotation pipeline with 
four different datasets to investigate a wide range of expected 
LD levels, originating from: (1) a domesticated animal, (2) a 
domesticated plant, and (3) a wild insect. These sets also varied 
in sampling size, numbers of tested SNPs, and candidate SNPs, 
thus further allowing to evaluate the pipeline’s performance.

Domesticated Species Datasets
We applied our tool to annotate GWAS results in Sus scrofa 
domesticus which is characterized by high LD levels due to 
hundreds of years of selection to improve performance. This 
GWAS tested GBS data for association with meat quality 
(Prunier, Droit, Robert et al. unpublished) and was based on the 
genotyping of 196 individuals coming from two different breeding 
companies selecting sires and dams after each generation to 
improve meat quality in the Duroc pig breed (Figure 1A). The 
association tests yielded 199 candidate SNPs spread over the 18 
autosomal chromosomes.

Even though the main focus of the present study is on GBS and 
SNP-array datasets, we also tested a dataset of 14,374,088 SNPs 
obtained from whole genome sequencing of the plant model 
Medicago truncatula varieties. These were investigated using 
GWAS for candidate genes involved in agronomic trait variations 
based on 226 accessions and representing as many inbred lines 
(Stanton-Geddes et al., 2013) (Figure 1B). The association study 
led to the identification of 1,537 candidate SNPs likely involved 
in variation of plant height or flowering timing, among other 
traits, and distributed over Medicago’s eight chromosomes. In 
order to run our pipeline, this publicly available dataset (www.
medicagohapmap.org) was converted into a vcf file using bash 
commands and we tested both the entire set of SNPs and a set of 

SNPs with a minor allele frequency higher than 5%, yielding a 
total of 593,614 SNPs.

Wild Species Dataset
While three previous datasets were related to organisms with 
well described genomes, we finally assessed LD-annot capability 
to annotate candidate SNPs in a non-model, namely Lymantria 
dispar spp. This moth is an invasive species in North American 
forests as their caterpillars can successfully feed on foliage of 
numerous tree species (polyphagy) and therefore can damage 
vast tree plantations and natural forests. The co-segregation 
of SNP alleles and flying capabilities was followed over four 
generations (F2–F5) in this line resulting from the mating 
between a fully flying individual and a flightless individual in this 
species complex (Figure 1C). This analysis yielded a total of 250 
SNPs possibly related to the moth’s ability to fly.

Implementation
The LD-annot pipeline efficiently integrates a public package 
as well as new bash and python scripts to import SNP-array 
data, estimate SNP-specific genomic regions genetically linked 
to candidate SNP and extract corresponding gene annotations 
(Figure 2). It can be deployed on any Unix-based (or bash 
developer mode on Windows OS) following installation steps 
described here: https://github.com/ArnaudDroitLab/LD-annot/
blob/master/README.md.

LD-annot uses the public package PLINK1.9 to calculate LD (r2) 
levels. The user must define an r2 threshold for limiting the region 
surrounding a candidate SNP in which annotations will be extracted, 
i.e. only polymorphisms linked to one candidate polymorphism with 

FIGURe 1 | Population and kinship history for the three types of datasets used as study cases. (A) the pig case in which trait-based genetic selection has been 
performed for centuries from a large ancestral population many generations ago; (B) the Medicago case in which inbred lines have been obtained from self-crossing 
of individuals originating from a very large population; (C) the Asian gypsy moth case where an introgressed progeny was obtained from mating between a flying 
individual and a non-flying individual, repeated over few generations.
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a LD value superior to this threshold will be considered to delineate 
the region of interest (Figure 2). The pipeline includes a format 
check of input files and a checkpoint procedure. The latter allows 
to restart the analysis with different thresholds for r2 for instance, 
without rerunning the format checks nor pairwise LD calculations, 
thus avoiding to run all steps and reducing the time for the analysis.

Command and Parameters
The pipeline is launched using only a single command line 
containing the parameters and paths for input files. In addition, 
LD-annot.py calls a bash script (calculLD.sh) that must be placed 
in the same folder. The command using vcf format input file is:

python3 LD-annot.py geno.vcf annot.gff3 candidate\ 
type thr output

while the command using SNP-array input file is:

python3 LD-annot.py PathToSnpFiles annot.gff3\ 
candidate type thr output SNP_Map

where “type” is the feature (mRNA, CDS, gene), “thr” is 
the threshold for r2, and “SNP_Map” is a txt file providing 

chromosome and position identifiers for each SNP included on 
the SNP-array.

Inputs
The LD-annot pipeline is based on three different inputs.

The first input contains all genotypes for the studied 
population; this file is usually in vcf format obtained from 
a variant caller [Haplotypecaller or Platypus, for instance 
(DePristo et al., 2011; Rimmer et al., 2014)] for next-generation 
genotyping such as GBS data, or a folder including all 
individuals’ genotypes in the case of SNP-array genotyping. 
In the latter case, genotyping is usually spread over txt files, 
one for each individual, which contain polymorphisms names 
and genotypes after 12 lines of comments and headers. In the 
case of GBS data, the vcf file is directly converted by PLINK1.9 
before running LD calculations. In the case of SNP-array data, 
a formatting step is performed before LD calculations using 
PLINK1.9. This bash script gathers all individuals’ genotypes 
included in the designated folder and converts this information 
into a .ped, .map, and .fam files for PLINK1.9 by making use 
of an additional input file providing the chromosome and 
position for each SNP on the SNP-array. Afterward, .ped files 
are converted to .bed files to save memory space and running 
time for both types of data, and r2 are then calculated using 
PLINK1.9 (Figure 2).

The annotation file is a text file respecting a gff-like format 
(gff, gtf, or gff3) including the chromosome number/name in 
the first column, the feature in the third column (CDS, mRNA, 
exon), the starting and ending positions in respectively the 
fourth and fifth columns, and the annotation (= attributes) in 
the last column.

Finally, the third file contains the list of candidate SNPs with 
chromosome name in the first column, position in the second 
column, and SNP_ID in the third column (not required).

Note that the chromosome identification should be consistent 
among the various files; the number may often be prefixed 
with a “chr” or not. As this is the most likely source of errors 
and incompatibility, the format checking step generates error 
messages pointing at corrupt files and probable causes.

Linkage Calculation and Annotation 
extraction
Linkage disequilibrium is estimated using the r2 correlation score 
calculated using PLINK for genotyped SNPs located on the same 
chromosome in linkage for r2 > 0.4. This low threshold is defined 
as the lowest one that a user may select. The threshold defined 
by the user is used later in the pipeline when estimating an 
average distance in linkage with candidate SNPs according to this 
threshold, and during delineation of genomic regions in linkage 
with each candidate SNP for annotations extraction.

Based on the LD calculations previously computed and the r2 
threshold set by the user, annotations from a .gff/.gff3/.gtf-type file 
are then gathered to create an annotation file for each candidate 
variant. A “.gff/.gff3/.gtf ” file usually includes annotations for 
different features (mRNA, CDS, exon, gene) which represents 
a hierarchical classification of the same genomic regions and 

FIGURe 2 | LD-annot overview. The LD-annot.py script is the master 
script that checks file format and calls a bash script for format conversion 
and PLINK LD estimation, and afterward calculates average LD and linked 
regions boundaries and gathers annotations for linked genes. At the bottom, 
an example header of the output file is presented.
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thus results in some repetition of the information. According 
to the approaches deployed to annotate the reference genome, 
the level of its completeness or the biological question asked in 
the research, one might favor one over the other features. Thus, 
LD-annot offers an option to select the feature of interest and 
avoid redundancy of the information at the various levels (i.e. 
gene, mRNA, and exon), which also make it flexible to any 
feature that may be indicated in the annotations file.

After input format checking and r2 calculations, the python 
script gathers chromosome, position, and annotation for 
the designated feature. Afterward, it makes a dictionary of 
“candidate” regions (chr, start, and end) around candidate 
SNPs by using the position of the foremost upward and 
downward SNPs in linkage with each one of those candidates 
according to r2 threshold chosen by the user. However, a 
candidate SNP might not be surrounded by other genotyped 
SNPs because of true absence of polymorphisms (possibly in 
a specific sampling set) or low quality genotyping. In such 
cases, the average distance calculated earlier in the pipeline is 
used to delineate the region of interest around such candidates 
and an “alone” flag is added to the candidate SNP name in 
the output file. It should be noted that this average is a broad 
estimate and those results should be interpreted with caution 
given the r2 variability along the genome, and the possibility 
of the non-Gaussian distribution of distances between SNPs 
in LD.

Finally, all annotated regions with the selected feature in .gff/.
gff3/.gtf file that overlap the “candidate” region are included 
into an output file that provides: chromosome, candidate SNP 
position, region start and end positions, annotation start and end 
positions, and the annotation per se. According to the number of 
annotations overlapping the candidate region, a candidate SNP 
can be found several times in the output file.

ReSULTS AND DISCUSSIoN

LD-annot Performances
We assessed the performance of our tool through the analysis 
of the four datasets previously described and covering a large 
distribution in numbers of genotyped and candidate SNPs, 
and a variety of r2 thresholds. The goal being to make this 
procedure amenable to researchers without coding skills 
nor access to high-performance infrastructures, we ran the 
pipeline using a common laptop computer with 4CPU cores 
and 8 Gbytes of RAM.

As expected, there was a significant correlation between the 
number of variants included in the analysis and the processing 
time (ANOVA, p < 2e-16; Figure 3). However, a single analysis 
never exceeded 16.1 min despite the very large SNP set (> 
14M SNPs) originating from Medicago (Table 1). In such case, 
making use of the checkpoint feature allowed to reduce the 
computational time from 16.1 min to less than 10 (Figure 3A). 
As datasets are always increasing in size with technological 
progress and the usual need to test several r2 thresholds, we 
believe the checkpoint procedure will be beneficial to the 
genomics research community.

Another factor impacting the analysis time is the size of the 
annotation file and particularly the type of feature specified by 
the user in the command line. Annotation files (.gff/.gff3/.gtf) 
typically harbor more annotation lines in the “CDS” feature than 
for “gene” or “mRNA.” As a result, the analyses were significantly 
longer when searching for “CDS” feature annotations (ANOVA, 
p = 0.0137; Figure 3B). In line with this trend, regions linked 
to candidate SNPs extended when the r2 threshold increased, 
resulting in an increasing number of annotations and time length 
for the analysis, although the difference was not significant.

FIGURe 3 | Pipeline performances according to the run number (A) and the 
type of annotated features (B). (A) LD-annot involves a checkpoint procedure 
that does not require rerunning each step when testing several LD thresholds, 
which results in shorter turnover of analysis after its first run. (B) The type of 
feature has an impact on the time for analysis since mRNA and CDS features 
are usually more complex than gene features in an annotation file. *Note that 
no CDS annotations were available for the Lymantria dispar genome.
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Average Distance
The LD-annot pipeline calculates an average distance (in bp) 
separating two SNPs in LD according to the specified r2 threshold 
across the whole dataset. This distance is later used to delineate a 
linked region around a candidate SNP (the average distance on both 
sides) when there is no surrounding genotyped SNPs. This distance is 
a function of inbreeding as illustrated by our datasets where the higher 
the original effective population size, the shorter is the distance in 
LD. Even within the pig species, the pedigree denoted Sus1 generally 
presented shorter distances than Sus2 pedigree which was developed 
from a smaller effective population of sires and dams.

This distance is also varying according to the number of 
genotyped SNPs which is related to the occurrence of rare SNPs that 
tend to present lower r2 values than more common SNPs (Pritchard 
and Przeworski 2001; Pe’er et al., 2006). As a result, removing SNPs 
with minor allele frequency <0.05 resulted in a sizable increase in 
distances (up to 18-fold) when testing the Medicago SNP set.

When genotyping a sample set using GBS approach, the 
SNP distribution over the genome is not controlled and the 
proportion of the genome interrogated by the genotyping is 
often an important question for researchers. The average distance 
provided by the tool can further be used to broadly estimate the 
genome coverage given the r2 thresholds. For instance, using 
54,712 SNPs in the Sus1 pedigree allowed to investigate the entire 
2.4Gb Sus scrofa genome with r2 > 0.7, but 82% and only 40% of 
this genome with r2 > 0.8 and 0.9, respectively. The same SNP set 
in the Sus2 pedigree allowed to investigate 100, 87, and 38% of the 
genome with r2 > 0.7, 0.8, and 0.9, respectively. However, these 
coverage values should be seen as broad estimates and, therefore, 
interpreted with caution given r2 variability across the genome.

Why Not Consider only the Closest Gene?
Selecting annotations associated with a candidate polymorphism 
is usually accomplished using the proximity criteria, in other 
words, the gene including the SNP in its sequence or the closest 
gene for non-coding SNP is often seen as the relevant one (e.g. 
Stanton-Geddes et al., 2013). However, other remote genes might 
be in genetic linkage with the candidate SNP while not presenting 
SNP in the studied SNP set, which does not allow to test their 
association per se. Even when presenting SNPs, these genes may 
have been missed because of too many missing genotypes or too 

low minor allele frequency for a specific locus which, in turn, did 
not permit to significantly detect them as candidate SNPs. For 
instance, when using LD-annot in Sus scrofa, we found a total 
of 334 genes in genetic linkage with only 176 of the candidate 
SNPs while the remaining candidate SNPs were not linked to any 
genes using an r2 threshold >0.7. We even observed six cases of 
annotations for distant genes (second or third order of the closest 
genes and still in LD with the candidate SNP using r2 > 0.9) that 
were in fact more informative with regards to the trait of interest 
than the closest one (Figure 4).

Contrastingly, the closest gene might be far away and not 
genetically linked with the candidate SNP which could lead to 
biased interpretation, particularly when performing enrichment 

TABLe 1 | LD-annot time analysis according to the sizes of SNP sets and candidate SNP sets.

Dataset* Total SNPs set size Candidate SNP number Time (s) r2 threshold Average distance (bp)†

Sus1 54,712 199 18.3 0.7 50494
Sus1 54,712 199 19.3 0.9 18000
Sus2 54,712 199 20.0 0.7 53614
Sus2 54,712 199 21.0 0.9 17430
Lymantria 321,868 250 13.5 0.7 6191
Lymantria 321,868 250 14.0 0.9 4620
Medicago 593,614 1,536 109.7 0.7 706
Medicago 593,614 1,536 110.6 0.9 601
Medic-large 14,374,089 1,536 581.6 0.7 44
Medic-large 14,374,089 1,536 692.5 0.9 33

*Sus1 and Sus2: the two pig genotyping-by-sequencing datasets; Lymantria: the gypsy moth SNP set; Medicago: the public Medicago dataset after filtering for low 
minor allele frequencies; Medic-large: the entire SNP set for Medicago (Stanton-Geddes et al., 2013).
†Average distance between a pair of SNPs in linkage disequilibrium according to the threshold for r2 estimated from all SNPs in the dataset.

FIGURe 4 | Illustration of one candidate SNP likely involved in pig meat quality 
that is genetically linked to four different genes; note that the most biologically 
meaningful is not the closest one but of the third order. The candidate SNP is at 
the position “0” upon the chromosome and marked with an asterisk; –log10(p-val) 
is the p-value for the association test between allelic variation and meat quality; 
r2 is the correlation coefficient calculated in the dataset (red line) using PLINK and 
the specified threshold for linkage was 0.7 (blue line).
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analyses. In Medicago, over the 1,536 candidate SNPs that were 
annotated using the closest gene (Stanton-Geddes et al., 2013), only 
541 SNPs were actually genetically linked with their target gene 
(r2 > 0.7). On the other hand, 40 candidate SNPs were genetically 
linked with two genes, and 62 annotated genes were linked to more 
than one candidate SNP (Supplementary Table 1), hence showing 
the importance of taking into account the LD when looking at 
annotations supporting the importance of a candidate SNP.

In the case of progenies study (gypsy moth case), the LD level 
is very high which resulted in blocks of several candidate SNPs 
genetically linked together, thus defining large regions possibly 
encompassing several genes. However, only 100 SNPs were in 
linkage with 64 genes (r2 > 0.9) among the 250 candidate SNPs 
spread over 103 contigs. Despite the high level of LD and that all 
scaffolds harboring a candidate SNP were also encompassing one 
gene at the very least (2.39 genes in average), some candidate SNPs 
were not found in genetically linked with any gene. The distribution 
of recombination rates was not continuous as expected given the 
low number of individuals and generations, and LD breakpoints 
were observed along scaffolds. Thus, a SNP might be relatively 
close to a gene but still not representing it. Altogether, these 
results illustrate the need to evaluate the experiment-specific LD 
surrounding candidate SNPs when employing genes to annotate 
and prioritize these for further investigations, and understand the 
mechanisms underlying their association with trait variation.

CoNCLUSIoN
The LD-annot tool yields supporting lines of evidence to 
help identify biologically meaningful genetic polymorphisms 
underlying phenotypic variation. It can be used with any sort of 
annotations and polymorphism data as long as the input format 
matches either SNP-chips or vcf files. One can obtain annotations 
for repeats or specific methylation sites, for instance, and use 
this tool to identify those features that are statistically linked to 
candidate SNPs for a given sampling.
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