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Studying the impact of genetic variation on gene regulatory networks is essential to 
understand the biological mechanisms by which genetic variation causes variation in 
phenotypes. Bayesian networks provide an elegant statistical approach for multi-trait 
genetic mapping and modelling causal trait relationships. However, inferring Bayesian 
gene networks from high-dimensional genetics and genomics data is challenging, 
because the number of possible networks scales super-exponentially with the number 
of nodes, and the computational cost of conventional Bayesian network inference 
methods quickly becomes prohibitive. We propose an alternative method to infer high-
quality Bayesian gene networks that easily scales to thousands of genes. Our method 
first reconstructs a node ordering by conducting pairwise causal inference tests between 
genes, which then allows to infer a Bayesian network via a series of independent variable 
selection problems, one for each gene. We demonstrate using simulated and real systems 
genetics data that this results in a Bayesian network with equal, and sometimes better, 
likelihood than the conventional methods, while having a significantly higher overlap with 
groundtruth networks and being orders of magnitude faster. Moreover our method allows 
for a unified false discovery rate control across genes and individual edges, and thus a 
rigorous and easily interpretable way for tuning the sparsity level of the inferred network. 
Bayesian network inference using pairwise node ordering is a highly efficient approach for 
reconstructing gene regulatory networks when prior information for the inclusion of edges 
exists or can be inferred from the available data.

Keywords: systems genetics, network inference, Bayesian network, expression quantitative trait loci analysis, 
gene expression

INTRODUCTION
Complex traits and diseases are driven by large numbers of genetic variants, mainly located in 
non-coding, regulatory DNA regions, affecting the status of gene regulatory networks (Rockman, 
2008; Schadt, 2009; Civelek and Lusis, 2014; Albert and Kruglyak, 2015; Boyle et al., 2017). While 
important progress has been made in the experimental mapping of protein–protein and protein–
DNA interactions (Walhout, 2006; Gerstein et al., 2012; Luck et al., 2017), the context-specific and 
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dynamic nature of these interactions means that comprehensive, 
experimentally validated, cell-type or tissue-specific gene 
networks are not readily available for human or animal model 
systems. Furthermore, knowledge of physical protein-DNA 
interactions does not always allow to predict functional effects 
on target gene expression (Cusanovich et al., 2014). Hence, 
statistical and computational methods are essential to reconstruct 
context-specific, causal, trait-associated networks by integrating 
genotype and gene, protein, and/or metabolite expression data 
from a large number of individuals segregating for the traits of 
interest (Rockman, 2008; Schadt, 2009; Civelek and Lusis, 2014).

Gene network inference is a deeply studied problem in 
computational biology (Friedman, 2004; Albert, 2007; Bansal 
et al., 2007; Penfold and Wild, 2011; Emmert-Streib et al., 
2012; Marbach et al., 2012; Äijö and Bonneau, 2016; Kiani 
et al., 2016). Among the many successful methods that have 
been devised, Bayesian networks are a powerful approach 
for modelling causal relationships and incorporating prior 
knowledge (Friedman et al., 2000; Friedman, 2004; Werhli 
and Husmeier, 2007; Mukherjee and Speed, 2008; Koller 
and Friedman, 2009; Pearl, 2009). In the context of complex 
trait genetics, the availability of genotype data leads to an 
especially significant prior on the direction of causality 
between correlated traits, which is based on the principle 
that genetic variation causes variation in gene expression or 
disease traits, but not vice versa (Schadt et al., 2005). Hence, 
Bayesian networks have become particularly popular for 
modelling conditional independence and causal dependence 
relationships among heritable traits, including molecular 
abundance traits (Zhu et al., 2004; Zhu et al., 2008; Neto 
et  al., 2010; Hageman et al., 2011; Scutari et al., 2014). Using 
expression quantitative trait loci (eQTL) and gene expression 
data as input, Bayesian networks have been used for instance 
to identify key driver genes of type 1 diabetes (Schadt et al., 
2008), Alzheimer’s disease (Zhang et al., 2013; Beckmann 
et al., 2018), temporal lobe epilepsy (Johnson et al., 2015), 
and cardiovascular disease (Talukdar et al., 2016). However, 
Bayesian network inference is computationally demanding 
and limited to relatively small-scale systems. In this paper, 
we address the question whether Bayesian network inference 
from eQTL and gene expression data is feasible on a truely 
transcriptome-wide scale without sacrificing performance in 
terms of model fit and overlap with known interactions.

A Bayesian gene network consists of a directed graph without 
cycles, which connects regulatory genes to their targets, and 
which encodes conditional independence between genes. The 
structure of a Bayesian network is usually inferred from the 
data using score-based or constraint-based approaches (Koller 
and Friedman, 2009). Score-based approaches maximize 
the likelihood of the model, or sample from the posterior 
distribution using Markov chain Monte Carlo (MCMC), using 
edge additions, deletions or inversions to search the space of 
network structures. Score-based methods have been shown to 
perform well using simulated genetics and genomics data (Zhu 
et al., 2007; Tasaki et al., 2015). Constraint-based approaches 
first learn the undirected skeleton of the network using repeated 
conditional independence tests, and then assign edge directions 

by resolving directional constraints (v-structures and acyclicity) 
on the skeleton. They have been used for instance in the joint 
genetic mapping of multiple complex traits (Scutari et al., 2014). 
However, the computational cost of both approaches is high. 
Because the number of possible graphs scales super-exponentially 
with the number of nodes, Bayesian gene network inference with 
conventional methods is feasible for systems of at most a few 
hundred genes or traits, and usually requires a hard limit on the 
number of regulators a gene can have as well as a preliminary 
dimension reduction step, such as filtering or clustering genes 
based on their expression profiles (Zhu et al., 2008; Zhang et al., 
2013; Talukdar et al., 2016; Beckmann et al., 2018).

Modern sequencing technologies however generate 
transcript abundance data for ten-thousands of coding and 
non-coding genes, and large sample sizes mean that ever more 
of those are detected as variable across individuals (Lappalainen 
et al., 2013; Franzén et al., 2016; GTEx Consortium, 2017). 
Moreover, to explain why genetic associations are spread 
across most of the genome, a recently proposed “omnigenic” 
model of complex traits posits that gene regulatory networks 
are sufficiently interconnected such that all genes expressed in 
a disease or trait-relevant cell or tissue type affect the functions 
of core trait-related genes (Boyle et al., 2017). The limitations 
of current Bayesian gene network inference methods mean 
that this model can be neither tested nor accomodated. 
Existing Bayesian network inference methods on categorical 
variables, e.g., Banjo (Smith et al., 2006), lack the resolution 
and directionality for transcriptomic datasets. Hence, there is 
a clear and unmet need to infer Bayesian networks from very 
high-dimensional systems genetics data.

Here, we propose a novel method to infer high-quality causal 
gene networks that scales easily to ten-thousands of genes. 
Our method is based on the fact that if an ordering of nodes 
is given, such that the parents of any node must be a subset 
of the predecessors of that node in the given ordering, then 
Bayesian network inference reduces to a series of independent 
variable or feature selection problems, one for each node (Koller 
and Friedman, 2009; Shojaie and Michailidis, 2010). While 
reconstructing a node ordering is challenging in most application 
domains, pairwise comparisons between nodes can sometimes 
be obtained. If prior information is available for the likely 
inclusion of every edge, our method ranks edges according to the 
strength of their prior evidence (e.g., p-value) and incrementally 
assembles them in a directed acyclic graph (DAG) which defines 
a node ordering, by skipping edges that would introduce a 
cycle. Prior pairwise knowledge in systems biology includes 
the existence of TF binding motifs (Bussemaker et al., 2007), or 
known protein-DNA and protein-protein interactions (Ernst 
et al., 2008; Greenfield et al., 2013), and those have been used 
together with score-based MCMC methods in Bayesian network 
inference previously (Werhli and Husmeier, 2007; Mukherjee 
and Speed, 2008).

In systems genetics, where genotype and gene expression data 
are available for the same samples, instead of using external prior 
interaction data, pairwise causal inference methods can be used 
to estimate the likelihood of a causal interaction between every 
pair of genes (Schadt et al., 2005; Chen et al., 2007; Millstein 
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et al., 2009; Li et al., 2010; Neto et al., 2013; Millstein et al., 2016; 
Wang and Michoel, 2017a). To accomodate the fact that the 
same gene expression data is used to derive the node ordering 
and subsequent Bayesian network inference, we propose a novel 
generative model for genotype and gene expression data, given 
the structure of a gene regulatory graph, whose log-likelihood 
decomposes as a sum of the standard log-likelihood for 
observing the expression data and a term involving the pairwise 
causal inference results. Our method can then be interpreted 
as a greedy optimization of the posterior log-likelihood of this 
generative model.

MeTHODS

an algorithm for the Inference of Gene 
Regulatory Networks From Systems 
Genetics Data
To allow the inference of gene regulatory networks from high-
dimensional systems genetics data, we developed a method that 
exploits recent algorithmic developments for highly efficient 
mapping of eQTL and pairwise causal interactions. A general 
overview of the method is given here, with concrete procedures 
for every step detailed in subsequent sections below.

A. EQTL Mapping
When genome-wide genotype and gene expression data are 
sampled from the same unrelated individuals, fast matrix-
multiplication based methods allow for the efficient identification 
of statistically significant eQTL associations (Shabalin, 2012; 
Qi et al., 2014; Ongen et al., 2015; Delaneau et al., 2017). Our 
method takes as input a list of genes, and for every gene its most 
strongly associated eQTL (Figure 1A). Typically only cis-acting 
eQTLs (i.e., genetic variants located near the gene of interest) 
are considered for this step, but this is not a formal requirement. 
Multiple genes can have the same associated eQTL, and genes 
without significant eQTL can be included as well, although these 
will only be allowed to have incoming edges in the resultant 
Bayesian networks.

B. Pairwise Causal Ordering
Given a set of genes and their respective eQTLs, pairwise causal 
interactions between all genes are inferred using the eQTLs 
as instrumental variables (Figure 1B). While there is a great 
amount of literature on this subject (cf. Introduction), only 
two stand-alone software packages are readily available: CIT 
(Millstein et al., 2016) and Findr (Wang and Michoel, 2017a). 
In our experience, only Findr is sufficiently efficient to test for 
causality between millions of gene pairs.

C. Genetic Node Ordering
In Bayesian Network Model for Systems Genetics Data, we 
introduce a generative probabilistic model for jointly observing 
eQTL genotypes and gene expression levels given the structure 
of a gene regulatory network. In this model, the posterior log-
likelihood of the network given the data decomposes as a sum of 
two terms, one measuring the fit of the undirected network to the 

correlation structure of the gene expression data, and the other 
measuring the fit of the edge directions to the pairwise causal 
interactions inferred using the eQTLs as instrumental variables. 
The latter is optimized by a maximum-weight DAG, which 
induces a topological node ordering, which we term “genetic node 
ordering” in reference to the use of individual-level genotype data 
to orient pairs of gene expression traits (Figure 1C).

D. Bayesian Network Inference
The genetic node ordering fixes the directions of the Bayesian 
network edges. Variable selection methods are then used to 
determine the optimal sparse representation of the inverse 
covariance matrix of the gene expression data by a subgraph of the 
maximum-weight DAG (Figure 1D). In this paper, we consider 
two approaches: (i) a truncation of the pairwise interaction scores 
retaining only the most confident (highest weight) edges in the 
maximum-weight DAG, and (ii) a multi-variate, L1-penalized 
lasso regression (Tibshirani, 1996; Wang and Michoel, 2017b) to 
select upstream regulators for every gene. Given a sparse DAG, 
maximum-likelihood linear regression is used to determine the 
input functions and whether an edge is activating or repressing.

Bayesian Network Model With Prior  
edge Information
A Bayesian network with n nodes (random variables) is defined 
by a DAG G such that the joint distribution of the variables 
decomposes as

 p x x G p x x in j i j
j

n

1
1

,..., | | : ,( ) = ∈{ }( )
=

∏ Pa  (1)

where Paj denotes the set of parent nodes of node j in the graph 
G. We only consider linear Gaussian networks (Koller and 
Friedman, 2009), where the conditional distributions are given 
by normal distributions whose means depend linearly on the 
parent values (see Supplementary Information).

The likelihood of observing a data matrix X∈ℝn×m with 
expression levels of n genes in m independent samples given a 
DAG G is computed as

 p G p x x ijk ik j
j

n

k

m

X | | : .( ) = ∈{ }( )
==

∏∏ Pa
11

 (2)

Using Bayes’ theorem we can then write the likelihood of 
observing G given the data X, upto a normalization constant, as

 
P G p G P G| | ,X X( ) ( ) ( )∝

 

where P(G) is the prior probability of observing G. Note that we 
use a lower-case ‘P’ to denote probability density functions and 
upper-case ‘P’ to denote discrete probability distributions.

Our method is applicable if pairwise prior information is 
available, i.e., for prior distributions satisfying
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with fij a set of non-negative weights that are monotonously 
increasing in our prior belief that there exists a directed edge from 
node i to node j (e.g. fij∝−log pij, where pij is a p-value). Note that 
setting fij = 0 excludes the edge (i,j) from being present in G.

Bayesian Network Model for Systems 
Genetics Data
When genotype and gene expression data are available for the 
same samples, instrumental variable methods can be used to infer 
the likelihood of a causal interaction between every pair of genes 
(Schadt et al., 2005; Chen et al., 2007; Millstein et al., 2009; Li et al., 
2010; Neto et al., 2013; Millstein et al., 2016; Wang and Michoel, 
2017a). Previously, such pairwise probabilities have been used as 
priors in conventional score-based Bayesian network inference 
(Zhu et al., 2004; Zhu et al., 2007), but this is unsatisfactory, 
because a prior, by definition, should not be inferred from the 
same expression data that is used to learn the model. Other 
methods have addressed this by augmenting the gene network 
model with genotypic variables (Neto et al., 2010; Hageman et 
al., 2011), but this increases the size and complexity of the model 
even further. Here we introduce a model to use pairwise causal 
inference that does not suffer from these limitations.

Let G and X again be a DAG and a matrix of gene expression 
data for n genes, respectively, and let E∈ℝn×m be a matrix of 
genotype data for the same samples. For simplicity we assume 
that each gene has one associated genotypic variable (e.g., its 
most significant cis-eQTL), but this can be extended easily to 
having more than one eQTL per gene or to some genes having 
no eQTLs. Using the rules of conditional probability, the joint 
probability (density) of observing X and E given G can be written, 
upto a normalization constant, as

 p G P G p GX E E X X, , .| | |( ) ( ) ( )∝  (3)

The distribution p(X|G) is obtained from the standard 
Bayesian network equations (eq. (2)), and we define the 
conditional probability of observing E given X and G as

 P G P L G G E X Xi i j i i j
ij j

E X| | , , ,,( ) ∝ → →( )
∈

∏∏
Pa

 (4)

where Ei, Xi ∈ℝm are the ith rows of E and X, respectively. 
P(Li→Gi→Gj|Ei,Xi,Xj) is the probability of a causal interaction 
from gene Gi to Gj inferred using Gi’s eQTL Li as a causal anchor, 
and can be computed with pairwise causal inference methods 
(Millstein et al., 2016; Wang and Michoel, 2017a). In other words, 
conditional on a gene-to-gene DAG G and a gene expression 
data matrix, our model assumes that it is more likely to observe 
genotype data that would lead to causal inferences consistent 
with G than data that would lead to inconsistent inferences. 

Other variations on this model can be considered as well, for 
instance one can include a penalty for interactions that are not 
present in the graph, as long as the final model can be expressed 
in the form

 
P G eg

ij

ij

j

E X| ,,( ) ∝
∈

∏∏
Pa  (5)

with gij monotonously increasing in the likelihood of a causal 
inference Li→Gi→Gj.

Combining eqs. (3) and (5) with Bayes’ theorem and a uniform 
prior P(G) = const, leads to an expression of the posterior log-
likelihood that is formally identical to the model with prior edge 
information,

 log | , log ( | ) .P G p G gij
ij j

X E X( ) = + +
∈
∑∑ const
Pa

 (6)

As before, if gij = 0, the edge (i,j) is excluded from being part 
of G; this would happen for instance if gene i has no associated 
genotypic variables and consequently zero probability of being 
causal for any other genes given the available data. Naturally, 
informative pairwise graph priors of the form P(G) = ΣjΣi∈Paj fij, can 
still be added to the model, when such information is available.

Bayesian Network Parameter Inference
Given a DAG G, the maximum-likelihood parameters of 
the conditional distributions [eq. (1)], in the case of linear 
Gaussian networks, are obtained by linear regression of a 
gene on its parents’ expression profiles (see Supplementary 
Information). For a specific DAG, we will use the term 
“Bayesian network” to refer to both the DAG itself as well 
as the probability distribution induced by the DAG with its 
maximum-likelihood parameters.

Reconstruction of the Node Ordering
Without further sparsity constraints in eq. (6), and again 
assuming for simplicity that each gene has exactly one eQTL, 
the log-likelihood is maximized by a DAG with n(n−1)/2 edges. 
Such a DAG G defines a node ordering ≺ where i≺j⇔i∈Paj. 
Standard results in Bayesian network theory show that for a 
linear Gaussian network, the likelihood function (2) is invariant 
under arbitrary changes of the node ordering (see (Koller and 
Friedman, 2009) and Supplementary Information). Hence to 
maximize eq. (6) we need to find the node ordering or DAG 
which maximizes the term ΣjΣi∈Pajgij. Finding the maximum-
weight DAG is an NP-hard problem with no known polynomial 
approximation algorithms with a strong guaranteed error 
bound (Korte and Hausmann, 1978; Hassin and Rubinstein, 
1994). We therefore employed a greedy algorithm, where given 
n genes and the log-likelihood gij of regulation between every 
pair of them, we first rank the regulations according to their 
likelihood. The regulations are then added to an empty network 
one at a time starting from the most probable one, but avoiding 
those that would create a cycle, until a maximum-weight DAG 
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with n(n−1)/2 edges is obtained. Other edges are assigned 
probability 0 to indicate exclusion. The heuristic maximum-
weight DAG reconstruction was implemented in Findr (Wang 
and Michoel, 2017a) as the command netr_one_greedy, with 
the vertex-guided algorithm for cycle detection (Haeupler et 
al., 2012).

Causal Inference of Pairwise Gene 
Regulations
We used Findr 1.0.6 (pij_gassist function) (Wang and Michoel, 
2017a) to perform causal inference of gene regulatory interactions 
based on gene expression and genotype variation data. For every 
gene, its strongest cis-eQTL was used as a causal anchor to infer 
the probability of regulation between that gene and every other 
gene. Findr outputs posterior probabilities Pij (i.e., one minus 
local FDR), which served directly as weights in model (6), i.e., 
we set gij = logPij. To verify the contribution from the inferred 
pairwise regulations, we also generated random pairwise 
probability matrices which were treated in the same way as the 
informative ones in the downstream analyses.

Findr and Random Bayesian Networks 
From Node Orderings
The node ordering reconstruction removes less probable, cyclic 
edges, and results in a (heuristic) maximum-weight DAG G 
with edge weights Pij = egij. We term these weighted DAGs as 
findr or random Bayesian networks, depending on the pairwise 
information used. A significance threshold can be applied on 
the continuous networks, to convert them to binary Bayesian 
networks at any desired sparsity level and thereby perform 
variable selection for the parents of every gene.

lasso-Findr and lasso-Random Bayesian 
Networks Using Penalized Regression on 
Ordered Nodes
As a second approach to perform variable selection in the 
maximum-weight DAGs, we performed hypothesis testing for 
every gene on whether each of its predecessors (in the findr or 
random Bayesian network) is a regulator, using L1-penalized 
lasso regression (Tibshirani, 1996) with the lassopv package 
(Wang and Michoel, 2017b) (see Supplementary Information). 
We calculated for every regulator the p-value of the critical 
regularization strength when the regulator first becomes active in 
the lasso path. This again forms a continuous Bayesian network 
in which smaller p-values indicate stronger significance. These 
Bayesian networks were termed the lasso-findr and lasso-random 
Bayesian networks.

Score-Based Bnlearn-Hc and  
Constraint-Based Bnlearn-Fi Bayesian 
Networks From Package Bnlearn
For comparison with score-based Bayesian network inference 
methods, we applied the hc function of the R package bnlearn 

(Scutari, 2010), using the Akaike information criterion (AIC) 
penalty to enforce sparsity. This algorithm starts from a random 
Bayesian network and iteratively performs greedy revisions 
on the network to reach a local optimum of the penalized 
likelihood function. Since the log-likelihood is equivalent 
to minus the average (over nodes) log unexplained variance 
(see Supplementary Information), which diverges when 
the number of regulators exceeds the number of samples, we 
enforced the number of regulators for every gene to be smaller 
than 80% of the number of samples. For each AIC penalty, one 
hundred random restarts were carried out and only the network 
with highest likelihood score was selected for downstream 
analyses. These Bayesian networks were termed the bnlearn-hc 
Bayesian networks.

For comparison with constraint-based Bayesian network 
inference methods [e.g., (Kalish and Buhlmann, 2007)], we 
applied the fast.iamb function of the R package bnlearn (Scutari, 
2010), using nominal type I error rate. These Bayesian networks 
were termed the bnlearn-fi Bayesian networks.

To account for the role and information of cis-eQTLs on 
gene expression, we also included the strongest cis-eQTL of 
every gene in the bnlearn-based network reconstructions, for 
an approach similar to (Neto et al., 2010; Hageman et al., 2011; 
Tasaki et al., 2015). Cis-eQTLs were only allowed to have out-
going edges, using the blacklist function in bnlearn. We then 
removed cis-eQTL nodes from the reconstructed networks, 
resulting in Bayesian gene networks termed bnlearn-hc-g and 
bnlearn-fi-g respectively.

evaluation of False Discovery Control in 
Network Inference
Scoring metrics are comparable within each hypothesis test, but 
not neccesarily so between different hypothesis tests. Unlike 
p-values, the use of arbitray scores in network inference may 
lead to inconsistent false positive rates of candidate regulators 
among different target genes, which prevents consistent 
network-wide false discovery control (FDC) (Wang and 
Michoel, 2017b). However, the network-wide FDC consistency 
can be evaluated with the linear relation between the numbers 
of false positive regulators and candidate regulators for each 
gene. Violation of the linearity disproves the score for FDC in 
network inference. Due to the (in-degree) sparsity of biological 
networks, we discarded the top 5% of predictions to remove 
true positives, after which the FDC consistency was empirically 
evaluated with the linear relation between the numbers of false 
positive and candidate regulators. See (Wang and Michoel, 
2017b) for method details.

Precision-Recall Curves and Points
We compared reconstructed Bayesian networks with gold 
standards using precision-recall (PR) curves and points, for 
continuous and binary networks respectively. For Geuvadis 
datasets, we only included regulator and target genes that 
are present in both the transcriptomic dataset and the  
gold standard.
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assessment of Predictive Power for 
Bayesian Networks
To assess the predictive power of different Bayesian network 
inference methods, we used five-fold cross-validation to compute 
the training and testing errors from each method, in terms of 
the root mean squared error (rmse) and mean log squared 
error (mlse) across all genes in all testing data (Supplementary 
Information, Algorithm S1). For continuous Bayesian networks 
from non-bnlearn methods, we applied different significance 
thresholds to obtain multiple binary Bayesian networks that form 
a curve of prediction errors.

Data and Software
We used the following datasets to infer and evaluate Bayesian 
gene networks:

• The DREAM 5 Systems Genetics challenge A (DREAM) 
provided a unique testbed for network inference methods that 
utilize genetic variations in a population (https://www.synapse.
org/\#!Synapse:syn2820440/wiki/). The DREAM challenge 
included 15 simulated datasets of expression levels of 1000 genes 
and their best eQTL variations. To match the high-dimensional 
property of real datasets where the number of genes exceeds the 
number of individuals, we analyzed datasets 1, 3, and 5 with 100 
individuals each. Around 25% of the genes within each dataset 
had a cis-eQTL, defined in DREAM as directly affecting the 
expression level of the corresponding gene. Since the identity 
of cis-eQTLs is not revealed, we used kruX (Qi et al., 2014) to 
identify them, allowing for one false discovery per dataset. The 
DREAM challenge further provides the groundtruth network for 
each dataset, varying from around 1,000 to 5,000 interactions.

• The Geuvadis consortium is a population study providing 
RNA sequencing and genotype data of lymphoblastoid cell 
lines in 465 individuals. We obtained gene expression levels 
and genotype information, as well as the eQTL mapping 
from the original study (Lappalainen et al., 2013). We 
limited our analysis to 360 European individuals, and after 
quality control, a total of 3172 genes with significant cis-
eQTLs remained. To validate the inferred gene regulatory 
networks from the Geuvadis dataset, we obtained three 
groundtruth networks: (Rockman, 2008) differential 
expression data from siRNA silencing experiments of 
transcription-associated factors (TFs) in a lymphoblastoid 
cell line (GM12878) (Cusanovich et al., 2014); (Schadt, 
2009) DNA-binding information of TFs in the same cell 
line (Cusanovich et al., 2014); (Civelek and Lusis, 2014) the 
filtered proximal TF-target network from (Gerstein et al., 
2012). The Geuvadis dataset overlapped with 6,790 target 
genes, and 6 siRNA-targeted TFs and 20 DNA-binding TFs 
in groundtruth 1 and 2, respectively, and with 7,000 target 
genes and 14 TFs in groundtruth 3. Processed Geuvadis data 
and groundtruth networks are available at https://github.
com/lingfeiwang/findr-data-geuvadis

We preprocessed all expression data by converting them 
to a standard normal distribution separately for each gene, as 
explained in (Wang and Michoel, 2017a).

Software to reproduce the results from this study is available 
at the following URLs:
• Findr: https://github.com/lingfeiwang/findr.
• lassopv: https://github.com/lingfeiwang/lassopv.

ReSUlTS

Genetic Node Ordering Permits  
High-Dimensional Bayesian Network 
Inference
We developed a method for Bayesian network inference from 
high-dimensional systems genetics data which reconstructs a 
maximum-weight DAG from the confidence scores of pairwise 
causal inferences between gene expression traits using eQTLs as 
causal anchors, and which uses the node ordering induced by 
this DAG (termed “genetic node ordering” in reference to the 
use of genotype data to orient network edges) to decompose the 
Bayesian network inference task into a series of independent 
variable selection problems (Methods, An Algorithm for the 
Inference of Gene Regulatory Networks From Systems Genetics 
Data, Figure 1). Using an efficient implementation for the 
causal inference step (Wang and Michoel, 2017a), this approach 
allows to reconstruct Bayesian networks with thousands to 
ten-thousands of nodes. Our method is based on score-based 
Bayesian network inference methods for systems with pre-
defined node orderings (Koller and Friedman, 2009; Shojaie and 
Michailidis, 2010), but differs in that the ordering is inferred from 
the same expression data, augmented with matched genotype 
data from the same samples, that is used for the subsequent 
Bayesian network log-likelihood maximization, using a single 
generative model (Methods, Bayesian Network Model for Systems 
Genetics Data), rather than relying on external prior information 
to determine the node ordering. Its computational efficiency is 
due to restricting the graph structure search space to Bayesian 
gene networks compatible with this inferred node ordering. 
This differs substantially from conventional score-based and 
constraint-based methods, including those that use genotype 
and gene expression data (Neto et al., 2010; Hageman et al., 2011; 
Tasaki et al., 2015), where the search space can only be reduced 
by limiting the possible number of parents for each gene to an 
artificially small number (Koller and Friedman, 2009). For clarity, 
a comparison of the main characteristics of the Bayesian network 
inference approaches considered in this paper is included in 
Supplementary Table S1.

lasso-Findr Bayesian Networks Correctly 
Control False Discoveries
We inferred findr and lasso-findr Bayesian networks for the 
DREAM datasets, using Findr and lassopv respectively (Methods). 
The Findr method predicts targets for each regulator using a local 
FDR score (Storey and Tibshirani, 2003) which allows consistent, 
network-wide FDC (Chen et al., 2007; Wang and Michoel, 2017a). 
However, the enforcement of a gene ordering/Bayesian network 
partly broke the FDC, as the linearity between the numbers of 
false positive (i.e., significant here) and candidate regulators 
broke down at large candidate regulator counts (Figure 2A, 
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Methods). This effect is confirmed on the larger Geuvadis dataset 
in Results on the Geuvadis Dataset Reaffirm Conclusions From 
Simulated Data. By performing an extra lasso regression on top 
of the acyclic findr network, proper FDC was restored in terms 
of the linear relation in the lasso-findr Bayesian network (Figure 
2B, Supplementary Figure S1).

In contrast, score-based bnlearn-hc Bayesian networks 
(Methods), inferred from multiple DREAM datasets and for a 
spectrum of network sparsities (AIC penalty strengths from 
8 to 12 in steps of 0.5), displayed a highly skewed in-degree 
distribution, with most genes having few regulators, but several 
with near 80 regulators each, i.e., the maximum allowed (Figure 
2C, Supplementary Figure S2). This is in conflict with the 
known in-degree sparsity of gene regulation networks, which is 
required for its modularity, indicating that score-based Bayesian 
networks lack a unified FDR control, i.e., that each gene retained 
incoming interactions at different FDR levels. We believe this is 
due to the log-likelihood score function employed by bnlearn-hc. 

Since the log-likelihood corresponds to the average logarithm of 
the unexplained variance, this score intrinsically tends to focus 
on the explanation of variances from a few variables/genes, 
especially in high-dimensional settings where this can lead to 
arbitrarily large score values (see Supplementary Information). 
Using the total proportion of explained variance as the score may 
spread regulations over more target genes, but this score is not 
implemented in bnlearn.

Constraint-based bnlearn-fi Bayesian networks (Methods) did 
not allow for unbiased FDC either, as they do not have a fully 
adjustable sparsity level. We varied its “nominal type I error rate” 
from 0.001 to 0.2, but the number of significant interactions varied 
very little on DREAM dataset 1 (Supplementary Figure S3).

Incorporating genotypic information in score-based 
(bnlearn-hc-g) or constraint-based (bnlearn-fi-g) Bayesian 
networks did not resolve these issues, as the problems of lacking 
FDC and oversparsity persisted (Supplementary Figure S4, 
Supplementary Figure S5).

FIGURe 1 | Schematic overview of the method. (a) For each gene Gi, the cis-eQTL Li whose genotype explains most of the variation in Gi expression is calculated; 
shown on the left are typical eQTL associations for three genes (colored blue, green, and red) where each box shows the distribution of expression values for 
samples having a particular genotype for that gene’s eQTL. (B) Pairwise causal inference is carried out which considers in turn each gene Gi and its eQTL Li to 
calculate the likelihood of this gene being causal for all others; shown on the left is a typical example where an eQTL Li is associated with expression of Gi (red) and 
with expression of a correlated gene Gj (blue), but not with expression of Gj adjusted for Gi (green), resulting in a high likelihood score for the causal ordering Gi→Gj. 
(C) A maximum-weight DAG having the genes as its nodes is derived from the pairwise causal interactions, which induces a “genetic” node ordering. (D) Variable 
selection is used to determine a sparse Bayesian gene network, which must be a sub-graph of the maximum-weight graph (red edges, Bayesian network; gray 
edges, causal orderings deemed not significant or indirect by the variable selection procedure); the signs of the maximum-likelihood linear regression coefficients 
determine whether an edge is activating (arrows) or repressing (blunt tips).

FIGURe 2 | False discovery controls of different Bayesian networks. (a, B) The linearity test of findr (a) and lasso-findr (B) Bayesian networks at 10,000 significant 
interactions on DREAM dataset 1. (C) The histogram of significant regulator counts for each target gene in the bnlearn-hc Bayesian network with AIC penalty 8 on 
DREAM dataset 1.
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Findr and lasso Bayesian Networks 
Recover Genuine Interactions More 
accurately Than MCMC or  
Constraint-Based Networks
We compared the inferred Bayesian networks from all methods 
against the groundtruth network of the DREAM challenge. We 
drew PR curves, or points for the binary Bayesian networks from 
bnlearn-based methods, as shown in Figure 3 with areas under 
the PR curve (AUPR) in Supplementary Table S2. Bnlearn based 
methods could only recover ∼2% of total true regulations, after 
which they suffered from a sharply dropping precision and behaved 
like random predictions. The highest precisions they achieved could 
not exceed those by lasso or findr based methods at the respective 
recalls either. In addition, bnlearn could not obtain >10% recall 
within 4-day time limit with any of the methods attempted. In this 
sense, the findr, lasso-findr, and lasso-random Bayesian networks 
were more accurate predictors of the underlying network structure. 
The inclusion of genotypic information improved the precision 
of bnlearn methods, but it remained suboptimal than findr and  
lasso-based Bayesian networks.

Findr and lasso Bayesian Networks 
Obtain Superior Predictive Performances
We validated the predictive performances of all networks in the 
structural equation context (see Supplementary Information). 
Under five-fold cross validation, a linear regression model for 
each gene on its parents is trained based on the Bayesian network 
structure inferred from each training set, to predict expression 
levels of all genes in the test set (Methods). Predictive errors 
were measured in terms of rmse and mlse (the score optimized 
by bnlearn-hc). The findr Bayesian network explained the 
highest proportion of expression variation (≈2%) in the test data 
and identified the highest number of regulations (200 to 300), 
with runners up from lasso-based networks (≈1% variation, 
50 regulations, Figure 4). The explained variance by findr and 
lasso networks grew to ≈10% when more samples were added 
(DREAM dataset 11 with 999 samples, Supplementary Figure 

S6). Training errors did not show overfitting of predictive 
performances in the test data (Supplementary Figure S7).

lasso Bayesian Networks Do Not Need 
accurate Prior Gene Ordering
Interestingly, the performance of lasso-based networks did 
not depend strongly on the prior ordering, as shown in the 
comparisons between lasso-findr and lasso-random in Figure 
3, Figure 4, and Supplementary Figure S7. Further inspections 
revealed a high overlap of top predictions by lasso-findr and lasso-
random Bayesian networks, particularly among their true positives 
(Figure 5). This suggests that lasso may be capable of prioritizing 
edges with correct directions, and allows us to still recover genuine 
interactions even if the prior gene ordering is not fully accurate.

lasso Bayesian Networks Mistake 
Confounding as False Positive Interactions
We then tried to understand the differences between lasso and 
Findr based Bayesian networks, by comparing three types of gene 
relations in DREAM dataset 1, both among genes with a cis-eQTL 
in Figure 6A, and when also including genes without any cis-eQTL 
as only targets in Figure 6B. Both findr and lasso-findr showed 
good sensitivity for the genuine, direct interactions. However, 
when two otherwise independent genes are directly confounded by 
another gene, lasso tends to produce a false positive interaction, but 
not findr. As expected, to achieve optimal predictive performance, 
lasso regression cannot distinguish the confounding by a gene that 
is either unknown or ranked lower in the DAG.

Findr and lasso Bayesian Network 
Inference Is Highly efficient
The findr and lasso Bayesian networks required much less 
computation time compared to the bnlearn Bayesian networks, 
therefore allowing them to be applied on much larger datasets. 
To infer a Bayesian network of 230 genes from 100 samples in 
DREAM dataset 1, Findr required less than a second, lassopv 
around a minute, but bnlearn Bayesian networks took half 
an hour to half a day (Table 1). Moreover, since bnlearn only 
produces binary Bayesian networks, multiple recomputation is 
necessary to acquire the desired network sparsity.

Results on the Geuvadis Dataset Reaffirm 
Conclusions From Simulated Data
To test whether the results from the DREAM data also hold for 
real data, we inferred findr and lasso-findr Bayesian networks 
from the Geuvadis data using both real and random causal priors 
(see Methods); conventional bnlearn-based network inference was 
attempted, but none of the restarts could complete within 1000 min.

Lasso-findr Bayesian networks were previously shown to 
provide ideal FDR control on this dataset (Wang and Michoel, 
2017b), whereas findr Bayesian networks did not obtain a 
satisfying FDR control (Supplementary Figure S8). We believe 
this is due to the reconstruction of the node ordering, which 
interferes with the FDR control in pairwise causal inference. On 
the other hand, and again consistent with the DREAM data, findr 

FIGURe 3 | Precision-recall curves/points of reconstructed Bayesian 
networks for DREAM dataset 1.
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Bayesian networks obtained superior results for the recovery of 
known transcriptional regulatory interactions inferred from 
ChIP-sequencing data (Figures 7A, B); neither method predicted 
TF targets inferred from siRNA silencing with high scores or 
accuracy better than random (Figure 7C).

Comparisons on the predictive power yielded results similar 
with the DREAM datasets, where predictive scores were again 
hardly able to distinguish network directions.

DISCUSSION
The inference of Bayesian gene regulatory networks for mapping 
the causal relationships between thousands of genes expressed in 
any given cell type or tissue is a challenging problem, due to the 
computational complexity of conventional hill-climbing, MCMC 
sampling or constraint-based methods. Here we have introduced 
an alternative method, which first reconstructs a topological 
ordering of genes, and then infers a sparse maximum-likelihood 
Bayesian network using variable selection of parents for every gene 
from its predecessors in the ordering. Our method is applicable 

FIGURe 4 | The root mean squared error (rmse, a) and mean log squared error (mlse, B) in test data are shown as functions of the numbers of predicted 
interactions in five-fold cross validations using linear regression models. Shades and lines indicate minimum/maximum values and means respectively. RMSEs 
greater than 1 indicate over-fitting. DREAM dataset 1 with 100 samples was used.

FIGURe 5 | The numbers of overlap and unique interactions (y axis) 
predicted by lasso-findr and lasso-random Bayesian networks as functions 
of the number of significant interactions in each network (x axis), on DREAM 
dataset 1. Positive and negative directions in y correspond to true and false 
positive interactions according to the gold standard.

FIGURe 6 | The significance score of findr (posterior probability; x-axis) and in lasso-findr (-log P-value; y-axis) for direct true interactions (red), directly confounded 
gene pairs (cyan), and other, unrelated gene pairs (black) on DREAM dataset 1; in (a) only genes with cis-eQTLs are considered as regulator or target, whereas in 
(B) targets also include genes without cis-eQTLs. Higher scores indicate stronger significances for the gene pair tested.
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when pairwise prior information is available or can be inferred 
from auxiliary data, such as genotype data. Our evaluation of 
the method using simulated genotype and gene expression data 
from the DREAM5 competition, and real data from human 
lymphoblastoid cell lines from the GEUVADIS consortium, 
revealed several lessons that we believe to be generalizable.

A major disadvantage of conventional score-based methods, 
irrespective of their computational cost, was their over-fitting of the 
expression profiles of a very small number of target genes. In high-
dimensional settings where the number of genes far exceeds the 
number of samples, the expression profile of any one of them can 
be regressed perfectly (i.e., with zero residual error) on any linearly 
independent subset of variables, and this causes the log-likelihood 
to diverge. Even when the number of parents per gene was restricted 
to less than the number of samples, it remained the case that at 
any level of network sparsity, the divergence of the log-likelihood 
with decreasing residual variance of even a single gene resulted in 
score-based networks where most genes had either the maximum 
number of parents, or no parents at all. Restricting the maximum 
number of parents to an artificially small level can circumvent this 
problem, but will also distort the network topology, particularly 
by truncating the in-degree distribution, and therefore predict a 
biased gene regulatory network. Optimizing the total amount of 
variance explained, rather than log-likelihood, might overcome this 
problem. This, however, is not available yet in bnlearn.

Our method reconstructs a Bayesian network as a sparse 
subgraph from a maximum-weight DAG determined by pairwise 
causal relationships inferred using instrumental variable methods. 
We considered two variants of the method: one where the edge 
weights in the maximum-weight DAG were truncated directly to 
form a sparse DAG, and one where an additional L1-penalized 
lasso regression step was used to enforce sparsity. The lasso step 
was introduced for two reasons. First, pairwise relations do not 
distinguish between direct or indirect interactions and do not 
account for the possibility that a true relation may only explain a 

small proportion of target gene variation (e.g. when the target has 
multiple inputs). We hypothesized that adding a multi-variate lasso 
regression step could address these limitations. Second, truncating 
pairwise relations results in non-uniform false discovery rates for 
the retained interactions, due to each gene starting with a different 
number of candidate parents in the pairwise node ordering. As we 
showed in this paper and our previous work (Wang and Michoel, 
2017b), a model selection p-value derived from lasso regression 
can control the FDR uniformly for each potential regulator of 
each target gene, resulting in an unbiased sparse DAG.

Despite these considerations, the “naïve” procedure of 
truncating the original pairwise causal probabilities resulted in 
Bayesian networks with better overlap with groundtruth networks 
of known transcriptional interactions, in both simulated and real 
data. We believe this is due to the lack of any instrumental variables 
in lasso regression, which makes it hard to dissociate true causal 
interactions from hidden confounding. Indeed, it is known that if 
there are multiple strongly correlated predictors, lasso regression 
will randomly select one of them (Zou and Hastie, 2005), whereas 
in the present context it would be better to select the one that has 
the highest prior causal evidence. In a real biological system, findr 
networks and the use of instrumental variables may therefore be 
more robust than lasso regression, particularly in the presence of 
hidden confounders. We also note that the deviation from uniform 
FDR control for the naive truncation method was not huge and 
only affected genes with a very large number of candidate parents 
(Figure 2). Hence, at least in the datasets studied, adding a lasso 
step for better FDC did not overcome the limitations introduced 
by confounding interactions.

On the other hand, the lasso-random network used solely 
transcriptomic profiles, yet provided better performance than 
the conventional score-based and constrained-based networks, 
including those that used genotypic information. Together with its 
better FDC, this makes the lasso-random network an interesting 
method for high-dimensional Bayesian network inference with 
no or limited prior information.

In addition to comparing the inferred network structure against 
known ground-truths, we also compared the predictive performance 
of the various Bayesian networks. Although findr Bayesian networks 
again performed best, differences with lasso-based methods were 
modest. As is well known, using observational data alone, Bayesian 
networks are only defined upto Markov equivalence (Koller and 
Friedman, 2009; Pearl, 2009), i.e., there is usually a large class of 
Bayesian networks with very different topology which all explain the 

FIGURe 7 | Precision-recall curves for Bayesian networks reconstructed from the Geuvadis dataset for three groundtruth networks: DNA-binding of 20 TFs in 
GM12878 (a), DNA-binding of 14 TFs in five ENCODE cell lines (B), and siRNA silencing of six TFs in GM12878 (C).

TaBle 1 | Timings for different Bayesian network inference methods/programs. 

Dataset Samples Genes Findr lassopv bnlearn-hc bnlearn-fi

DREAM 100 230 < 1 s ≈1 min ≥10 h ≥30 min
Geuvadis 360 3172 < 1 min ≈10 h – –

Times for bnlearn methods depend on parameter settings (e.g., nominal FDR and 
AIC penalty), and take longer (approx. 8 times) with genotypes included. Times for 
bnlearn-hc include 10 random restarts.
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data equally well. Hence, it comes as no surprise that the prediction 
accuracy in edge directions has little impact on that in expression 
levels. This suggests that for the task of reconstructing gene networks, 
Bayesian network inference should be evaluated, and maybe also 
optimized, at the structural rather than inferential level. This also 
reinforces the importance of causal inference which, although 
challenging both statistically and computationally, demonstrated 
significant improvement of the global network structure even when 
it was restricted to pairwise causal tests.

Most of our results were derived for simulated data from the 
DREAM Challenges, but were qualitatively confirmed using data 
from human lymphoblastoid cell lines. This is because human 
ground-truth networks have strong limitations. They are normally 
reconstructed from heterogeneous, noisy, high-throughput data 
(e.g., ChIP-sequencing and/or knock-out experiments), and are 
both incomplete (many true interactions are not present) and 
imperfect (many detected physical interactions have no functional 
effect). In addition, statistical inference algorithms can hardly 
distinguish direct interactions from indirect ones, which operate 
through an unidentified third factor and should be regarded as 
“false positives”. As such, one has to be cautious not to over-interpret 
results, for instance on the relative performance of findr vs. lasso-
findr Bayesian networks. Much more comprehensive and accurate 
ground-truth networks of direct causal interactions, preferably 
derived from a hierachy of interventions on a much wider variety 
of genes and functional classes (not only transcription factors), 
would be required for a conclusive analysis. Emerging large-scale 
perturbation compendia such as the expanded Connectivity Map, 
which has profiled knock-downs or over-expressions of more 
than 5,000 genes in a variable number of cell lines using a reduced 
representation transcriptome (Subramanian et al., 2017), hold 
great promise. However, the available cell lines are predominantly 
cancer lines, and the relevance of the profiled interactions for 
systems genetics studies of human complex traits and diseases, 
which are usually performed on primary human cell or tissue 
types, remains unknown.

Lastly, we note that our study has focused on ground-truth 
comparisons and predictive performances, but did not evaluate 
how well the second part of the log-likelihood, derived from the 
genotype data [cf. eq. (4)], was optimized. This score is never 
considered in the conventional score-based algorithms, and 
hence a comparison would not be fair. Moreover, optimising 
it is known to be an NP-hard problem. We used a common 
greedy heuristic optimization algorithm, but for this particular 
problem, this heuristic has no strong guaranteed error bound. 
We intend to revisit this problem, and investigate whether 

other graph-theoretical algorithms, perhaps tailored to specific 
characteristics of pairwise interactions inferred from systems 
genetics data, are able to improve on the greedy heuristic.

To conclude, Bayesian network inference using pairwise 
genetic node ordering is a highly efficient approach for 
reconstructing gene regulatory networks from high-dimensional 
systems genetics data, which outperforms conventional methods 
by restricting the super-exponential graph structure search space 
to acyclic graphs compatible with the causal inference results, and 
which is sufficiently flexible to integrate other types of pairwise 
prior data when they are available.
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