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Genomic information can contribute significantly to the increase in accuracy of genetic 
predictions compared to using pedigree relationships alone. The main objective of this 
study was to compare the prediction ability of pedigree-based best linear unbiased 
prediction (PBLUP) and single-step genomic BLUP (ssGBLUP) models. Turkey records of 
feed conversion ratio, residual feed intake, body weight, breast meat yield, and walking 
ability were provided by Hybrid Turkeys, Kitchener, Canada. This data was analyzed using 
pedigree-based and single-step genomic models. The genomic relationship matrix was 
calculated either using observed allele frequencies, all allele frequencies equal to 0.5 or 
with a different scaling. To avoid potential problems with inversion, three different weighting 
factors were applied to combine the genomic and pedigree matrices. Across the studied 
traits, ssGBLUP had higher heritability estimates and significantly outperformed PBLUP 
in terms of accuracy. Walking ability was genetically negatively correlated to body weight 
and breast meat yield; however, it was not correlated to feed conversion ratio (FCR) or 
residual feed intake (RFI). Body weight showed a moderate positive genetic correlation 
to feed conversion ratio, residual feed intake and breast meat yield. Feed conversion 
ratio was strongly correlated to residual feed intake (0.68 ± 0.06). There was almost no 
genetic correlation between breast meat yield and feed efficiency traits. Larger differences 
in accuracy between PBLUP and ssGBLUP were observed for traits with lower heritability. 
Results of the three weighting factors showed only slight differences and an increase in 
accuracy of prediction compared to PBLUP. Slightly different levels of bias were observed 
across the models, but were higher among the traits; BMY was the only trait that had a 
regression coefficient higher than 1 (1.38 to 1.41). We show that incorporating genomic 
information increases the prediction accuracy for preselection of young candidate turkeys 
for the five traits investigated. Single-step genomic prediction showed substantially higher 
accuracy estimates than the pedigree-based model, and only slight differences in bias 
were observed across the alternate models.

Keywords: single-step blending, genomic selection, pedigree best linear unbiased prediction, genetic correlation, 
accuracy, bias
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inTrODUcTiOn
The traditional mixed model equations (Henderson, 1975) are 
a versatile approach in animal breeding for fitting a variety of 
models and have been successful for many decades. In such 
models, genetic effects are estimated based on the covariance 
structure proportional to the relationship matrix based on 
pedigree information. This method provides predictions for 
all animals in the pedigree by adjusting for fixed and random 
non-genetic effects. Studies have shown that genomic selection, 
based on information from high-density single nucleotide 
polymorphism (SNP) markers, accelerates genetic gain by 
increasing the accuracy of prediction, shortening generation 
intervals, and improving control of inbreeding (Meuwissen et al., 
2001; VanRaden et al., 2009; Verbyla et al., 2009).

Incorporating genomic information in genetic evaluations 
was initially based on the two-step technique (e.g., VanRaden et 
al., 2009; Hayes et al., 2009a). This technique includes defining 
a response variable (e.g., de-regressed estimated breeding values; 
Garrick et al., 2009) for the genotyped animals, training the 
markers effects and applying a genomic prediction procedure 
based on the estimated marker effects for genotyped animals, 
usually the selection candidates. This analysis is advantageous for 
providing predictions for genotyped animals, however, obtaining 
predictions for non-genotyped animals is not straight forward 
(Aguilar et al., 2010; Christensen and Lund, 2010; Fragomeni 
et  al., 2015). Additional methods have been developed, for 
example, blending genomic and pedigree information and using 
other techniques such as correlated traits, selection index and 
external expected progeny differences; however, each of these 
methods has its own disadvantages (Garrick and Fernando, 2014). 
Additional downsides of the two-step approach are that finding a 
suitable response variable, such as deregressed proofs, as well as an 
appropriate statistical modeling approach, such as Bayes A, can be 
challenging (Garrick et al., 2009; Gianola et al., 2009). In addition, 
the omission of information from non-genotyped animals and 
selection bias based on availability of genomic information may 
affect the analyses (Misztal et al., 2009).

Alternatively, a single-step method that combines genomic 
and pedigree data in a unified analysis has been introduced 
in the last decade (Legarra et al., 2009; Misztal et al., 2009; 
Aguilar et al., 2010). This single-step GBLUP closely resembles 
the traditional genetic evaluation approach based on linear 
mixed model analyses, and can readily use the available linear 
algebra machinery and software. In order to be integrated into 

one single matrix with the numerator relationship matrix (A), 
the genomic relationship matrix (G) should be positive definite. 
Condensing the G matrix to remove duplicate rows and columns 
(e.g. as in Baes and Reinsch, 2007) can be considered to make G 
invertible if the number of markers is higher than the number 
of individuals. VanRaden, (2008) suggested an improved non-
singular matrix (Gw) that can be obtained as wG + (1 - w)A22, 
where A22 is the numerator relationship matrix among genotyped 
individuals. Such adjustment can be interpreted as the relative 
weight on the polygenic effect (Christensen and Lund, 2010). In 
addition to facilitating inversion, values for w between 0.90 and 
1 showed changes in accuracy of predictions (VanRaden, 2008). 
Christensen and Lund (2010) reported negligible differences in 
estimated breeding values when w ranged between 0.95 and 0.98.

Genomic selection has been widely adopted in various livestock 
species (e.g., Hayes et al., 2009b; Wolc et al., 2016; Abdalla et al., 
2019). Incorporating genomic information into turkey breeding 
programs is expected to increase the accuracy of prediction and 
outperform the pedigree-based method. Genomic-based selection 
programs reduce the exclusive reliance on the phenotypic, pedigree, 
and progeny information (Dekkers, 2004; Bolormaa et al., 2013). 
Moreover, direct selection can be applied to phenotypes that are 
expensive to measure (e.g., feed efficiency), only expressed late in 
life (e.g., walking score) and can only be collected once the animal 
is dead (e.g., breast meat yield). It is also important to determine 
the possibility of performing simultaneous selection for genetically 
correlated traits and understanding the response that will occur 
in each individual trait. The aim of this study was to estimate 
heritability and genetic correlations for 5 economically important 
traits measured in turkeys (two feed efficiency traits, body weight, 
breast meat yield, and walking ability), and to contrast single-step 
genomic and pedigree-based models in terms of prediction ability 
using those traits.

MaTErial anD METhODS

Phenotype and Genotype Data
The data used in this study was provided by Hybrid Turkeys, 
Kitchener, Canada and consisted of 5,619 records on feed 
conversion ratio (FCR) and residual feed intake (RFI) in males; 
170,844 records of body weight (BW) and walking score (WS) at 
20 weeks for males (71,012) and 18 weeks for females (99,832); 
9,634 records for breast meat yield (BMY) in males as shown 
in Table 1. These records were collected for 10 generations on 

TaBlE 1 | Descriptive statistics of the analyzed data set, including the number of records, mean and standard deviation of the traits and number of records in the 
training and validation subsets.

Trait number Mean Std Training Validation

not 
genotyped

Genotyped not genotyped Genotyped

Feed conversion ratio (kg/kg) 5,592 2.58 0.39 2,711 2,307 464 110
Residual feed intake (kg) 5,592 0 2.51 2,711 2,307 464 110
Body weight (kg) 170,844 17.50 5.32 139,061 13,862 16,783 1,138
Breast meat yield (%) 9,634 24.37 2.33 7,877 843 778 136
Walking score (1 - 6) 170,844 2.10 0.86 139,061 13,862 16,783 1,138
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birds hatched between 2009 and 2017. The birds were reared 
under a standard feeding system with group housing and shared 
feeders and drinkers until 15 weeks of age. From 15 weeks of 
age until 19 to 20 weeks of age, a real-time automated system 
was used to monitor individual feed intake. This monitoring 
system consisted of hardware and software subsystems. The bird 
identification numbers were automatically scanned to detect 
their identification in each time they entered the feed station and 
the feeder weight and body weight were recorded using a scale 
throughout this period (Tu et al., 2011). The FCR was calculated 
as total feed intake divided by weight gain. To calculate RFI, 
expected feed intake was obtained as a multiple regression of 
observed feed intake on metabolic mid-weight, body weight 
gain and hatch week (Case et al., 2012). At 18 and 20 weeks of 
age, females and males, respectively, were given a WS between 
1 and 6 based on their walking ability, such that animals with a 
higher walking score had stronger legs and better walking ability. 
Finally, BMY was taken after slaughtering the males at 21 or 22 
weeks and was calculated as:

 
BMY =

Breast meat weight

Live body weight at slaughhter

×100.
 

A subset of animals in this population were genotyped using 
a proprietary 65K single nucleotide polymorphisms (SNP) panel 
(65,000 SNP; Illumina, Inc.) as shown in Table 1. In addition, a 
pedigree of 783,298 animals was available for analysis. The data 
was not imputed and as a quality control, SNP markers were 
excluded if they significantly deviated from Hardy Weinberg 
proportions (P<1×10-8), had minor allele frequency lower than 
5%, call rate lower than 90%, or were located in non-autosomal 
regions. After editing, the number of markers remaining for 
subsequent genomic analysis was 53,455. All animals had a call 
rate higher than 90%.

Data analysis
Pedigree-Based Best Linear Unbiased 
Prediction (PBLUP)
A traditional animal model procedure based on BLUP was 
used to obtain estimated breeding values for all animals in the 
pedigree across all traits. The following multi-trait model was 
used to estimate genetic parameters:

 y Xb Zu e= + + ,  

where y is a vector of observations of FCR, RFI, BMY, BW, and 
WS sorted within animals; b is a vector with the fixed effects of 
hatch week-year and sex for BW and WS and only hatch week-
year for FCR, RFI and BMY; u is a vector of additive genetic 
effects (i.e., breeding values), distributed as u ~ N(0, A⊗R), 
where A is the numerator relationship matrix including the 
inbreeding coefficients and R is the additive genetic variance-
covariance matrix among traits; e is a vector of residual effects, 
distributed as e ~ EN(0, )∑+

i iy  where Eiy indicates a mi×mi 
matrix corresponding to the traits that were present for animal 

i, and mi is the number of traits present for animal i; X and Z 
are incidence matrices for the respective fixed and random 
effects. Variance components and genetic correlations among 
the traits were estimated by restricted maximum likelihood 
(REML) and the procedure was carried out using the BLUPF90 
family of programs (Misztal et al., 2014). Inbreeding coefficients 
were included in REML and BLUP for both pedigree-based and 
single-step analyses.

Single-Step Genomic Best Linear Unbiased 
Prediction (ssGBLUP)
A combined pedigree and genomic relationship matrix (H; 
Misztal et al., 2009; Aguilar et al., 2010) was created to replace 
the pedigree-derived relationship matrix (A) in the traditional 
animal model described above and the variance components were 
estimated based on the H matrix, which was created as follows:

 
H A

0 0

0 G+ A A

-1 -1

22

-1

22

-1
= +

( (1- ) ) -w w












.
 

In the above, w is a constant denoted as a weighting factor 
in this study as described later, G is the genomic relationship 
matrix, which was calculated as described in VanRaden (2008):

 

G
M P M P= − −

−=∑
( )( )

( )
,

'

2 11j
m

j jp p
 

where M is the matrix of genotypes, with columns representing 
markers and rows representing individuals. Each element in Mij 
was coded as 0, 1 or 2 if the genotype of individual i for SNP j was 
homozygous for the first allele, heterozygous, or homozygous for 
the second allele, respectively. P is a matrix with average allele 
frequencies calculated as 2(pi − 0.5), where pi is the frequency 
of the second allele at locus (column) i. If allele frequencies are 
not properly estimated, biased relationships and consequently 
biased genomic estimated breeding values (GEBV) may result 
(Aguilar et al., 2010; Christensen and Lund, 2010). In this sense, 
allele frequencies need to be estimated from the unselected 
base population. Since this historical data was not available in 
the present study, approximations were used. Different allele 
frequency scenarios were considered. First, allele frequencies 
were all assumed equal to 0.5 (G0.5F). Second, average allele 
frequencies calculated from the observed genotype data were 
used (GObsF). Finally, using observed allele frequencies with 
different scaling (GSca), following Gianola et al. (2009)

GSca = 
-  ( - )

p - q +2
p 1-p

m

'

0 0
2

j j
j=1

m
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ˆ ˆ

ˆ ˆ

,

α β
α β

2 m

where p0=α/(α+β) is the expected allele frequency, q0=(1-p0), α 
and β are parameters of the beta distribution fitting the allelic 
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frequency, and m is the number of markers. The two unknown 
parameters α and β were estimated using the method of moments 
(Johnson et al., 1994) as follows:

 
α̂ =

−( )
−









x

x x
v

1
1 ,

 

 
β̂ = −( ) −( )

−








1

1
1x

x x
v

.

 

In the above, x  and v  are the mean and the variance of 
allele frequencies, respectively. To avoid potential problems with 
inversion and to account for the relative weight of the polygenic 
effect needed to explain the total additive variance, three 
different values (0.95, 0.90 and 0.85) have been considered for w 
in this study. These three alternative values for w are denoted as 
ssGBLUP_0.95, ssGBLUP_0.90 and ssGBLUP_0.85, respectively.

assessment of accuracy
The following technique was used to compare prediction ability of 
the PBLUP and the ssGBLUP models. First, adjusted phenotypes 
corrected for fixed effects were obtained (adjusted phenotypes) 
for all animals based on the PBLUP model (PBLUP full model). 
Second, approximately 10% of the youngest, phenotyped birds had 
their records set to missing (PBLUP reduced model). The estimated 
breeding values (EBV) for this 10% of animals were then estimated 
based on their parent average and comprised the validation group 
as shown in Table 1. Next, the accuracy of the PBLUP model 
was calculated as the Pearson correlation coefficient between the 
adjusted phenotypes of the animals in the validation group from 
the PBLUP full model and their corresponding EBV obtained from 
the PBLUP reduced model. The same procedure and validation 
data set used to validate the PBLUP was used for ssGBLUP, but 
the accuracy was calculated as the Pearson correlation coefficient 
between the adjusted phenotypes of the animals in the validation 
group from the PBLUP full model and their corresponding (G)
EBV obtained from the ssGBLUP reduced model.

assessment of Bias
For PBLUP, the bias of predictions and their associated 
standard errors were assessed by the regression of each 

adjusted phenotype from the full PBLUP model in the 
validation subset on the corresponding EBV from the reduced 
PBLUP model. For ssGBLUP, the bias was evaluated as the 
regression of the adjusted phenotype from the full PBLUP 
model on the corresponding (G)EBV obtained from the 
reduced ssGBLUP model. Slope coefficients from the linear 
regression with values closer to one are preferred, as slope 
coefficients notably less than or higher than 1 reflect inflation 
and deflation, respectively (Su et al., 2012; González-Recio 
et al., 2014).

rESUlTS anD DiScUSSiOn

allele Frequencies to Estimate G
The three different allele frequency approximations (i.e., G0.5F, 
GObsF, and GSca) showed similar results in terms of accuracy 
and bias and hence the observed allele frequencies (GObsF) were 
considered for subsequent analyses.

Genetic Parameters
Heritabilities
Estimates of heritability from multi-trait PBLUP and 
alternatively weighted ssGBLUP are shown in Table 2. Based 
on pedigree, the heritability estimate for body weight was 
0.35  ± 0.06. Similar results of body weight heritability in 
turkey have been reported (e.g., Nestor et al., 1999; Aslam 
et al., 2011). The heritability for BMY was 0.27 ± 0.04 and 
slightly lower than the estimates reported by Aslam et al. 
(2011) and Le Bihan-Duval et al. (2008) in turkeys (0.30 ± 
0.10) and chicken (0.30 ± 0.04), respectively. The heritability 
estimate for FCR (0.14 ± 0.02) was similar to those reported 
by Case et al. (2012) (0.16 ± 0.02) and for RFI (0.12 ± 0.02) was 
lower than the value reported by Case et al. (2012) (0.21  ± 
0.02). Across all traits, ssGBLUP had higher heritability 
estimates than PBLUP. The heritabilities for FCR, RFI, BW, 
BM and WS were 0.17 ± 0.03, 0.15 ± 0.02, 0.41 ± 0.06, 0.30 ± 
0.05, and 0.26 ± 0.04 for ssGBLUP_0.90 model, respectively, 
while the estimates were 0.14 ± 0.02, 0.14 ± 0.02, 0.35 ± 0.06, 
0.27 ± 0.04, and 0.24 ± 0.04 for the PBLUP model.

Genetic and Residual Correlations
Accurate estimation of genetic correlations among traits is 
imperative for any breeding program (Pantelić et al., 2011). 

TaBlE 2 | Heritability estimates ± standard errors for the studied traits based on the pedigree-based best linear unbiased prediction (PBLUP) and the single-
step genomic best linear unbiased prediction blending (ssGBLUP) with three different combinations of blending weights (w) for genomic (G) and pedigree (a22) 
relationship matrices.

Model1 PBlUP ssGBlUP_0.95 ssGBlUP_0.90 ssGBlUP_0.85

Feed conversion ratio 0.14 ± 0.02 0.17 ± 0.03 0.17 ± 0.03 0.17 ± 0.03
Residual feed intake 0.12 ± 0.02 0.15 ± 0.02 0.15 ± 0.02 0.15 ± 0.02
Body weight 0.35 ± 0.06 0.41 ± 0.06 0.41 ± 0.06 0.40 ± 0.06
Breast meat yield 0.27 ± 0.04 0.30 ± 0.05 0.30 ± 0.05 0.30 ± 0.05
Walking score 0.24 ± 0.04 0.26 ± 0.04 0.26 ± 0.04 0.26 ± 0.05

1ssGBLUP_0.95: w = 0.95; ssGBLUP_0.90: w = 0.90; ssGBLUP_0.85: w = 0.85.
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Genetic and residual correlations given by the overall most 
accurate method (ssGBLUP_0.90, see next sections) are 
shown in Table 3. The genetic correlations between BW and 
FCR (0.19 ± 0.07), RFI (0.13 ± 0.08) and BMY (0.16 ± 0.06) 
were all positive and weak, but BW was moderately negatively 
correlated to WS (-0.47 ± 0.02). Low or no genetic correlation 
was observed between BMY and FCR (-0.05 ± 0.01); WS and 
FCR (-0.09 ± 0.07); RFI and BMY (0.09 ± 0.01). Walking 
ability was also moderately negatively correlated to BMY 
(-0.35 ± 0.05) and lowly correlated to RFI (0.08 ± 0.01). The 
two feed efficiency traits were highly positively correlated 
(0.68 ± 0.06). The residual correlation of BW was negative 
with FCR (-0.39 ± 0.01) and with RFI (-0.17  ± 0.03), but 
positive with BMY (0.19 ± 0.02). Walking ability, on the 
other hand, had negative correlation (-0.15 ± 0.01) with BW 
and approximately zero residual correlations with all other 
studied traits. BMY showed low negative residual correlation 
with FCR (-0.10 ± 0.01) and RFI (-0.07 ± 0.03), and a positive 
moderate (0.23 ± 0.09) residual correlation was found 
between FCR and RFI.

These results indicate a moderate and unfavorable genetic 
correlation between WS with both BW and BMY, meaning 
that selection for increased BW and BMY may also increase 
leg problems. The genetic increase in body weight of turkeys 
starting at age 16 weeks was previously found associated with 
frequency of leg abnormalities (Nestor, 1984). The main cause 
for this issue is that the direct selection for increased BMY 
and the overall BW had led to a relatively faster increase in 
these parts of the body than the muscles and bones of the legs 
(Nestor et al., 1987). Since the estimated unfavorable genetic 
correlations are only moderate, it would be desirable to further 
investigate these traits to detect quantitative trait loci/genes 
that may enhance both BW/BMY and walking ability. This 
could be performed in the context of genome-wide association 
analysis with multiple traits using, for example, structural 

equation modeling approaches (Rosa et al., 2011). Conversely, 
BW was positively correlated to feed efficiency traits as well 
as to BMY, indicating that selection for higher BW could 
indirectly increase these two traits. The genetic correlations 
between feed efficiency traits and walking ability were close 
to zero. No previous studies were available to compare these 
results. The high genetic correlation between FCR and RFI 
is expected and agrees with previous estimates in the turkey 
(Case et al., 2012), beef (Schenkel et al., 2004) and pigs (Hoque 
et al., 2007).

accuracy of Prediction
Across the studied traits, the ssGBLUP model outperformed 
PBLUP (shown in Table 4). Accuracies of PBLUP ranged from 
0.21 to 0.36 and those for ssGBLUP ranged from 0.26 to 0.40 with 
lower heritability traits showing a higher increase in accuracy 
between PBLUP and ssGBLUP. Results of the ssGBLUP_90 
showed an increase in accuracy of 31%, 29%, 12%, 23%, and 
16% for FCR, RFI, BW, BMY, and WS, respectively. In general, 
marker-based EBV have shown higher predictive ability than 
those estimates using pedigree relationships (e.g., Daetwyler 
et al., 2007; Hayes et al., 2010). The results of this study indicate 
that incorporating genomic data (ssGBLUP blending) in the 
prediction of the traits investigated here produces more accurate 
predictions, which will lead to an improved genetic gain in 
turkey breeding.

In practice, there could be a number of issues with single-
step prediction. The genomic matrix can be singular if there 
are more genotyped animals than markers, or in the presence 
of clones (Misztal et al., 2009; Aguilar et al., 2010; Forni et al., 
2011). More generally, collinearity between variables and low 
rank (row or column, equivalently) of the matrix are reasons 
that make the inversion of a matrix difficult or not possible. To 
avoid the potential problems with inversion and to account for 

TaBlE 3 | Genetic (above diagonal) and residual (below diagonal) correlations ± standard errors for the studied traits based on the single-step genomic best linear 
unbiased prediction (ssGBLUP_0.90).

Feed conversion ratio residual feed intake Body weight Breast meat yield Walking score

Feed conversion ratio 0.68 ± 0.06 0.19 ± 0.07 -0.05 ± 0.01 -0.09 ± 0.07
Residual feed intake 0.23 ± 0.09 0.13 ± 0.08 -0.13 ± 0.01 0.08 ± 0.01
Body weight -0.39 ± 0.01 -0.17 ± 0.03 0.16 ± 0.06 -0.35 ± 0.05
Breast meat yield -0.10 ± 0.01 -0.07 ± 0.03 0.19 ± 0.02 -0.47 ± 0.02
Walking score 0.03 ± 0.00 0.05 ± 0.01 -0.15 ± 0.01 -0.06 ± 0.01

TaBlE 4 | Accuracy (Pearson correlation coefficient) of estimated breeding values for the studied traits based on the pedigree-based best linear unbiased prediction 
(PBLUP) and the single-step genomic best linear unbiased prediction prediction (ssGBLUP) with three different combinations of blending weights (w) for genomic (G) 
and pedigree (a22) relationship matrices.

Model1 PBlUP ssGBlUP_0.95 ssGBlUP_0.90 ssGBlUP_0.85

Feed conversion ratio 0.29 0.38 0.38 0.37
Residual feed intake 0.21 0.26 0.27 0.26
Body weight 0.36 0.40 0.40 0.39
Breast meat yield 0.30 0.37 0.37 0.36
Walking score 0.26 0.30 0.30 0.30

1ssGBLUP_0.95: w = 0.95; ssGBLUP_0.90: w = 0.90; ssGBLUP_0.85: w = 0.85.
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the relative weight of the polygenic effect needed to explain the 
total additive variance, different scenarios were applied to scale 
the genomic matrix to the pedigree matrix. As shown in Table 4, 
the three weights applied to the ssGBLUP model in the present 
study showed comparable prediction abilities. Using simulated 
data, Vitezica et al. (2010) reported that the single-step method 
showed less bias and more accurate prediction when the genomic 
relationship matrix was adjusted by a constant. Similar results 
were reported by Chen et al. (2011) and by Forni et al. (2011) 
using chicken and pig data, respectively. Although the differences 
between the weightings applied in this study were not large, the 
weighting factors of 0.95 and 0.90 could be the optimal choices to 
improve breast meat yield and the other four traits, respectively.

assessment of Prediction Bias
In addition to the accuracy of prediction, it is important to 
examine potential bias when establishing a breeding program 
or comparing models. Although it does not change the ranking 
of animals from the same generation, systematic over- or under-
estimation of genetic merit leads to consistent biases (González-
Recio et al., 2014). Hence, the predicted performance of the 
selection candidates could be over- or under-estimated. The 
regression coefficients for all traits across the different models 
considered in this study are shown in Table 5. A regression 
coefficient less or greater than one indicates an overestimation 
(inflation) or underestimation (deflation), respectively. In 
general, bias estimates were quite similar among models, but 
varied among trait, and the bias estimates ranged between 0.73 ± 
0.04 and 1.41 ± 0.21. Except for BMY, all traits had regression 
coefficients lower than one. Among the models, PBLUP 
showed the highest deflation for breast meat yield (1.41 ± 0.21), 
which could be due to the small number of animals with both 
genotypes and phenotypes for this trait. PBLUP also showed 
the lowest deflation for feed conversion ratio (0.94 ± 0.17) 
and for WS (0.73 ± 0.04), however compared to ssBLUP_95 
(ssGBLUP_0.95; 0.95 ± 0.17 and 0.75 ± 0.17, respectively), the 
differences were negligible. The differences among the three 
ssGBLUP models were also small with some slight changes in 
bias for individual traits. The BMY had a regression coefficient 
higher than one and the three ssGBLUP models showed similar 
but slightly lower inflation (1.38 ± 0.21). Despite the accuracy 
of any prediction procedure, it is worthwhile to pay attention 
to bias and apply appropriate bias correction methods, such 
as including a genomic pseudo-performance based on GEBV 
for all the selection candidates (Patry and Ducrocq, 2011). 

This is important if proven and young candidates are expected 
to be simultaneously selected. The dataset used in this study, 
particularly the genotyped population for BMY, is small. Hence, 
with a larger training population, prediction accuracy could be 
enhanced and bias could be reduced.

cOnclUSiOnS
In this study, we estimated heritability, genetic correlations and 
contrasted single-step genomic and pedigree-based models 
in terms of prediction ability using two feed efficiency traits, 
body weight, breast meat yield, and walking ability in turkeys. 
We showed that incorporating genomic information into 
breeding programs increased prediction accuracy for the five 
traits investigated. Single-step genomic prediction showed 
substantially higher accuracy estimates than the pedigree-based 
model. Slightly different levels of bias were observed across the 
alternate models, but a high variation in bias was observed across 
the traits. The five traits investigated are expensive to measure, 
therefore the use of genomic selection has strong potential to 
reduce the cost of turkey breeding programs, as the reliance on 
phenotypic, pedigree, and progeny information is reduced.
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