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Atherosclerosis and its comorbidities are the major contributors to the global burden of 
death worldwide. Lower extremities arterial disease (LEAD) is a common manifestation of 
atherosclerotic disease of arteries of lower extremities. MicroRNAs belong to epigenetic 
factors that regulate gene expression and have not yet been extensively studied in LEAD. 
We aimed to indicate the most promising microRNA and gene expression signatures of 
LEAD, to identify interactions between microRNA and genes and to describe potential effect 
of modulated gene expression. High-throughput sequencing was employed to examine 
microRNAome and transcriptome of peripheral blood mononuclear cells of patients with 
LEAD, in relation to controls. Statistical significance of microRNAs and genes analysis results 
was evaluated using DESeq2 and uninformative variable elimination by partial least squares 
methods. Altered expression of 26 microRNAs (hsa-let-7f-1-3p, hsa-miR-34a-5p, -122-
5p, -3591-3p, -34a-3p, -1261, -21-5p, -15a-5p, -548d-5p, -34b-5p, -424-3p, -548aa, 
-548t-3p, -4423-3p, -196a-5p, -330-3p, -766-3p, -30e-3p, -125b-5p, -1301-3p, -3184-
5p, -423-3p, -339-3p, -138-5p, -99a-3p, and -6087) and 14 genes (AK5, CD248, CDS2, 
FAM129A, FBLN2, GGT1, NOG, NRCAM, PDE7A, RP11-545E17.3, SLC12A2, SLC16A10, 
SLC4A10, and ZSCAN18) were the most significantly differentially expressed in LEAD 
group compared to controls. Discriminative value of revealed microRNAs and genes were 
confirmed by receiver operating characteristic analysis. Dysregulations of 26 microRNAs 
and 14 genes were used to propose novel biomarkers of LEAD. Regulatory interactions 
between biomarker microRNAs and genes were studied in silico using R multiMiR package. 
Functional analysis of genes modulated by proposed biomarker microRNAs was performed 
using DAVID 6.8 tools and revealed terms closely related to atherosclerosis and, interestingly, 
the processes involving nervous system. The study provides new insight into microRNA-
dependent regulatory mechanisms involved in pathology of LEAD. Proposed microRNA 
and gene biomarkers of LEAD may provide new diagnostic and therapeutic opportunities.

Keywords: miRNA, microRNA, miRNA regulation, miRNA expression, gene expression, low extremities arterial 
disease, atherosclerosis, biomarker
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iNTRODUcTiON
Peripheral arterial disease (PAD) is one of the most common 
manifestation of atherosclerosis, a chronic inflammatory process 
that promotes formation of atheromatous plaques in blood 
vessels (Norgren et al., 2007; Hamburg and Creager, 2017). PAD 
is a complex, multifactorial systemic disease linked to genetics, 
immunity, and environment (Brevetti et al., 2010; Leeper et al., 
2012; Fowkes et al., 2017) with severe comorbidities clinically 
manifested as a myocardial infarction and ischemic stroke 
(Sigvant et al., 2017). One of the presentations of PAD is lower 
extremities arterial disease (LEAD), characterized by chronic 
degenerative changes due to vascular flow deficit caused by 
stenosis or occlusion of lower limb vessels (Aboyans et al., 2018).

In the last decade, there has been an increasing focus on 
importance of microRNA (miRNA) diagnostics in diverse diseases 
(Rupaimoole and Slack, 2017). MiRNA are approximately 22 
nucleotides long small RNA molecules, constituting a part of non-
coding RNA pool. MiRNA have established role in modulating 
gene expression (Kim et al., 2016), exhibiting pleiotropic effects, 
and acting like a switch and a fine-tuner (Mukherji et al., 2011;   
Lu et al., 2018). MiRNA regulatory networks are considered as an 
important element in the pathogenesis of atherosclerosis (Zho et 
al., 2012;   Lu et al., 2018; Vogiatzi et al., 2018) with biomarker and 
therapeutic potential (Hamburg and Leeper, 2015).

Numerous studies established relationships between 
atherosclerosis-related diseases and alterations in miRNA 
expression in humans (Fichtlscherer et al., 2010; Bronze-da-Rocha, 
2014; Chen and Stewart, 2016; Dolz et al., 2017). Dysregulated 
expression of miRNAs may serve as a marker of arterial stenosis 
progression (Jiang et al., 2014; Dolz et al., 2017), plaque stability 
(Cipollone et al., 2011; Ren et al., 2013; Leistner et al., 2016), and 
risks of acute ischemic stroke (Li et al., 2015) and cardiovascular 
death (Karakas et al., 2017). MiRNA expression in various 
blood components was also correlated with a presence of pro-
atherosclerotic risk factors, including elevated lipids levels (Dong et 
al., 2017), type 2 diabetes mellitus (Al-Kafaji et al., 2010), and high 
BMI values (Signorelli et al., 2016).

Only a number of studies looked for miRNA signatures 
in peripheral atherosclerosis, focusing mainly on circulating 
(plasma, whole blood) miRNA profiling (Li et al., 2011; Stather 
et al., 2013; Signorelli et al., 2016). MiRNA expression in 
peripheral blood mononuclear cells (PBMCs) in peripheral 
atherosclerosis was not extensively studied. PBMCs as an 
essential element of atherosclerosis-related diseases, carry 
abundant information about cardiovascular pathophysiology. 
Differentially expressed miRNAs in PBMCs were already 
presented as biomarkers of coronary artery disease (CAD) 
(Hoekstra et al., 2010; Dong et al., 2017).

Selection and monitoring patients with high cardiovascular 
risk still poses a significant clinical challenge. Despite numerous 
studies, there is still need for more translational research to 
understand how the disease is developing in humans. More 
profound knowledge of pathology, particularly the interactions 
between molecular and cellular mechanisms, as well as discovery 
of sensitive and specific biomarkers, are essential to develop 
optimal diagnostic and treatment approaches.

We applied Next Generation Sequencing (NGS) to investigate 
miRNA and gene expression profiles in PBMCs from patients 
with LEAD and healthy controls. The goal was to identify most 
promising miRNA signatures and genes involved in LEAD which 
may become novel biomarkers, providing new perspectives on 
diagnostic and therapeutic opportunities in LEAD.

MATERiALs AND METhODs

study Population characteristics
The research was conducted in accordance with the Declaration 
of Helsinki and approved by Ethics Committee at Medical 
University of Lublin (decision No. KE-0254/341/2015). Study 
inclusion occurred between February 2016 and May 2017 
involving 40 patients diagnosed with LEAD in Independent 
Public Clinical Hospital No. 1 in Lublin and 19 non-LEAD 
volunteers. Informed consent was obtained from all subjects. 
Characteristics of studied individuals are presented in Table 1. 
Evaluation was performed by vascular surgeon and based on 
established inclusion criteria. Physical examination consisted 
of evaluation of peripheral pulses, ankle-brachial index test, 
treadmill test, angiography, and color flow duplex ultrasound 
scanning (Figure 1). Individuals with LEAD had symptoms of 
claudication without critical ischemia or tissue loss (Rutherford 
category 2 or 3). Atherosclerotic lesions were localized in 
femoral, iliac, or popliteal arteries and were diagnosed with 
Trans-Atlantic Inter-Society Consensus score B or C. Only 
patients with chronic complaints originating from LEAD of more 
than 6 month duration were included. Exclusion criteria were: 
type 1 diabetes mellitus and previous surgery or percutaneous 
transluminal angioplasty/stent placement of superficial femoral 
or iliac arteries. Additional evaluation criteria included smoking 
habits, medical history, risk factors, pre-existing diagnoses, and 
medical treatment (Table 1).

The control (non-LEAD) group contained 19 volunteers. 
Neither atherosclerotic plaques nor abnormalities in blood 
flow were observed in iliac, femoral, and popliteal arteries 
of control individuals during the examination by color flow 
duplex ultrasound scanning. Only subjects without vascular 
diseases and comorbidities, including coronary artery disease, 
myocardial infarction, stroke, diabetes type 2 and without any 
medication in the medical history were affirmed to the control 
group. Application of these criteria allows us to select healthy 
volunteers, however, statistically significant differences in age, 
BMI, smoking habits, and sex distribution have emerged between 
LEAD and control groups (Table 1).

study Material Preparation
Isolation of PBMCs from whole blood samples was conducted by 
density gradient centrifugation using Gradisol L reagent (Aqua-
Med, Poland) (see Supplementary Material).

Isolation of small RNA fractions from all PBMCs samples 
was performed using MirVana microRNA Isolation Kit 
(Ambion, Lithuania) according to the manufacturer’s protocol. 
The assessment of quantity and quality of isolated small RNA 
samples was performed using Agilent 2100 Bioanalyzer (Agilent 
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Small RNA Kit, Agilent Technologies, Lithuania). Software 
implemented to Agilent 2100 Bioanalyzer was Agilent 2100 
Expert Software version B.02.08.SI648.

Total RNA was isolated from PBMCs using TRI Reagent 
Solution (Applied Biosystems, USA), according to manufacturer’s 
protocol. The quantity and quality assessment of isolated 
total RNA was performed using Agilent 2100 Bioanalyzer 
(Agilent RNA 6000 Pico Kit, Agilent Technologies, USA). The 
RNA samples with RNA Integrity Number higher than 7 were 
approved for further experiments.

miRNA sequencing
Small RNA libraries were constructed using Ion Total RNA-Seq 
Kit v2 and barcoded with Ion Xpress RNA-Seq Barcode 01-16 Kit 
(both Life Technologies, Lithuania). Purifying and size-selecting 
steps were carried out with Magnetic Bead Cleanup Module kit 
(Life Technologies, Lithuania). All procedures were performed 
according to the manufacturer’s protocol “Ion Total RNA-Seq 

Kit v2” revision B.0. Yield and size distribution of prepared small 
RNA libraries were assessed with the Agilent 2100 Bioanalyzer 
instrument and the Agilent High Sensitivity DNA Kit (Agilent 
Technologies, Lithuania). Barcoded small RNA libraries were 
diluted to 100 pM concentration with nuclease-free water and 
pooled (four libraries per chip). Pooled libraries were amplified, 
prepared for sequencing, and loaded on Ion 540 Chips (Life 
Technologies, Taiwan) by Ion Chef System (Thermo Fisher 
Scientific, Singapore). Efficiency of amplification was evaluated 
using Ion Sphere Quality Control Kit (Life Technologies, USA).

Sequencing was performed using Ion S5 XL System (Thermo 
Fisher Scientific, USA) and raw data was processed by Torrent 
Suite Software v5.0.4 (Thermo Fisher Scientific, USA). Raw 
sequences were aligned to 2,792 human miRNAs from miRBase 
v21 (http://www.mirbase.org) using Ion Torrent Small RNA 
Plugin v5.0.5r3 (Thermo Fisher Scientific, USA) with default 
settings. For detailed description of the plugin please refer to 
Supplementary Material.

TABLE 1 | Characteristics of 40 patients with LEAD and 19 controls approved to the study. 

characteristic LEAD population (n = 40) control population (n = 19) P

Age 57.58 ± 9.82* 43–71† 36.58 ± 9.97* 24–55† 1.312E-07
Body Mass Index 27.17 ± 2.621* 21.94–31.64† 23.12 ± 3.93* 19.33–32.6† 1.729E-04
Smoking 22 (55%) 0 (0%) 1.482E-04
Gender: Male 35 (87.5%) 9 (47%) 2.809E-03
Gender: Female 5 (12.5%) 10 (53%)

indication for intervention

Rutherford category 2 34 (85%) NA
Rutherford category 3 6 (15%) NA
Initial claudication distance (m) 153.63 ± 33.01* 90–200† NA
Ankle-brachial index 0.683 ± 0.049* 0.59–0.8† NA
Length of occlusion (cm) 11.25 ± 5.11* 3–25† NA

Plaque localization

Iliac artery 7 (17.5%) NA
Femoral artery 25 (62.5%) NA
Popliteal artery 5 (12.5%) NA
Iliac and femoral artery 1 (2.5%) NA
Femoral and popliteal artery 2 (5%) NA

Risk factors and cardiovascular comorbidities

Coronary disease 11 (27.5%) NA
Myocardial infarction 8 (20%) NA
Diabetes type 2 5 (12.5%) NA
Stroke/Transient ischemic attack 2 (5%) NA
Hypertension 36 (90%) NA
Hypercholesterolemia 31 (77.5%) NA

Medication

Statins 34 (85%) NA
Acetylsalicylic acid 40 (100%) NA
Clopidogrel 8 (20%) NA
Beta-adrenergic blockers 27 (67.5%) NA
Angiotensin-converting enzyme inhibitor 20 (50%) NA
Ca2+ channel blockers 11 (27.5%) NA
Fibrates 5 (12.5%) NA
Metformin 2 (5%) NA

*Mean ± SD, †range.
Statistical significance (P) of differences between groups in age and BMI were determined using two-sided Mann Whitney U test. Statistical significance (P) of differences in sex and 
smoking habits were determined using Chi-Square test. Missing data were addressed to “NA.”
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Transcriptome sequencing
Due to technical limitations, transcriptome libraries were 
prepared from 15 total RNA samples isolated from randomly 
selected representative PBMCs samples (eight from LEAD 
patients and seven from controls). In order to increase the 
percentage of coding mRNA, total RNA samples were subjected 
to ribodepletion procedure using RiboMinus Eukaryote System 
v2 (Ambion, USA), according to manufacturer’s protocol. 

Efficiency of rRNA depletion process was verified using 
Agilent 2100 Bioanalyzer with Agilent RNA 6000 Pico Kit. 
rRNA-depleted RNA samples were subsequently subjected 
to transcriptome libraries preparation procedure using the 
components supplied with Ion Total RNA-Seq Kit v2, Ion Xpress 
RNA-Seq Barcode 01-16 Kit, and Magnetic Bead Cleanup Module 
Kit. The procedure was carried out according to manufacturer’s 
manual “Ion Total RNA-Seq Kit v2” revision B.0. Yield and size 
distribution of prepared transcriptome libraries were assessed 
on the Agilent 2100 Bioanalyzer instrument with the Agilent 
DNA 1000 Kit (Agilent Technologies, Lithuania). Barcoded 
transcriptome libraries were equalized to 60 pM concentration 
by dilution in nuclease-free water and multiplexed two samples 
per chip. Libraries preparation and loading on Ion 540 chips were 
performed by Ion Chef System. ISP enrichment quality control 
was carried out with Ion Sphere Quality Control Kit.

Sequencing of transcriptome libraries was performed using 
Ion S5 XL System and raw data processed by Torrent Suite 
Software v5.0.4. Raw sequences were aligned to 55,765 genes of 
hg19 human genome using Ion Torrent RNASeqAnalysis plugin 
v.5.0.3.0 (Thermo Fisher Scientific, USA).

statistical Analysis
LEAD and control groups were evaluated due to differences in 
age and BMI using two-sided Mann Whitney U test (wilcox.test 
function in R) and in sex and smoking using Chi-Square test 
(chisq.test function in R).

Statistical analysis of miRNA and gene sequencing data 
(resulted from small RNA and transcriptome libraries 
sequencing, respectively) was performed on biological replicates 
with R environment (version 3.5.2) and suitable packages.

Control plots of sequencing data, including MA plot, 
histogram of P value frequency and boxplot of counts statistics, 
were performed using DESeq2 package (Love et al., 2014). 
Volcano plot for differentially expressed miRNAs, heatmaps with 
Euclidean clustering, Principal Component Analysis (PCA) plots 
were performed using R basic functions and packages: data.table 
1.11.8, DESeq2 1.18.1, dplyr 0.7.8, ggplot2 3.1.0, ggrepel 0.8.0, 
gridExtra 2.3, pheatmap 1.0.10, and scatterplot3d 0.3-41 packages.

Differential expression analysis was performed by DESeq2 
package 1.18.1, according to R code described in reference 
manual. MiRNAs and genes with mean of reads lower than one 
were filtered out. MiRNAs and genes with P value below 0.05, 
adjusted by Benjamini-Hochberg false discovery rate, were 
considered as statistically significant.

Further confirmation of the differential potential of miRNAs 
and genes was carried out with UVE-PLS (uninformative variable 
elimination by partial least squares) method (Centner et al., 1996) 
using plsVarSel package 0.9.3 (Mehmood et al., 2012), according 
to R code described in reference manual. UVE-PLS analysis 
was applied to filtered read counts data (mean of reads lower 
than 1) and transformed using regularized log normalization 
(rlog function in DESeq2 package). In order to find appropriate 
number of PLS components for UVE-PLS, normalized data were 
primarily subjected to standard PLS analysis with leave-one-
out cross-validation using plsr function in plsVarSel package. 

FigURE 1 | Representative color Doppler images of femoral arteries. Panels 
(A) and (B) present femoral artery narrow stenosis caused by atheromatic 
plaque without calcification. Arterial flow has monophasic waveform with low 
systolic peaks and continuous diastolic flow. On panel (B), popliteal artery 
blood flow restored femoral artery flow by inflow from collaterals. On panel 
(c), femoral artery occlusion and monophasic waveform of flow with high 
systolic peaks and continuous diastolic flow were observed.
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Ultimately, UVE-PLS analysis was performed with four PLS 
components, 1,000 iterations, and default cut-off threshold.

Correlations between miRNA expression and characteristics 
of studied groups were performed using DESeq2 method for 
categorical variables (sex, smoking) and two-sided Spearman 
rank correlation test covered in cor.test R function for continuous 
variables (age, BMI).

Predicting value of selected miRNAs and genes was assessed 
using receiver operating characteristic (ROC) analysis, carried 
out with pROC package version 1.12.1 (Robin et al., 2011) 
according to reference manual.

Deconvolution of miRNA expression data was performed 
using UNDO 1.26.0 package (Wang et al., 2015) on data 
normalized by DESeq function implemented in DESeq2 package. 
For deconvolution of gene expression data, a “quanTIseq” 
method (Finotello et al., 2019) implemented in immunedeconv 
2.0.0 package (Sturm et al., 2019) was applied to tpm-normalized 
data using scater 1.12.2 package (McCarthy et al., 2017).

Identification of validated (miRecords, miRTarBase, TarBase 
databases) and predicted (DIANA-microT, ElMMo, MicroCosm, 
miRanda, miRDB, PicTar, PITA, TargetScan databases) interactions 
between selected miRNAs and genes was performed using 
multiMiR package 1.2.0 (Ru et al., 2014) and reference manual. 
Obtained interactions were presented in the regulatory network, 
visualized using Cytoscape v3.5.1 software (Shannon et al., 2003).

Functional analysis for genes contained in the network was 
performed using DAVID (Database for Annotation, Visualization, 
and Integrated Discovery) 6.8 database (Huang et al., 2009a; 
Huang et al., 2009b) using default whole genome background 
for Homo sapiens. For each analyzed gene, associated terms of 
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway 
maps, Reactome database, and GAD (Genetic Association 
Database) database were harvested. The enrichment analysis of 
GO (Gene Ontology) terms was carried out separately for up- 
and downregulated genes.

REsULTs

study Population Analysis
Representative examples of color duplex ultrasound examination 
of femoral artery occlusions and flow were shown on the Figure 1. 
Characteristics of 40 LEAD patients and 19 non-LEAD controls 
are presented in Table 1. Inclusion of healthy, LEAD-negative 
confirmed individuals in control group resulted in differences 
between patients and control groups in sex, age, BMI (body mass 
index), and smoking with respective P values 2.809E-03, 1.312E-07, 
1.729E-04, and 1.482E-04 (Table 1 and Supplementary Figure 1).

Primary Results
Representative electrophoregrams of small RNA samples, total 
RNA samples, and corresponding libraries were presented in 
Supplementary Figures 2 and 3. Parameters describing small 
RNA samples, small RNA libraries, and results of sequencing 
data primary analysis of small RNA libraries were shown in 
Supplementary Table 1. Parameters of transcriptome libraries 
and results of sequencing data primary analysis of transcriptome 

libraries were presented in Supplementary Table 2. Sequencing 
data control plots (boxplot of Cook’s distances across samples, 
MA plot, and histogram of P values frequency) for small RNA 
and transcriptome analysis are presented in Supplementary 
Figures 4 and 5, respectively.

Differential Expression Analysis of miRNA
MiRNA expression levels were compared between 40 LEAD 
patients and 19 non-LEAD controls. For differential expression 
analysis of miRNA, DESeq2, and UVE-PLS methods were 
applied to investigate expression data of 2,792 miRNAs and 
common significantly dysregulated miRNAs indicated by both 
methods were selected.

DESeq2 filtering and comparison analysis of the miRNA 
expression signatures in PBMCs derived from LEAD patients 
and non-LEAD controls revealed 1,181 differentially expressed 
miRNA transcripts in LEAD patients (Figure 2A). Two hundred 
thirty-one miRNA transcripts (134 upregulated and 97 
downregulated) were significantly differentially expressed with 
P < 0.05 (Supplementary Tables 3 and 4, respectively).

To limit false positive results, a set of 47 differentially expressed 
miRNA transcripts (for 39 miRNAs) of high significance (P < 
0.0001) was chosen for further comparison with UVE-PLS results.

To optimally filter miRNAs with uninformative character, the 
UVE-PLS method was used. Distribution of PLS (Partial Least 
Squares) components and predictive ability of applied PLS model 
were presented on Supplementary Figure 6. Application of 
UVE-PLS to filtered and normalized miRNA expression data has 
returned 86 informative miRNA transcripts, 37 were upregulated 
and 49 were downregulated (Supplementary Tables 5 and 6, 
respectively).

The comparison of 47 differentially expressed miRNA 
transcripts identified by DESeq2 method (with P < 0.0001) and 
86 differentially expressed miRNA transcripts identified by UVE-
PLS method disclosed 33 miRNA transcripts (for 28 miRNAs) 
common for both methods (Figure 2).

PCA analysis and heatmap with Euclidean clustering were 
performed to visualize clustering pattern of samples and 
33 selected miRNA transcripts (Supplementary Figure 7). 
Expression of four miRNA transcripts belonging to miR-486 
family (hsa-mir-486-2_hsa-miR-486-3p, hsa-mir-486_hsa-miR-
486-5p, hsa-mir-486_hsa-miR-486-3p, hsa-mir-486-2_hsa-
miR-486-5p) disturbed clear separation of LEAD and control 
groups. Exclusion of these four miRNA transcripts from PCA 
analysis and heatmap with Euclidean clustering improved 
ability to differentiate LEAD and control groups by remaining 
29 miRNA transcripts (Figures 2C, D).

In order to identify factor(s) affecting expression of four 
excluded miRNA transcripts, correlations with age, BMI, sex, and 
smoking habits were evaluated. Statistically significant correlation 
was found between expression of 4 excluded miRNA transcripts 
belonging to miR-486 family and age, BMI, and smoking habits 
(Supplementary Table 7). Therefore, expression of these miRNA 
transcripts was presumably affected by differences in age, BMI, 
and smoking habits, rather than by presence of LEAD. For this 
reason, these miRNA transcripts were excluded from further 
confirmation of predictive capability.
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Predicting value of differential expression of remaining 29 
miRNA transcripts was evaluated using ROC analysis carried out 
with pROC package. Areas under ROC curves were above 0.8 for 
all evaluated miRNA transcripts, indicating good performance 

of LEAD classification (Table 2, Supplementary Figure 8 and 
Supplementary Table 8). These 29 miRNA transcripts give 26 
miRNAs (15 upregulated and 11 downregulated), which constitute 
a proposed panel of miRNA biomarkers of LEAD (Table 2).

FigURE 2 | Differential expression analysis of miRNA in PBMCs samples derived from 40 patients with LEAD (LEAD) and 19 non-LEAD controls (Control). Volcano 
plot (A) illustrating the arrangement of negative log10 of P values and log2 fold changes for 1,181 differentially expressed miRNA transcripts indicated using DESeq2 
method. Thirty-three miRNA transcripts resulted from DESeq2 method with P < 0.0001 overlapping with informative miRNAs returned from UVE-PLS analysis were 
pointed with numbers corresponding to the code and names in table on panel (B). Heatmap with Euclidean clustering (c) and 3D PCA plot (D), generated based 
on expression of selected 29 miRNA transcripts (after excluding four miRNA transcripts belonging to miR-486 family). Numbers of heatmap rows correspond to 
transcript names according to “Code” column on panel (B).
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Deconvolution analysis of miRNA expression data using 
UNDO package provided estimated proportions of two cell 
subpopulations in LEAD and Control groups. Distributions of 
these proportions were presented in Supplementary Figure 9.

Differential Expression Analysis of genes
RNA samples derived from randomly selected eight LEAD 
patients and seven non-LEAD controls were subjected to 
transcriptome sequencing. Differential expression analysis of 
genes was performed using DESeq2 and UVE-PLS methods 
and common significantly dysregulated genes indicated by both 
methods were selected.

DESeq2 analysis revealed 17,868 differentially expressed 
genes in LEAD group when compared to non-LEAD controls 
(Figure 3A). Genes resulted with significantly changed expression 
(P < 0.05) formed a set of 221 genes—108 were upregulated and 
113 were downregulated (Supplementary Tables 9 and 10, 
respectively).

UVE-PLS analysis indicated 14 genes (4 upregulated and 10 
downregulated) with informative value to differentiate LEAD and 
control groups (AK5, CD248, CDS2, FAM129A, FBLN2, GGT1, 
NOG, NRCAM, PDE7A, RP11-545E17.3, SLC12A2, SLC16A10, 

SLC4A10, and ZSCAN18). Distribution of PLS components 
and predictive ability of applied PLS model were presented on 
Supplementary Figure 10.

The comparison of the set of 221 differentially expressed 
genes revealed in DESeq2 method (P < 0.05), with the set of 14 
differentially expressed genes disclosed in UVE-PLS method, 
indicated, that all 14 genes selected in UVE-PLS analysis were 
included in the set of 221 genes obtained from DESeq2 analysis.

Differential expression of these 14 selected genes was 
confirmed by Euclidean clustering and PCA analysis (Figures 
3B, C).

ROC analysis showed that expression of those 14 genes has 
strong predictive value with an area under the ROC curve >0.964 
(Table 3, Supplementary Table 11 and  Supplementary 
Figure 11).

Therefore, 14 evaluated genes constitute a proposed panel of 
transcriptomic biomarkers of LEAD (Table 3).

Deconvolution of gene expression data revealed information 
about 11 immune cell subtypes in the subjects included to 
transcriptome analysis (Supplementary Figure 12). We did not 
observed significant differences between samples. It suggests that 
there is no meaningful impact of subpopulation composition in 
PBMC on study outcome.

TABLE 2 | Set of 29 differentially expressed miRNA transcripts with P < 0.0001 (from DESeq2 analysis) and with significance confirmed by UVE-PLS in patients with 
LEAD, in comparison with non-LEAD controls. Indicated 29 miRNA transcripts give 26 miRNAs (miRNA IDs). 

No. miRNA transcript miRNA iD* P Fold change PLs coefficient ROc-AUc

Upregulated miRNA transcripts
1. hsa-mir-34a_hsa-miR-34a-5p hsa-miR-34a-5p 1.59E-18 2.4673 4.30E-02 0.9697
2. hsa-mir-122_hsa-miR-122-5p hsa-miR-122-5p 1.09E-09 2.2755 3.22E-02 0.9079
3. hsa-mir-3591_hsa-miR-3591-3p hsa-miR-3591-3p 1.09E-09 2.2749 3.21E-02 0.9079
4. hsa-mir-34a_hsa-miR-34a-3p hsa-miR-34a-3p 1.94E-08 2.6999 3.79E-02 0.9053
5. hsa-mir-1261_hsa-miR-1261 hsa-miR-1261 7.06E-07 1.7390 1.98E-02 0.8961
6. hsa-mir-21_hsa-miR-21-5p hsa-miR-21-5p 7.29E-07 1.3550 7.46E-03 0.9237
7. hsa-mir-15a_hsa-miR-15a-5p hsa-miR-15a-5p 8.64E-07 1.3423 1.12E-02 0.9250
8. hsa-mir-548d-2_hsa-miR-548d-5p hsa-miR-548d-5p 1.90E-06 1.4763 1.04E-02 0.8724
9. hsa-mir-34b_hsa-miR-34b-5p hsa-miR-34b-5p 2.14E-06 2.3585 2.24E-02 0.8776
10. hsa-mir-424_hsa-miR-424-3p hsa-miR-424-3p 2.54E-06 1.8492 1.28E-02 0.8329
11. hsa-mir-196a-2_hsa-miR-196a-5p hsa-miR-196a-5p 4.36E-06 3.1111 3.91E-02 0.8553
12. hsa-mir-548aa-1_hsa-miR-548aa hsa-miR-548aa 8.36E-06 1.4134 6.82E-03 0.8579
13. hsa-let-7f-1_hsa-let-7f-1-3p hsa-let-7f-1-3p 1.49E-05 1.3152 8.39E-03 0.8566
14. hsa-mir-548t_hsa-miR-548t-3p hsa-miR-548t-3p 2.45E-05 1.4475 7.90E-03 0.8474
15. hsa-mir-4423_hsa-miR-4423-3p hsa-miR-4423-3p 2.85E-05 3.8730 3.69E-02 0.8276
16. hsa-mir-196a-1_hsa-miR-196a-5p hsa-miR-196a-5p 3.42E-05 3.0991 3.04E-02 0.8132
17. hsa-mir-548d-1_hsa-miR-548d-5p hsa-miR-548d-5p 7.20E-05 1.4049 7.06E-03 0.8408
Downregulated miRNA transcripts
1. hsa-mir-330_hsa-miR-330-3p hsa-miR-330-3p 3.73E-09 0.7264 −1.32E-02 0.9316
2. hsa-mir-766_hsa-miR-766-3p hsa-miR-766-3p 4.26E-09 0.6585 −1.45E-02 0.9579
3. hsa-mir-30e_hsa-miR-30e-3p hsa-miR-30e-3p 1.54E-08 0.6616 −1.38E-02 0.9118
4. hsa-mir-125b-2_hsa-miR-125b-5p hsa-miR-125b-5p 3.54E-07 0.5270 −2.10E-02 0.9013
5. hsa-mir-1301_hsa-miR-1301-3p hsa-miR-1301-3p 3.92E-07 0.6743 −1.62E-02 0.9066
6. hsa-mir-125b-1_hsa-miR-125b-5p hsa-miR-125b-5p 1.04E-06 0.5256 −1.69E-02 0.8789
7. hsa-mir-3184_hsa-miR-3184-5p hsa-miR-3184-5p 2.59E-06 0.7722 −7.79E-03 0.9026
8. hsa-mir-423_hsa-miR-423-3p hsa-miR-423-3p 2.59E-06 0.7722 −7.79E-03 0.9039
9. hsa-mir-339_hsa-miR-339-3p hsa-miR-339-3p 3.65E-06 0.7448 −2.01E-02 0.8763
10. hsa-mir-138-2_hsa-miR-138-5p hsa-miR-138-5p 4.05E-05 0.4586 −4.17E-02 0.8224
11. hsa-mir-99a_hsa-miR-99a-3p hsa-miR-99a-3p 7.04E-05 0.4906 −1.92E-02 0.8079
12. hsa-mir-6087_hsa-miR-6087 hsa-miR-6087 8.46E-05 0.3240 −2.60E-02 0.8211

*According to miRBase 22 (http://www.mirbase.org/). The table presents P values (FDR with Benjamini-Hochberg correction) and fold changes obtained from DESeq2 analysis, 
PLS coefficients obtained from UVE-PLS analysis and areas under ROC curves (ROC-AUC) resulted from ROC analysis. MiRNA transcripts were divided into upregulated and 
downregulated groups and ordered according to increasing P value.
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In Silico identification of miRNA:  
gene interactions
In order to identify miRNA:gene interactions between 26 selected 
miRNAs and 14 selected genes, both groups were processed by 
multiMiR package. Analysis returned six validated interactions 
(Supplementary Table 12) and 43 top 10% predicted interactions 
(Supplementary Table 13). Determined interactions formed a 
regulatory network containing 20 miRNAs and 11 genes, which 
was constructed using Cytoscape software (Figure 4).

Functional Analysis of miRNA Targets
Functional analysis of 11 target genes (AK5, CDS2, FAM129A, 
FBLN2, NOG, NRCAM, PDE7A, SLC12A2, SLC16A10, 
SLC4A10, and ZSCAN18), present in the regulatory network, 

was performed using DAVID 6.8 tools and resulted associations 
are presented in Table 4.

All analyzed genes, except FBLN2, were associated with at 
least one term linked to atherosclerosis-related disease or risk 
factor, including heart failure, stroke, body weights and measures, 
cardiovascular, cholesterol LDL (low density lipoproteins), 
myocardial infarction, synthesis of phosphatidylglycerol, tobacco 
use disorder, type 2 diabetes, and obesity. Surprisingly, all but 
two genes (FAM129A, SLC16A10) were associated with chemical 
dependency, addictive diseases, and neurological disorders. GO 
enrichment analysis assigned upregulated genes to phosphate-
containing compound metabolic processes and downregulated 
genes were ascribed to transmembrane transport of chloride and 
sodium ions (Table 4).

FigURE 3 | Differential expression analysis of genes in PBMCs samples derived from 8 patients with LEAD (LEAD) and 7 non-LEAD controls (Control). Volcano 
plot (A) illustrating the arrangement of negative log10 of P values and log2 fold changes for 17,868 differentially expressed genes obtained from DESeq2 analysis. 
Heatmap with Euclidean clustering (B) and 3D PCA plot (c) were generated based on expression of 14 genes determined as indicative for LEAD by both DESeq2 
and UVE-PLS methods.
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TABLE 3 | Set of 14 differentially expressed genes with P < 0.05 (from DESeq2 analysis) and with significance confirmed by UVE-PLS genes in patients with LEAD, in 
comparison with non-LEAD controls.

gene symbol gene name P Fold change PLs coefficient ROc-AUc

Upregulated genes

FAM129A Family with sequence Similarity 129 member A 2.78E-08 1.5991 2.04E-03 1.000
GGT1 Gamma-glutamyltransferase 1 6.78E-05 1.6811 1.94E-03 1.000
CDS2 CDP-diacylglycerol synthase 2 3.02E-04 1.2174 8.69E-04 0.982
RP11-545E17.3 — 2.99E-02 1.7321 1.24E-03 1.000

Downregulated genes

SLC4A10 Solute carrier family 4 member 10 7.09E-18 0.2448 −5.87E-03 1.000
NRCAM Neuronal cell adhesion molecule 2.73E-09 0.3024 −3.71E-03 1.000
CD248 CD248 molecule 7.49E-08 0.3241 −4.59E-03 1.000
NOG Noggin 2.03E-07 0.3390 −4.42E-03 1.000
ZSCAN18 Zinc finger and SCAN Domain containing 18 1.41E-06 0.5774 −2.33E-03 1.000
FBLN2 Fibulin 2 5.54E-06 0.3928 −3.48E-03 1.000
AK5 Adenylate kinase 5 1.57E-05 0.5112 −2.69E-03 1.000
SLC16A10 Solute carrier family 16 member 10 6.17E-05 0.4752 −2.60E-03 0.982
PDE7A Phosphodiesterase 7A 3.87E-04 0.7184 −1.19E-03 0.964
SLC12A2 Solute carrier family 12 member 2 1.17E-02 0.7812 −1.10E-03 1.000

The table presents P values (FDR with Benjamini-Hochberg correction) and fold changes obtained from DESeq2 analysis, PLS coefficients obtained from UVE-PLS analysis and 
areas under ROC curves (ROC-AUC) resulted from ROC analysis. Genes were divided into upregulated and downregulated groups and ordered according to increasing P value.

FigURE 4 | Regulatory networks presenting interactions between miRNAs and genes revealed as indicative for LEAD. Red and blue color of nodes mean 
respectively upregulated and downregulated miRNAs or genes. Solid and dashed edges indicate validated and predictive interactions, respectively. Panel (A) 
presents interactions between upregulated miRNAs and downregulated genes, panel (B) presents interactions between downregulated miRNAs and upregulated 
genes, panel (c) presents interactions between downregulated miRNAs and downregulated genes, panel (D) presents interactions between upregulated miRNAs 
and upregulated genes.
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TABLE 4 | Functional analysis of eleven genes, which dysregulated expression in patients with LEAD was connected to miRNA modulatory function. 

Functional analysis of upregulated genes (CDS2, FAM129A)

KEGG, Reactome, GAD and GAD Class terms

gene Terms

CDS2 KEgg: Glycerophospholipid metabolism, phosphatidylinositol signaling system, metabolic pathways 
Reactome: Synthesis of PG (phosphatidylglycerol) 
gAD: Type 2 Diabetes|edema|rosiglitazone, tobacco use disorder
gAD class: Pharmacogenomic, chemdependency

FAM129A gAD: Insulin resistance, insulin, celiac disease, echocardiography 
gAD class: Immune, cardiovascular, metabolic

Gene Ontology terms associated with both CDS2 and FAM129A

category Terms

GO biological process Phosphate-containing compound metabolic process, phosphorus metabolic process, cellular biosynthetic process, organic substance 
biosynthetic process, biosynthetic process, membrane, cytoplasm, cellular metabolic process, primary metabolic process, organic substance 
metabolic process, metabolic process

GO cellular component Membrane, cytoplasm, cellular metabolic process, primary metabolic process, organic substance metabolic process, metabolic process, 
membrane-bounded organelle, organelle, intracellular part, intracellular, cell part

Functional analysis of downregulated genes (AK5, ZSCAN18, NOG, FBLN2, NRCAM, PDE7A, SLC12A2, SLC16A10, SLC4A10)

KEGG, Reactome, GAD and GAD Class terms

gene Terms

FBLN2 Reactome: Molecules associated with elastic fibers 
gAD: Personality, Alzheimer disease, hemoglobins, alcoholism, kidney aging 
gAD class: Chemdependency, psych, neurological, aging, hematological

NRCAM KEgg: Cell adhesion molecules (CAMs) 
Reactome: Neurofascin interactions, bicarbonate transporters, NrCAM interactions, interaction between L1 and ankyrins 
gAD: Schizophrenia, tobacco use disorder, autism, mathematics ability, autism obsessive compulsive disorder, several psychiatric disorders 
gAD class: chemdependency, psych, other

PDE7A KEgg: Purine metabolism, Morphine addiction
Reactome: G alpha (s) signaling events
gAD: Hemoglobins, HIV-1, tobacco use disorder, type 2 diabetes|edema|rosiglitazone
gAD class: Chemdependency, hematological, infection, pharmacogenomic

SLC12A2 KEgg: Pancreatic secretion, Vibrio cholera infection, salivary secretion 
Reactome: Cation-coupled chloride cotransporters 
gAD: Schizophrenia, tobacco use disorder, body weights and measures, celiac disease, myocardial infarction, brain imaging in schizophrenia 
(interaction), carcinoid tumor, hearing loss noise-induced 
gAD class: Chemdependency, psych, other, neurological, metabolic, cancer, cardiovascular, immune

SLC16A10 KEgg: Protein digestion and absorption, thyroid hormone signaling pathway Reactome: Amino acid transport across the plasma membrane 
gAD: Cholesterol LDL 
gAD class: Metabolic

SLC4A10 Reactome: Bicarbonate transporters 
gAD: Tobacco use disorder, glaucoma open-angle, hepatitis C|remission spontaneous 
gAD class: Chemdependency, vision, infection

AK5 KEgg: Purine metabolism, metabolic pathways, biosynthesis of antibiotics 
Reactome: Interconversion of nucleotide di- and triphosphates 
gAD: Heart failure, leukocyte count, sodium, stroke, tobacco use disorder 
gAD class: Cardiovascular, chemdependency, hematological, metabolic, neurological

NOG KEgg: TGF-beta signaling pathway 
Reactome: Signaling by BMP (Bone morphogenetic proteins) 
gAD: Albumins, body height, bone mineral density, cleft lip, gamma-glutamylcyclotransferase, height, neural tube defects, nonsyndromic cleft 
lip with or without cleft palate, obesity|POF–premature ovarian failure|polycystic ovarian syndrome|polycystic ovary syndrome|primary ovarian 
insufficiency|puberty, delayed|puberty, precocious|thrombophilia|tobacco use disorder, osteoporosis 
gAD class: developmental, metabolic

ZSCAN18 KEgg: Purine metabolism, morphine addiction 
Reactome: G alpha (s) signaling events 
gAD: Hemoglobins, HIV-1, tobacco use disorder, type 2 diabetes|edema|rosiglitazone 
gAD class: chemdependency, hematological, infection, pharmacogenomics

Gene Ontology terms associated with at least two genes (EASE score < 0.1)

category Terms

GO biological process Anion transport, developmental growth, chloride transport, central nervous system development, inorganic anion transport, growth, neuron 
development, regulation of cell size, anion transmembrane transport, sodium ion transport

(Continued)
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DiscUssiON
Despite great advances in cardiovascular research, PAD related 
diseases (including LEAD) still represent the major health 
problem with serious clinical complications. Investigation and 
treatment of LEAD has been hindered by the multifactorial 
character of the disease, diverse symptomatology, lack of relevant 
in vitro disease models and problems with acquiring suitable 
specimens. There is a need for novel, low-invasive biomarkers for 
early detection of LEAD and monitoring disease progression.

In presented study we conducted comparative analysis of 
microRNAome and transcriptome from PBMCs of patients with 
LEAD and healthy controls. Expression profiles were determined 
by NGS. Integrated analysis of microRNAome and transcriptome 
is important for our understanding of miRNA functions, giving 
specific insights into a broad layer of post-transcriptional control 
(Rajewsky, 2006). Identification of miRNA influenced gene 
expression patterns facilitates linking specific miRNA:genes 
interaction networks associated with this disease.

Our experiment involved utilization of statistical and 
bioinformatical tools to analyze miRNA and gene expression 
datasets and to determine miRNA:gene regulatory network. We 
applied strict rules for elimination or alleviation of technical, 
detection, and biological biases (Hansen et al., 2011; Timmons 
et al., 2015)- for detailed description of laboratory and other 
procedures please refer to Supplementary Material. We selected 
most promising 26 miRNAs and 14 genes, which potentially may 
serve as biomarkers for LEAD (Tables 2 and 3, respectively). The 
threshold of statistical significance was elevated to P < 0.0001 
for miRNA selection with DESeq2 analysis to limit false positive 
results. Elimination of uninformative variables using UVE-PLS 
allowed us to present more reliable results. Those criteria for 
miRNA and gene signatures selection were introduced to eliminate 
qPCR validation. ROC analysis confirmed good diagnostic 
value of proposed biomarkers (Tables 2 and 3, Supplementary 
Tables 8 and 11, Supplementary Figures 8 and 11). Determined 
miRNA:gene interactions formed a proposed regulatory network 
(Figure 4), although further confirmation of predictive interactions 
should be performed in future studies. The preliminary functional 
analysis suggests that proposed biomarkers may provide useful 
information on the pathogenesis of LEAD.

Euclidean clustering and PCA analysis of determined potential 
biomarker miRNAs clearly segregates studied individuals into 
LEAD and control groups, but after excluding four initially 
selected miRNA transcripts (hsa-mir-486-2_hsa-miR-486-3p, 
hsa-mir-486_hsa-miR-486-5p, hsa-mir-486_hsa-miR-486-3p, hsa- 

mir-486-2_hsa-miR-486-5p) which belong to miR-486 family 
(compare Figures 2C, D with Supplementary Figure 7). One of the 
reasons for the occurrence of this phenomenon can be erythrocyte 
contamination and/or hemolysis in studied samples, since miR-486 
has been reported as erythrocyte miRNA (Pizzamiglio et al., 2017). 
However, that process was not observed in studied blood samples 
or PBMCs preparations. PBMCs isolation procedure included 
four washing steps, in order to avoid erythrocyte contamination of 
PBMCs samples. The other reason could be the influence of factors, 
like age, BMI, sex, or smoking habits, which may affect expression 
of miR-486 family transcripts. Indeed, correlation analysis indicated 
age, BMI, and smoking habits as influencing factors (Supplementary 
Table 7), what may explain weaker biomarker correlation of 
these miRNA transcripts despite high statistical significance of 
differentiation LEAD and control groups.

The idea of creating panels and monitoring peripheral 
atherosclerosis-associated blood biomarkers, including miRNA 
profiling, is not novel and has been well studied (Patino et al., 
2005; Mohr and Liew, 2007; Zampetaki et al., 2012). Stather et 
al. indicated 12 miRNAs with good diagnostic value in PAD by 
profiling 754 miRNAs in peripheral blood using quantitative 
RT-PCR (Stather et al., 2013). Using the same method, Signorelli 
et al. indicated association between presence of PAD and increased 
serum level of miR-130a, miR-27b, and miR-210, showing 
significant correlation between BMI and miR-130a, as well as 
between claudication distance and miR-210 (Signorelli et al., 
2016). Overexpression of these three miRNAs in serum may also 
serve as early marker of a PAD-related disease—atherosclerosis 
obliterans (Li et al., 2011). Vegter et al. demonstrated relationship 
between downregulation of miR-18a-5p, miR-27a-3p, miR-
199a-3p, miR-223-3p, and miR-652-3p in plasma and severity of 
PAD symptoms in patients with heart failure (Vegter et al., 2017).

Huang and collaborators, using massively parallel sequencing 
of plasma miRNAs, showed that downregulation of miR-125b 
is associated with increased occurrence of acute myocardial 
infarction (AMI) in Chinese cohorts (Huang et al., 2014). 
Therefore, lower level of this miRNA in our LEAD group may be 
a sign of higher risk of cardiac complications.

Rationale for use of PBMCs in our study was the fact, that this 
cell pool was not studied extensively in LEAD. PBMCs represent 
a subpopulation of white blood cells containing lymphocytes and 
monocytes, constituting an important element of inflammation 
process in atherosclerosis. Transcriptional profiling of this 
subpopulation should provide an abundance of information 
about vascular occlusive diseases. PBMCs are also highly 
accessible, what facilitates their utilization in medical procedures.

TABLE 4 | Continued

Functional analysis of downregulated genes (AK5, ZSCAN18, NOG, FBLN2, NRCAM, PDE7A, SLC12A2, SLC16A10, SLC4A10)

GO molecular function Secondary active transmembrane transporter activity, active transmembrane transporter activity, inorganic anion transmembrane transporter 
activity, symporter activity, substrate-specific transmembrane transporter activity, transmembrane transporter activity, anion transmembrane 
transporter activity, substrate-specific transporter activity

GO cellular component Integral component of plasma membrane, intrinsic component of plasma membrane, plasma membrane region, basolateral plasma 
membrane, plasma membrane part

Analysis was performed using DAVID 6.8 database and categories including Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, Genetic Association Database (GAD), 
Genetic Association Database Class (GAD Class), and Gene Ontology (GO).
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Dong et al. reported that increased expression levels of miR-24, 
miR-33a, miR-103a, miR-122, miR-34a, and miR-21 in PBMCs 
are indicators of lipids levels in stable CAD (Dong et al., 2017). In 
that study, miR-34a and miR-21 differed insignificantly between 
CAD and control groups, but in other studies both miRNAs were 
significantly upregulated in plasma and atherosclerotic plaques of 
CAD patient (Raitoharju et al., 2011; Han et al., 2015). Therefore, 
overexpression of miR-34a and miR-21 in PBMCs, found in our 
study, may distinguish LEAD from CAD. This hypothesis needs 
to be confirmed in further studies.

Genes recognized as targets of biomarker miRNAs were 
already presented to play a role in pathology of atherosclerosis. 
Elevated expression of CDS2 promotes synthesis of diacylglycerol 
and increase in lipid droplets formation in HeLa cells (Qi et al., 
2016). Upregulation of CDS2, noticed in our study, presumably 
indicates intense lipid synthesis promoting foam cells formation 
in atherosclerosis plaques.

Downregulation of SLC16A10 observed in our patients may 
suggest a decrease in uptake and secretion of thyroid hormones 
(Friesema et al., 2008), mimicking hypothyroidism, the 
condition associated with other atherosclerosis risk factors like 
elevated blood pressure and increased levels of LDL, cholesterol, 
C-reactive protein, and homocysteine (Ichiki, 2010).

Shankar et al. reported positive association between serum 
GGT (gamma-glutamyltransferase) levels and PAD in male 
patients (Shankar et al., 2008). Our study demonstrated 
upregulation of GGT1 gene in patients with LEAD, the effect 
which may cause an increase in serum GGT, which confirms the 
association described by Shankar and collaborators.

FAM129A was reported to be dysregulated in atopy and 
asthma, where, similarly to atherosclerosis, inflammation is 
a prominent element of the disease (Yick et al., 2014). During 
asthma progression, airway undergoes a process of remodeling 
similar to atherosclerotic vascular wall transformation (Fixman et 
al., 2007). Recently, FAM129A was presented as an asthma steroid 
response modulator (McGeachie et al., 2018). This suggests, that 
similar pathologic mechanism, connecting epigenetic regulation 
of FAM129A expression, inflammation, and steroid metabolism, 
may play role in asthma and LEAD.

Pathological processes in LEAD manifest in different 
manner, following different pathways depending on the 
particular case scenario, which is not surprising as in a 
multifactorial disease comprising a plethora of environmental, 
genetic, and epigenetic factors. It is still unknown, how miRNA 
expression or influence of environmental factors may affect 
different presentation of the disease, warranting more research 
on those mechanisms.

In order to compare our data with current knowledge we 
have collected literature data in Supplementary Table 14. 
Surprisingly, out of 26 microRNA and 14 mRNA genes only 
seven microRNAs (let-7f-1-3p, miR-122, miR-34a-3p, miR-
21-5p, miR-30e-3p, miR-125b-5p, miR-423-3p) overlapped with 
literature data as being important in atherosclerotic process. This 
could be easily explained by deep differences in methodology 
of studies performed to date. One can notice, that differences 

exist in almost all aspects of studies designs (please refer to 
Supplementary Table 14 and Supplementary Material). Taken 
together, that will make direct comparison of data and scientific 
reasoning difficult and may explain mayor differences observed.

Although our research provides new elements of knowledge 
about application of miRNA and genes as biomarkers in 
LEAD, we are aware of several limitations:

1. It remains uncertain whether alterations of proposed biomarkers 
were predictive of or responsive to LEAD development.

2. PBMCs represent a heterogeneous pool of various cell 
subpopulations (lymphocytes, monocytes), which may differ 
in miRNA and gene expression patterns. To evaluate potential 
impact of those nuances we made deconvolution of miRNA 
and gene expression data. Results suggest minor influence of 
PBMCs subpopulations composition on sequencing outcome 
(Supplementary Figures 9 and 12). However, one considers 
further investigations of these differences.

3. Although the selected changes in microRNA and genes expression 
levels were highly significant (P < 0.0001 for miRNA, Benjamini-
Hochberg correction, UVE-PLS confirmation), studies with 
larger cohorts should be performed to confirm our results.

4. Participants subjected to transcriptomic analysis represent 
only a part of population for miRNA expression analysis, 
what may provide not comprehensive data of gene signatures 
in LEAD.

5. Significant differences in sex, age, BMI, and smoking habits 
between LEAD and control groups as well as other factors in 
LEAD group, such as co-existing diagnoses (i.e. type 2 diabetes 
mellitus, other cardiovascular diseases) and medications 
could influence the outcome.

6. Majority of miRNA:gene interactions in presented miRNA 
regulatory network had a putative character and require 
further in vitro and in vivo validation in external studies

In the light of these limitations, further investigations in larger 
cohort studies are needed to validate discriminative capability 
of found biomarkers and to explore their biological relevance. 
Detailed description of environmental, behavioral, and clinical 
factors of studied subjects would allow shedding more light on 
the complexity of LEAD pathology.
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