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It has been demonstrated that long non-coding RNAs (lncRNAs) play important roles 
in a variety of biological processes associated with human diseases. However, the 
identification of lncRNA–disease associations by experimental methods is time-consuming 
and labor-intensive. Computational methods provide an effective strategy to predict more 
potential lncRNA–disease associations to some degree. Based on the hypothesis that 
phenotypically similar diseases are often associated with functionally similar lncRNAs 
and vice versa, we developed an improved diffusion model to predict potential lncRNA–
disease associations (IDLDA). As a result, our model performed well in the global and 
local cross-validations, which indicated that IDLDA had a great performance in predicting 
novel associations. Case studies of colon cancer, breast cancer, and gastric cancer were 
also implemented, all lncRNAs which ranked top 10 in both databases were verified by 
databases and related literature. The results showed that IDLDA might play a key role in 
biomedical research.

Keywords: long non-coding RNA, disease, association prediction, computational prediction model, diffusion 
model

INTRODUCTION
Non-coding RNA (ncRNA) is a kind of RNA molecule that is not translated into protein (Bertone 
et al., 2004; Wilusz et al., 2009). In decades past, lncRNA was considered as transcriptional noise 
and few people studied it. Nowadays, accumulating evidence has proved the key regulatory role of 
lncRNAs in many significant biological processes (Esteller, 2011). For example, some mutated and 
dysfunctional lncRNAs were implicated in a lot of human diseases such as renal cancer (Meng et al., 
2014; Xu et al., 2015), breast cancer (Barsyte-Lovejoy et al., 2006; Gupta et al., 2010), hepatocellular 
cancer (Calin et al., 2007; Panzitt et al., 2007), prostate cancer (De Kok et al., 2002; Széll et al., 
2008), lung cancer (Ji et al., 2003; Zhang et al., 2003), colon cancer (Pibouin et al., 2002), leukemia 
(Calin et al., 2007)and cardiovascular diseases (Congrains et al., 2012). There are many well-known 
lncRNA-related biological databases such as NRED (Dinger et al., 2009), NONCODE (Liu et al., 
2005; Xie et al., 2014; Zhao et al., 2016), LncRNADisease (Chen et al., 2013), Lnc2Cancer (Ning 
et al., 2016) and lncRNAdb (Quek et al., 2015), including the information about lncRNA and little  
lncRNA–disease associations.

Recently, exploiting potential lncRNA–disease associations have become a growing significant 
research area. Many associations between lncRNA and human diseases have been identified by 
medical experiments, but which is costly and time-consuming. Predicting potential associations 
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by the mathematical method and computational inference 
for experimental verification is a quite certain well-selected 
alternative (Chen et al., 2017; Chen et al., 2019).

Chen and Yan (2013) presented the Laplacian Regularized 
Least Squares for LncRNA–Disease Association (LRLSLDA), 
which is a semi-supervised learning framework to identify 
potential associations by integrating known associations and 
lncRNA expression profiles. Liu et al. (2014) put forward a 
computational model to predict potential lncRNA–disease 
associations by integrating many types of data such as gene 
expression profiles, human lncRNA expression profiles, and 
human disease-associated gene data. Li J, et al. (2014) presented 
a prediction method based on genome location information to 
discover potential vascular disease-related lncRNAs. Sun et  al. 
(2014) established a lncRNA functional similarity network and 
used the random walk model to predict potential lncRNA–
disease associations. However, this method cannot be applied 
to the lncRNAs without any known associated diseases. Yang 
et al. (2014) also proposed a network-based method to identify 
lncRNA–disease associations. And Yang’s method had a great 
performance to predict lncRNA–disease associations but it 
did not take into account various similarities. Chen (2015a) 
constructed a Katz measure model (KATZLDA) to predict 
lncRNAs associated with diseases, especially isolated disease-
related lncRNAs. However, the method relies excessively on 
a network topology structure. Ping et al. (2019) constructed a 
lncRNA–disease bipartite network to infer potential lncRNA–
disease associations by integrating two similarity calculation 
methods for lncRNAs and diseases. Gao et al. (2019) developed 
a dual sparse collaborative matrix factorization method based 
on gaussian kernel function (DSCMF) to predict novel lncRNA–
disease associations. They considered the sparsity of lncRNA–
disease association and used the L2,1-norm to ensure its sparsity 
in optimization.

In this paper, we developed an improved diffusion model 
for predicting lncRNA–disease associations (IDLDA) based on 
the hypothesis that phenotypically similar diseases are often 
associated with functionally similar lncRNAs and vice versa. 
IDLDA achieved reliable predictions with global and local cross-
validations and it obtained higher AUROC than some previously 
proposed methods. Our results showed that the predicted top 
10 lncRNAs in both databases were confirmed by databases and 
literature, and there were only 2, 2, and 1 lncRNAs which ranked 
top 50 by IDLDA in both databases that were not confirmed. All 
these results demonstrated the effectiveness and value of IDLDA 
in identifying potential lncRNA–disease associations. Data and 
code are freely available for research purposes only, you can 
email the author for it.

MATeRIALs AND MeThODs

Data Collection and Pre-Processing
LncRNADisease (Chen et al., 2013) and Lnc2Cancer (Ning et al., 
2016) are two well-known databases that we can apply to extract 
known lncRNA–disease associations. We got 687 experimentally 
verified lncRNA-disease associations (Supplementary Tables 1 and 3) 

 including 372 lncRNAs and 246 diseases in the LncRNADisease, 
and 1,102 experimentally verified lncRNA-disease associations 
(Supplementary Tables 2 and 4)  including 667 lncRNAs and 
97 cancers in the Lnc2Cancer. These datasets were utilized as not 
only the gold standard datasets in the cross-validation but also the 
training datasets in novel lncRNA–disease association prediction. In 
addition, we also combined the data from the two datasets to make 
a complete training data set for validation which named combined 
dataset. There are 1669 experimentally verified lncRNA–disease 
associations including 944 lncRNAs and 295 diseases. This dataset 
(Supplementary material Data Sheet 1) can better illustrate the 
credibility of the model. To the author’s knowledge, this is the 
first article to combine the data of these two databases for model 
validation.

We constructed lncRNA–disease associations as a bipartite 
graph G(V,E) as follows. V=L∪ D is the vertex set, where L is the 
lncRNA set { l1,l2,…,lNl }, D is the disease set { d1,d2,…,dNd }, and 
denote the edge set E={ eij:di∈D,lj∈L }. Nd and Nl represent the 
number of diseases and the number of lncRNAs, respectively. 
Here, the lncRNA–disease association can be represented by 
an adjacency matrix A={aij}Nd×Nl, where aij=1 if disease di and 
lncRNA lj have experimentally validated relation in the databases, 
while the unknown associations are set to 0 indicating that they 
will be ranked.

For every disease term dj in the MeSH database, we 
constructed a directed acyclic graph DAG(dj) based on 
the MeSH descriptors of Category C downloaded from 
the National Library of Medicine. For example, Figure 1 
represents the DAG of lung neoplasms. All vertices in the 
DAG are connected by a direct edge from a more general term, 
we call it parent, to a more specific term, and we call it child 
(Chen et al., 2015). Here, V(DAG(dj)) indicated the vertex set 
including vertex dj and its ancestor vertices, and E(DAG(dj)) 

FIgURe 1 | The disease DAG of lung neoplasms.
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was the edge set of corresponding direct links from a parent 
vertex to a child vertex, which represented the relationship 
between different diseases.

ensemble similarity
Disease Ensemble Similarity
For a given disease dj, in the DAG(dj), the contribution of each 
disease semantic term Cdj(di) of disease di was defined as follows 
(Wang et al., 2010):

 C d
if d d

C d d children of dd i
i j

dj k k i
j
( )

,

max{ ( )| }
=

=

× ∈

1

∆ ,, if d di j≠






 (1)

where Δ was a decay factor of semantic contribution, which 
should be between 0 and 1. According to some previous studies 
(Wang et al., 2010; Chen et al., 2015; Chen, 2015a), this value was 
0.5 here. Accordingly, the contribution to the semantic value of 
disease dj itself was defined as 1. Meanwhile, the contribution of 
its ancestor disease should be multiplied by Δ.

According to this way to measure disease semantic similarity, 
we thought that two diseases di and dj which had a larger DAG(di) 
∩  DAG(dj) should have a higher semantic similarity. Thus, the 
semantic score of disease dj was acquired by adding up all the 
contributions from ancestor diseases and disease dj itself. Define 
the semantic score (C) of disease dj as follows:

 C d C dj d DAG d d ii j j
( ) ( )( )= ∈Σ  (2)

Thus, disease semantic similarity (SS) between disease di and 
disease dj can be written as (Chen et al., 2018):
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C d C dij
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i j

i j i j
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+
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∈
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Based on the basic assumption that two lncRNAs with more 
functional similarity prefer to be more related to similar diseases 
and vice versa (Lu et al., 2008), we could obtain disease similarity 
by the topologic information of the known lncRNA–disease 
association network. Accordingly, we introduced the Gaussian 
interaction profile kernel for calculating the similarity between 
diseases as a part of the disease similarity (van Laarhoven et  al., 
2011; Chen and Yan, 2013). Then we utilized the following 
equation to obtain disease Gaussian kernel similarity (KD) 
between disease di and disease dj.

 KD IP d IP dij d i j= − −exp( || ( ) ( )|| )γ 2  (4)

where IP(di) was the i-th column of matrix A. The parameter γd 
was a parameter for adjusting the bandwidth of the kernel, which 
should be updated by using a new bandwidth parameter γ d

’  
divided by the average value of the associations with lncRNAs 
for all diseases. According to the previous study (Cheng et 
al., 2012; Sun et al., 2016), γ d

’  was set to 1 to control the 
kernel bandwidth.

FIgURe 2 | Flowchart of IDLDA. Nd and Nl represent the number of diseases and the number of lncRNAs, respectively.
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Thus, γd could be defined as follows:
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Define the disease ensemble similarity (DS) between disease 
di and disease dj as follows:

 DS
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LncRNA Ensemble Similarity
For a disease di and a group of diseases D, their similarity score S 
between them was defined as (Chen et al., 2015):

 S d D SSi
d D

ij
j

( , ) max=
∈  (7)

Let D(li) and D(lj) be the set of diseases related to lncRNA li 
and lncRNA lj, respectively. Define similarity score S between 
D(li) and D(lj) as follows:

 S D l D l S t D l S t D li j j
t D l

i
t Di

( ) ( )( ) = ( )( ) + ( )( )
∈ ( ) ∈∑, , ,

ll j( )∑  (8)

Usually, most of researchers believe that lncRNAs with similar 
functions are more likely related to similar diseases and vice versa 
(Yang et al., 2009; Chen and Yan, 2013; Liu et al., 2014; Sun et  al., 
2014; Yang et al., 2014; Chen et al., 2015; Chen, 2015a; Gu et al., 
2017). Therefore, the functional similarity between lncRNA li 
and lncRNA lj was calculated as follows:

 FS
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where | D(li) | and | D(lj) | were the numbers of diseases associated 
with lncRNA li and lncRNA lj, respectively.

Similarly, the Gaussian kernel similarity between lncRNA li 
and lncRNA lj was defined as follows (van Laarhoven et al., 2011; 
Chen and Yan, 2013):

 KL IP l IP lij l i j= − −exp( )γ || ( ) ( )||2  (10)
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where γ l
’  = 1 (Cheng et al., 2012; Sun et al., 2016).

Define the lncRNA ensemble similarity (LS) between lncRNA 
li and lncRNA lj as follows:

 LS
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ensemble Associations
On the basis of the ensemble similarity matrix DS and LS, we 
could obtain two ensemble associations DA={ DAij }Nd×Nl and 
LA={ LAij }Nd×Nl. DAij and LAij can be written as:

 DA DS Aij il lj
l

Nd
=

=∑ 1
 (13)

 LA A LSij il lj
l

Nl
=

=∑ 1
 (14)

An Improved Diffusion Model on the 
Network
We applied an improved diffusion model to calculate the 
information transmitted in the bipartite graph, which was 
quantified to solve the correlation between lncRNAs and 
diseases.

First of all, we selected one disease Du as seed, so the initial 
resources were located on each lncRNA, which associated with 
disease Du. Based on the hypothesis that lncRNAs with similar 
functions are usually related to similar diseases and vice versa. 
All the initial resources in L flowed to D by LA and DA. Thus, 
the comprehensive index (resources) of the dj vertex was shown 
as follows:
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Each disease scattered the received resources to its associated 
lncRNAs, the resources located on the dj vertex returned back to 
L by LA and DA. Then the final comprehensive index (resources) 
of the li vertex as shown below:
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Here the parameters α, β were used to balance the contribution 
between LA and DA. Therefore, for a given disease Du, we could 
obtain the comprehensive index IDLDA-score of every lncRNA. 
Accordingly, we got the predicted ranks of all lncRNAs for every 
disease. This predicted result can be represented by a rank matrix 
R={rij}Nd×Nl, where rij indicated the relevance score between disease 
di and lncRNA lj. The larger the value of rij, the more likely disease di 
and lncRNA lj are to be related. Thus, IDLDA can predict not only 
new disease-related lncRNAs but new lncRNA-related diseases. 
The flow chart of IDLDA is shown in Figure 2.

ResULTs
In this section, we first analyzed some properties of the lncRNA–
disease association network. Next, we used global and local 
cross-validations and performed enrichment analysis to evaluate 
the performance of IDLDA. Then, we conducted case studies 
to verify the efficiency of IDLDA in discovering some potential 
disease-related lncRNAs.

Properties of the lncRNA–Disease 
Association Network
We analyzed the lncRNA–disease association network’s 
characteristics to obtain a whole view of it (Table 1). Among 
them, density denotes the number of edges divided by the 
number of possible edges. As we can see from Table 1, there are 
very few associations available, so it is very important to predict 
potential associations.

Cross-Validation Tests
A receiver operating characteristic (ROC) curve is a graphical plot 
that shows the diagnostic ability of the binary classifier system 
because its recognition thresholds are different (Fawcett, 2006). 
AUROC (Area Under Receiver Operating Characteristic Curve) 
is the area under the ROC curve with a value between 0 and 1. 
AUROC can intuitively evaluate the quality of classifier, the larger 
the value, the better. The similarities between diseases and lncRNAs 
rely on known associations. Therefore, the disease ensemble 
similarity and lncRNA ensemble similarity should be recalculated 
in each repetition of the experiment. The IDLDA method had two 
parameters, i.e. α and β. Here, when the values of α and β took 0, 0.1, 
0.2, …,1 the values in the leave-one-out cross-validation (LOOCV), 
the AUROC were calculated. The highest AUROC value was 0.9513 
(α=0.3, β=0.5) in the combined dataset. As a result, the parameters 
(α, β) in the combined dataset was (0.3, 0.5).

Our model could predict not only new lncRNAs but 
also new diseases. Here, we adopt three cross-validations to 
evaluate the prediction accuracy of the model from global and 

local perspectives. The first cross-validation is LOOCV, some 
elements in the matrix A were randomly selected as the training 
set and the remaining elements as the test set; the second cross-
validation is CVr, selected some rows of the matrix A randomly 
as the training set and the remaining data as the test set; the third 
cross-validation is CVc, selected some columns of the matrix A 
randomly as a training set and the remaining data as a test set.

Among the three cross-validations, LOOCV was global cross-
validation, which could test the prediction accuracy of the model 
on the original data set. For LOOCV, each known lncRNA–
disease association was taken in turn as a testing sample and 
the remaining associations were used as training samples. And 
the baseline indicated random performance. In order to ensure 
the consistency of input data, the similarities of diseases and 
lncRNAs in other methods is consistent with the similarity of the 
IDLDA, which can better compare the predictive ability of the 
model itself. The AUROC of the combined dataset was 0.9513. 
We demonstrated that our approach significantly outperforms 
great performance (Supplementary Table 5). CVr and CVc were 
local cross-validations, which could test the prediction accuracy 
of the model for newly added diseases and lncRNAs respectively. 
The results of CVr (Figure 3, Left) and CVc (Figure 3, Right) 
showed that IDLDA had great performance in predicting novel 
lncRNA-related diseases and disease-related lncRNAs.

enrichment Analysis
To check whether the lncRNAs with high IDLDA-score were 
more likely to be disease-related, all candidate lncRNA–disease 
pairs in two databases were ranked by IDLDA and binned 
into groups of x. Here, we took x as 1000 for the data in the 
LncRNADisease and Lnc2Cancer, and as 10000 for the data in 
the combined dataset. A fold enrichment score was defined as 

m
x

M
N( ) ( )/  (Huang et al., 2013), where m was the number of 

distinct experimentally verified associations within one certain 
bin of x, M was the number of all distinct experimentally verified 
lncRNA–disease associations, and N was the number of all 
possible lncRNA–disease associations. For an lncRNA–disease 
pair, if its fold enrichment score was high for certain bin, it 
represented this pair was more likely to be related. As shown in 
Figure 4, lncRNAs with high IDLDA-score were more likely to 
be disease-related in three datasets.

Case studies
Case studies were implemented to examine the capability of 
IDLDA in discovering potential lncRNA–disease associations. For 
some special diseases, we ranked those candidate lncRNAs based 
on their corresponding IDLDA-scores. Case studies included three 
common human diseases (colon cancer, gastric cancer, and breast 
cancer). Prediction results were verified based on not only the 
recent updates in the Lnc2Cancer and LncRNADisease but recently 
published experimental literature. Then we observed the number 
of the verified lncRNAs in the top 10 and 50 predictions in both 
databases, all the ranking results have been listed in Tables 2–4.

Colon cancer is one of the most common malignant tumors in 
the world (Xue et al., 2015), killing almost seven hundred thousand 
people every year (Gu et al., 2017), even the disease-specific 

TABLe 1 | Global characteristics of the lncRNA–disease association.

No. of 
lncRNAs

No. of 
Diseases

No. of 
Associations

Density

LncRNADisease 372 246 687 0.0075
Lnc2Cancer 667 97 1,102 0.0170
Combined dataset 944 295 1,669 0.0060

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1259

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


LncRNA–Disease Association PredictionWang and Yan

6

mortality rate is close to 33% in the developed countries (Han et al., 
2015). In 2018, there are 97220 estimated new cases and 50,630 
estimated deaths from Colon Neoplasms in U.S. (Siegel et al., 2018). 
Some associations between colon cancer and lncRNAs have been 
discovered by biological experiments (Chen et al., 2015), IDLDA can 
also predict more colon cancer-related lncRNAs. Consequently, all 
potentially related lncRNAs which ranked top 10 in both databases 
had been validated by databases and recent experimental literature. 
Meanwhile, only PTENP1 which ranked top 50 in both databases 
was not verified. Some research showed that PTENP1 pseudogene 
may act as “decoy” by protecting PTEN mRNA from binding to 
common miRNA and allowing expression of the tumor suppressor 
protein (Li G, et al., 2014). This indicated that PTENP1 was associated  
with cancer.

Breast cancer is the second leading cause of cancer deaths 
in women, accounting for 22% of all cancer deaths in women 
(Donahue and Genetos, 2013; Karagoz et al., 2015). Some 
researchers announced that a number of lncRNAs are associated 
with the formation of breast cancer (Meng et al., 2014; Xu et al., 
2015). In this paper, we used IDLDA to discover the potential 
breast cancer-related lncRNAs. From Table 3, we could know 
that all the potential related lncRNAs which ranked top 40 in 
both databases had been validated. For example, HOTAIR was 
ranked first in Lnc2Cancer, recent research had confirmed that 
HOTAIR was strongly expressed in numerous cancers like breast 
cancer, colorectal cancer, and lung cancer (Gupta et al., 2010; 
Li G, et al., 2014; Hrdlickova et al., 2014). Only HIF1A-AS1 
and DLEU2 in both databases had not been validated by the  
same resources.

Gastric cancer is the second major reason for cancer-related 
death in the world (Guo et al., 2014). A myriad of studies has proved 
that lncRNAs have played crucial roles in the development of gastric 

cancer (Zhao et al., 2015). It is clear that the associations between 
breast cancer and HOTAIR, MALAT1, H19, MEG3, ANRIL, 
UCA1, GAS5, PVT1, NEAT1, XIST, LincRNA-p21, LSINCT5, 
PANDAR were validated by databases and related literature from 
Table 4. Only KCNQ1OT1 and SRA1 were not confirmed. But 
there is a potential relationship between SRA1 and breast cancer 
(Yan et al., 2011), SRA RNA expression is altered during breast 
tumorigenesis. The semantic similarity between gastric cancer and 
breast cancer is very large, perhaps future research could explain 
the relationship between SRA1 and gastric cancer.

DIsCUssION
According to previous literature, lncRNAs are associated with 
a mass of diseases. With the emergence of many biological data 
about lncRNA, it is urgent to design a powerful and effective 
computing method to predict the underlying disease-related 
lncRNAs. In this paper, disease semantic similarity, lncRNA 
functional similarity, disease/lncRNA Gaussian kernel similarity, 
and lncRNA–disease associations were integrated on a large scale. 
We developed a computational model named IDLDA, which 
based on the diffusion model to predict potential lncRNA–disease 
associations. IDLDA achieved higher AUROC than other methods 
in the combined dataset. Meanwhile, local cross-validation, 
enrichment analysis could also show the reliability of the model. 
Moreover, case studies of colon cancer, breast cancer, and gastric 
cancer were also implemented, all lncRNAs which ranked top 10 
in both databases were verified, only 2, 2, and 1 lncRNAs which 
ranked top 50 in both databases were not confirmed by databases 
and related literature. What is more, the results of local cross-
validation showed IDLDA can predict not only new disease-
related lncRNAs but new lncRNA-related diseases.

FIgURe 3 | The ROC curves of the different methods with local cross-validation by row (Left) and by column (Right).
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Here are the reasons why IDLDA performs better than some 
aforementioned methods. Firstly, the lncRNA ensemble similarity 
and disease ensemble similarity can make full use of the information 
about known lncRNA–disease associations by integrating lncRNA 
functional similarity, disease semantic similarity, and the Gaussian 
kernel similarity. Secondly, both disease ensemble similarity and 

FIgURe 4 | Enrichment analysis in three datasets.

TABLe 3 | Case study of breast cancer.

lncRNA evidence (PMID) Rank 
(Lnc2Cancer)

Rank 
(LncRNADisease)

HOTAIR 24721780 1 4
MALAT1 22492512 2 3
H19 16707459 3 1
MEG3 14602737 4 6
ANRIL 17440112 5 13
UCA1 26439035 6 10
GAS5 29655698 7 7
TUG1 28053623 8 49
PVT1 17908964 9 5
NEAT1 2541770 10 18
XIST 24141629 15 9
HIF1A-AS1 Unconfirmed 16 43
LincRNA-p21 26656491 18 42
SPRY4-IT1 25742952 20 46
LSINCT5 21532345 26 50
PANDAR 26927017 27 20
KCNQ1OT1 26323944 37 38
PCAT1 28989584 39 17
DLEU2 Unconfirmed 45 39
PTENP1 29085464 50 12

TABLe 2 | Case study of colon cancer.

lncRNA evidence (PMID) Rank 
(Lnc2Cancer)

Rank 
(LncRNADisease)

HOTAIR 24667321 1 4
MALAT1 22996375 2 3
MEG3 14602737 3 5
H19 21874233 4 1
ANRIL 23416462 5 14
GAS5 28722800 6 7
UCA1 26885155 7 10
PVT1 29552759 8 6
NEAT1 26552600 11 33
SPRY4-IT1 27621655 16 36
XIST 29679755 23 8
PTENP1 Unconfirmed 36 11
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lncRNA ensemble similarity are used in the diffusion process, 
IDLDA could predict not only new lncRNAs but also new diseases, 
overcoming some limitations of previous methods. Thirdly, 
IDLDA as a semi-supervised method is superior to the supervised 
methods when the data is incomplete. In particular, semi-
supervised method could be implemented without any negative 
lncRNA–disease associations, which are closer to reality. In short, 
IDLDA will be an important and powerful bioinformatics tool in 
biomedical research of the lncRNA–disease association prediction, 
and even disease treatment.

Although IDLDA is effective, this work has several 
limitations. Firstly, IDLDA contains two parameters, and finding 
suitable parameters for different datasets is a challenging task. 
Additionally, some specific lncRNAs are not associated with 
certain diseases. If this kind of data can be added to the model 
in the future, it will certainly be helpful to improve the predictive 
ability. Successfully established models in the other computational 
fields would inspire the development of lncRNA–disease 
association prediction. Perhaps we can improve the predictive 
performance of IDLDA by integrating more information, such as 

lncRNA–miRNA information (Chen, 2015b) and disease–drug 
information (Chen et al., 2016).
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