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Bumblebee species with declining population trends tend to show lower genetic diversity
levels than stable species. The observed difference might be explained by abundance
differences, with declining bumblebee species having lower genetic diversity levels simply
due to their lower local species abundances. However, whether this holds true is not
known. Here, we investigated whether bumblebee local abundances determines
population genetic diversity levels. Therefore, local species abundances were measured
for bumblebee species at four locations in Belgium and two locations in Estonia during
bumblebee foraging years 2013–2017. These locations and countries were chosen to
ensure the greatest possible variance in both local abundances and population trends for
these species. Hence, genetic diversity levels were obtained for seven species by
genotyping collected specimens with 16 microsatellites. Our results showed that the
observed patterns in genetic diversity did not depend on local species abundance. So,
although declining bumblebee species can become locally abundant, they will still show
lower genetic diversity levels than stable species. This result implies that measuring
bumblebees’ local abundance cannot be used to directly determine the health status of a
population. Furthermore, this result has also major impact on future conservation
strategies as increasing the genetic diversity levels of declining species will be very
difficult, and habitat quality should be high to maintain their populations, otherwise these
species are doomed to disappear first.

Keywords: genetic diversity, bumblebees, local abundance, microsatellite loci, population genetics
INTRODUCTION

An essential factor for species survival is the level of genetic diversity present within its populations.
Species which have a low level of intraspecific genetic diversity will have more limited potential to
adapt to current and future changes in the environment (Frankham, 2005; Zayed, 2009; Habel et al.,
2014; Koch et al., 2017). Small populations are more likely to have lower genetic diversity levels than
large populations due to the impact of genetic drift, the random loss of genetic diversity over time
(Reed and Frankham, 2003; Frankham, 2005; Zayed, 2009). However, high levels of gene flow and
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improved dispersal capacities can compensate for loss of allelic
richness due to drift. In smaller less-connected populations, gene
flow may be more limited, decreasing its buffering effect, which
leads to lower genetic diversity and increase brother–sister
mating chances, and in turn to inbreeding and inbreeding
depression (Frankham, 2005; Zayed, 2009; Habel et al., 2014).
The latter dynamics can further diminish genetic variability
within small populations, potentially creating a vicious circle,
known as the extinction vortex, which could ultimately lead to
extinction (Frankham, 2005; Zayed, 2009; Habel et al., 2014).

Bumblebees are eusocial insects, living in large colonies
mostly founded by one queen and many workers (Alford,
1975; Goulson, 2010). In most bumble bee species, queens are
monoandrous with their offspring being fullsibs, having 75%
or more genetic similarity between them (Estoup et al., 1995;
Schmid-Hempel and Schmid-Hempel, 2000; Goulson, 2010).
The high relatedness of sisters can be explained by
bumblebees’ haplodiploid sex-determination system in which
unfertilized eggs, being hemizygous at the single sex-
determining locus, will develop in haploid males or drones,
and at which fertilized eggs will develop in diploid female
offspring (workers and daughter queens) when being
heterozygous at the sex locus. However, fertilized eggs can
also develop into diploid males if being homozygous
(Duchateau et al., 1994; Cook and Crozier, 1995; Whitehorn
et al., 2009). The probability of such matched-pair matings at
the sex locus is normally low due to the rather high number of
alleles at this loci (46 alleles in B. terrestris; Duchateau et al.,
1994). However, the presence of diploid drones will cause
negative effects on population growth and survival, particularly
in populations with low variation at the sex locus, which are
typically small and/or inbred populations (Cook and Crozier,
1995; Duchateau and Marien, 1995; Gerloff and Schmid-
Hempel, 2005; Whitehorn et al., 2009).

Multiple studies have shown that bumblebee species with
declining population trends tend to have lower genetic diversity
levels compared with stable bumblebee species (Darvill et al., 2006;
Ellis et al., 2006; Goulson et al., 2008; Charman et al., 2010; Cameron
et al., 2011). This observation has been often explained as a reduction
of genetic diversity over time (Goulson et al., 2008; Charman et al.,
2010) due to the impact of one or multiple possible drivers of bee
decline, e.g. agricultural intensification, new pathogens, and climate
changes, lowering population sizes (Potts et al., 2010; Meeus et al.,
2011; Vanbergen et al., 2013; Rasmont et al., 2015). However, studies
using historical populations found a similar difference in genetic
variationbetweendecliningandstable bumblebee species (Lozier and
Cameron, 2009; Lozier et al., 2011; Maebe et al., 2015; Maebe et al.,
2016), detecting no major drop in genetic diversity over one century
in Belgium, possibly due to dispersal countering drift effects (Maebe
et al., 2016). The latter result indicates that, at least for Belgian
populations, species abundance, and genetic diversity are not linked.
This is in conflict with the rather general theory, that when a certain
species is locally abundant, its large population should have a higher
amount of genetic variation than observed at a location where this
species is less abundantly present (Reed and Frankham, 2003;
Frontiers in Genetics | www.frontiersin.org 2
Frankham, 2005; Zayed, 2009). However, for social insects, such as
bumblebees, this might thus not be always true.

Here, we investigated if species abundance determines genetic
diversity levels in eusocial bumblebee species, and this on both
local and larger scale. Hence, we searched whether genetic
diversity is linked with species IUCN status (or European
pattern of occurrence), and compared this with local abundance
measures. Therefore, specimens of seven bumblebee species (B.
ruderarius, B. soroeensis, B. sylvarum, B. hortorum, B. hypnorum,
B. lapidarius, and B. pascuorum) were collected from two
countries: Belgium and Estonia. Three species have restricted
distribution and declining population trends in Belgium (B.
ruderarius, B. soroeensis, and B. sylvarum), while the remaining
four species have a more widespread distribution and showed
fairly stable population trends (B. hortorum, B. hypnorum, B.
lapidarius, and B. pascuorum) (division based on Maebe et al.,
2016 and refs herein). Although the latter bumblebee species are
also dominantly present in Estonia, these species occur in
different abundances, while the "declining" species are more
abundantly present and even showing increasing population
trends (Table 1). Bumblebee workers were collected from six
locations, four in Belgium (Francorchamps,Moorsel, Torgny, and
Trivières) and two in Estonia (Harjumaa and Põlvamaa) during
bumblebee foraging years from 2013 to 2017. For each species,
genetic diversity was estimated from each sampling location using
16 microsatellite markers. Furthermore, species local abundance
was determined as its relative abundance (= its present abundance
compared to the total species abundance presented at that
location). This approach allowed us to investigate the link
between bumblebee local abundance and genetic diversity.
MATERIAL AND METHODS

Sampling and Proportional
Abundance Measurement
A sampling effort for specimens from seven bumblebee species
(B. hortorum, B. hypnorum, B. pascuorum, B. ruderarius,
B. soroeensis, B. sylvarum, and B. hypnorum) was performed at
four sampling locations in Belgium and two in Estonia during
bumblebee foraging seasons from 2013 to 2017. Selected
sampling locations within both countries were around 56–210
km apart, while the distance between both countries ranged
1,650 km (Figure 1). Specimens were collected from each
location for three species, B. hortorum, B. hypnorum, and
B. pascuorum. Unfortunately, the other species were only
present at three out of seven sampling locations (one Estonian
and two Belgian locations for B. hypnorum, one Belgian and two
Estonian locations for B. ruderarius, B. soroeensis, and
B. sylvarum; Table 2).

392 bumblebee specimens were collected from the four
selected Belgian locations: Francorchamps, Moorsel, Torgny,
and Trivières, and were already genotyped at 16 microsatellite
loci within a previous study (Maebe et al., 2016; Table 2). These
specimens were part of an intensive sampling performed within a
December 2019 | Volume 10 | Article 1262
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national bumblebee project (Belbees) during 3 days in the
bumblebee foraging season of 2013 and 5 days in 2015. At
pollinator-suitable weather conditions, all encountered
bumblebees were sampled during straight ahead transect walks
using a net. Species abundances were calculated as the
proportion of a species abundance versus the total bumblebee
abundance collected at that particular location (Table 3).

In Estonia, Harjumaa and Põlvamaa were selected as sampling
locations (Table 2). Sampling was performed during the
bumblebee foraging seasons of 2015 and 2017. Individual
specimens were collected with small glass jars from a flower,
killed with chloroform, and stored in a −20°C freezer. The
Estonian bumblebee abundance data were derived from Marja
et al. (2014), fromwhich theNorth and South Estonia abundances
were used as estimates for Harjumaa and Põlvamaa, respectively.
Here, per species local abundances were also calculated (Table 3).

DNA Extraction and Microsatellite Protocol
DNA extraction and analysis were performed only on the
Estonian specimens, with the same method as was done in a
previous study for the Belgian specimens (see Maebe et al., 2016).
One middle leg of an individual bumblebee worker was used for
DNA extraction using a Chelex DNA extraction protocol (see
Frontiers in Genetics | www.frontiersin.org 3
methods described in Maebe et al., 2015). Specimens were
genotyped with 16 microsatellite (MS) loci which gave reliable
signals in previous research using different bumblebee species
(Supplementary Table 1; Maebe et al., 2015; Maebe et al., 2016;
Maebe et al., 2018). MS were amplified using the Type-it
QIAGEN PCR kit using four multiplex mixes as described in
Maebe et al. (2016). The PCR protocol, capillary electrophoreses,
and fragment scoring were performed with the method as
described in Maebe et al. (2013).

Linkage Disequilibrium, Hardy–Weinberg
Equilibrium, and Sister Detection
Linkage disequilibrium, Hardy–Weinberg equilibrium (HW)
deviations, and the presence of null alleles were tested for all
populations by using Fstat 2.9.3 (Goudet, 2001), GenAlEx v6.5
(Peakall and Smouse, 2006), and Microchecker (Van Oosterhout,
2004), respectively. All specimens which could not be scored in a
reliable manner for 10 or more loci were removed. Furthermore,
after detection of full-siblings with Colony 2.0 (Wang, 2004)
employing corrections for genotyping errors (5% per locus) and
by the two allele algorithm and consensus method implemented
in Kinalyzer (Ashley et al., 2009), we retained only one sister per
colony (see also Maebe et al., 2015).
TABLE 1 | Species population trends for Estonian and Belgian bumblebees.

Species IUCN Red
List status

IUCN
based
group

BELGIUM1 ESTONIA2

Abundance Abundance Trend Status Abundance Abundance Trend Status
1910–1930 1990–2016 1955-1967 2009-2018

Bombus hortorum NT Stable 9.85% 3.11% −68.43% Declining 12.50% 7.13% −42.99% Declining
Bombus
pascuorum

LC Stable 28.31% 30.48% +7.66% Not-declining 10.60% 11.24% +6.01% Not-declining

Bombus ruderarius EN Declining 1.91% 0.30% −84.29% Declining 6.10% 6.35% +4.09% Not-declining
Bombus sylvarum CE Declining 1.20% 0.19% −84.17% Declining 6.50% 9.18% +41.26% Not-declining
Bombus lapidarius LC Stable 14.13% 17.05% +20.67% Not-declining 11.70% 28.80% +146.19% Not-declining
Bombus soroeensis VU Declining 0.62% 0.32% −48.39% Declining 0.10% 8.27% +8171.98% Not-declining
Bombus hypnorum LC Stable 1.46% 3.93% +169.18% Not-declining 3.40% 1.92% −43.46% Declining
December 201
9 | Volume 10
Based on the difference in relative abundance between two time periods and each species IUCN red list status (LC, Least Concern; NT, Near Threatened; VU, Vulnerable; EN, Endangered;
and CE, Critically Endangered; Rasmont et al., 2015).
1Vray et al. (2019).
2Kotkas (1968) and Viik (2019).
FIGURE 1 | Map of sampling locations in Belgium and Estonia (adapted Figure from Maebe et al. 2019 under Creative Commons Attribution 4.0 International
License; https://creativecommons.org/licenses/by/4.0/).
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Genetic Diversity
GenAlEx v6.5 (Peakall and Smouse, 2006) was used to estimate
Nei’s unbiased expected heterozygosity (HE) and observed
heterozygosity (HO) (Nei, 1978) per population and for all
species. With Hp-Rare 1.1 (Kalinowski, 2015) we estimated
sample size-corrected private allelic richness (AR) normalized
to 10 gene copies.
Impact of Local Abundance on Level of
Genetic Diversity
To be able to detect if species abundance influences the observed
differences in species genetic diversity, Linear Mixed Models
(LMMs) were performed for each species and both genetic
diversity parameters (AR and HE) in RStudio (R Development
Core Team, 2008) with R package lme4 version 1.1-10 (Bates
et al., 2015) as described in Maebe et al., 2018. In short: species,
local abundance, and location were set as fixed factors and
microsatellite loci as a random factor. The best model fitting our
data was selected based on the Akaike’s Information Criterion
(AIC) by using the “dredge” commandwithin theMUMIn package
(Barton2015;Maebe et al., 2016;Maebe et al., 2018).Themaineffect
of the factor of interest was analyzed for each selected LMM by
performing Likelihood Ratio Tests (LTR) in which the model with
factors was compared with a “null” model without these factors
(Maebe et al., 2018). After computing themarginal and conditional
coefficient ofdetermination,TukeyHSDpost hoc comparisonswere
performed using the R package multcomp to find differences in
Frontiers in Genetics | www.frontiersin.org 4
genetic diversity due to species local abundance, location and/or
species (Hothorn et al., 2008; described in Maebe et al., 2018, and
references therein).

Genetic Diversity and IUCN Status
Based on the IUCN bumblebee red list status, bumblebee species
were organized in two groups, either “stable” or “declining”
species (Table 1). The group of the “stable” species consisted out
of four species (B. hortorum, B. hypnorum, B. lapidarius, and B.
pascuorum) of which all species had an IUCN status of “Least
Concern” (LC), except for B. hortorum which have a “Near
Threatened” (NT) status (Rasmont et al., 2015). The three
remaining species, B. ruderarius, B. soroeensis, and B.
sylvarum, were grouped as “declining” species, as they all have
a threatened IUCN status ("Endangered” (EN), “Vulnerable”
(VU), and “Critically Endangered” (CE), respectively; Rasmont
et al., 2015; Table 1). Secondly, for each country, bumblebee
species were divided in two groups based on their population
trends, being “declining” or “not-declining” species. Such a
population trend was made for each species based on the
difference in relative abundance of that species between two
time periods: for Belgium between 1910–1930 and 1990–2016
(Vray et al., 2019; Table 3), while for Estonia between 1955–1967
and 2009–2018 (Kotkas, 1968; Viik, 2019; Table 3). Genetic
diversity parameters (AR and HE) were compared between the
different groups by LMMs in RStudio (R Development Core
Team, 2008) with R package lme4 version 1.1-10 (Bates et al.,
2015). Here, models were run with microsatellite “loci” as
TABLE 2 | Estimated mean HE and AR (± SE) in Belgian and Estonian bumblebee populations.

Species N Location Country HE SE AR SE

B. hortorum 25 Harjumaa Estonia 0.546 0.088 3.01 0.36
B. hortorum 37 Põlvamaa Estonia 0.567 0.093 3.16 0.39
B. hortorum 25 Francorchamp Belgium 0.587 0.092 3.23 0.38
B. hortorum 17 Trivières Belgium 0.570 0.087 3.09 0.35
B. hortorum 19 Moorsel Belgium 0.580 0.095 3.21 0.38
B. hortorum 23 Torgny Belgium 0.550 0.093 3.06 0.38
B. hypnorum 3 Põlvamaa Estonia 0.329 0.090 1.94 0.27
B. hypnorum 8 Moorsel Belgium 0.371 0.071 1.94 0.19
B. hypnorum 10 Torgny Belgium 0.388 0.071 2.03 0.19
B. lapidarius 25 Harjumaa Estonia 0.663 0.064 3.29 0.26
B. lapidarius 22 Põlvamaa Estonia 0.651 0.071 3.25 0.27
B. lapidarius 23 Francorchamp Belgium 0.720 0.056 3.57 0.24
B. lapidarius 22 Trivières Belgium 0.742 0.047 3.65 0.22
B. lapidarius 19 Moorsel Belgium 0.719 0.054 3.57 0.24
B. lapidarius 21 Torgny Belgium 0.739 0.054 3.66 0.25
B. pascuorum 24 Harjumaa Estonia 0.445 0.087 2.53 0.32
B. pascuorum 33 Põlvamaa Estonia 0.443 0.084 2.50 0.32
B. pascuorum 26 Francorchamp Belgium 0.456 0.085 2.56 0.32
B. pascuorum 23 Trivières Belgium 0.436 0.083 2.46 0.31
B. pascuorum 21 Moorsel Belgium 0.443 0.087 2.51 0.33
B. pascuorum 20 Torgny Belgium 0.398 0.085 2.34 0.31
B. ruderarius 8 Harjumaa Estonia 0.366 0.097 2.27 0.35
B. ruderarius 13 Põlvamaa Estonia 0.313 0.094 2.05 0.33
B. ruderarius 10 Torgny Belgium 0.321 0.102 2.16 0.37
B. soroeensis 23 Harjumaa Estonia 0.493 0.100 2.84 0.41
B. soroeensis 22 Põlvamaa Estonia 0.486 0.098 2.85 0.41
B. soroeensis 9 Torgny Belgium 0.430 0.095 2.49 0.35
B. sylvarum 47 Harjumaa Estonia 0.269 0.080 1.87 0.28
B. sylvarum 37 Põlvamaa Estonia 0.288 0.084 1.93 0.31
B. sylvarum 13 Torgny Belgium 0.330 0.084 2.07 0.31
December 2019 | V
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random factor, and “group” as fixed factor. Tukey post hoc tests
were performed as described above.
RESULTS

All 16 microsatellites could be amplified and scored reliably in
the seven Bombus species. In total, 628 specimens (309 Belgian
and 319 Estonian specimens) remained for further genetic
analysis out of 729 specimens, due to the removal of full-sibs
which were detected by Colony 2.0 and Kinalyzer analyses, and
discarding of specimens which have more than five loci of
missing data from both Belgian and Estonian dataset.
Furthermore, no significant linkage disequilibrium between
loci were detected, and Hardy–Weinberg equilibrium tests
displayed no or only limited heterozygote deficits.

Correlation Between Local Abundance
and Genetic Diversity
Overall for populations and species, allelic richness (AR) ranged
from 1.87 to 3.66, with a mean AR of 2.70. Mean HE was 0.488,
with individual population values ranging from 0.269 to 0.739
(Table 2). Linear regression showed low and non-significant
correlations between local abundance and AR orHE (R

2 = 0.0261,
p = 0.393; R2 = 0.0419, p = 0.278; respectively; Figure 2)
suggesting that only a low amount of variation of genetic
diversity is explained by local abundance. By comparing the
Frontiers in Genetics | www.frontiersin.org 5
AIC scores of the different LMM models, the best model
explaining the observed patterns of both genetic diversity
parameters was not the model with “abundance”, but with
“species” as the only fixed factor (Table 4). The importance of
the factor “species” for both AR and HE was clearly shown by
comparing the models with and without “species” as fixed factor
(LRT, c2 = 154.07, d.f. = 6, p < 0.001; and c2 = 140.72, d.f. = 6, p <
0.001, respectively). However, addition of abundance as an extra
fixed factor had no significant impact on the model, as became
clear after comparing the models with both “species” and
“abundance” as fixed factors to the models without abundance
as additional fixed factor (LRT, AR and HE: c2 = 0.1307, d.f. = 1
p = 0.718; and c2 = 0.0598, d.f. = 1, p = 0.807, respectively).
Marginal and conditional R2 were similar for both AR and HE,
16.4% and 57.1% versus 15.2% and 55.7%, respectively
(Nakagawa and Schielzeth, 2013). Post hoc tests were
performed and showed significant differences in genetic
diversity levels between the seven bumblebee species (Table 5
and Supplementary Tables 2 and 3).

Genetic Diversity Differences Between
Species Groups?
Comparing both AR and HE between the two IUCN groups
showed a significantly higher genetic diversity level in “stable"
bumblebee species compared to the contemporary “declining"
species (post hoc tests: AR, t = 5.874, p < 0.001, and HE, t = 6.226,
p < 0.001; Table 6). However, genetic diversity was similar when
TABLE 3 | Bumblebee relative abundances in Belgium and Estonia locations.

Species Abundancy (proportion in %)

BELGIUM1 ESTONIA2

Torgny Moorsel Francorchamps Trivières Põlvamaa Harjumaa

B. barbutellus 0.69 0.00 0.00 0.10 0.0 0.0
B. bohemicus 1.57 0.00 2.20 0.00 0.0 0.0
B. campestris 1.08 0.13 0.37 0.19 0.0 0.0
B. cryptarum 0.10 0.00 4.22 0.00 0.0 0.0
B. distinguendus 0.00 0.00 0.00 0.00 1.2 0.7
B. hortorum 3.74 4.15 4.31 2.30 8.6 3.3
B. humilis 1.67 0.00 0.00 0.00 1.3 0.0
B. hypnorum 2.17 5.40 1.47 2.49 1.6 0.3
B. jonellus 0.00 0.00 0.00 0.00 0.6 0.0
B. lapidarius 26.48 10.30 6.97 17.82 15.7 53.1
B. lucorum 3.05 0.63 20.71 0.77 18.5 11.8
B. muscorum 0.00 0.00 0.00 0.00 0.7 0.0
B. pascuorum 19.19 60.68 44.36 46.55 16.9 15.8
B. pratorum 2.95 8.79 9.17 3.74 2.9 0.6
B. ruderarius 2.85 0.00 0.00 0.00 7.4 1.5
B. rupestris 4.63 0.00 0.09 0.00 0.0 0.0
B. schrencki 0.00 0.00 0.00 0.00 1.5 0.3
B. soroeensis 3.05 0.00 0.09 0.00 6.9 8.6
B. subterraneus 0.00 0.00 0.00 0.00 2.7 0.0
B. sylvarum 4.82 0.00 0.00 0.00 6.8 1.3
B. sylvestris 1.57 0.00 0.73 0.19 0.0 0.0
B. terrestris 17.03 9.92 5.13 25.67 1.7 0.5
B. vestalis 3.35 0.00 0.18 0.19 0.0 0.0
B. veteranus 0.00 0.00 0.00 0.00 5.0 2.3
Total 100 100 100 100 100 100
Decemb
er 2019 | Volume 10 | A
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comparing populations with "not-declining" compared with
those with "declining" population trends (post hoc tests; AR, t =
−0.489, p = 0.625, and HE, t = 0.172, p = 0.864; Table 6).
DISCUSSION

In this study, we investigated whether genetic diversity is
determined by species local abundance. By genotyping
specimens of seven bumblebee species from Belgium and
Frontiers in Genetics | www.frontiersin.org 6
Estonia with 16 microsatellites, we were able to estimate
genetic diversity and to compare this with local species
abundance. This approach allowed us to conclude that
observed genetic diversity patterns were not significantly
dependent on species local abundance. Indeed, the best models
explaining genetic diversity patterns did not include local
abundance as a factor, and both AR and HE were not
significantly correlated with abundance (Figure 2). This is
rather unexpected as one might think that when a certain
species is locally abundant, this large population should
FIGURE 2 | Correlation between relative abundance and genetic diversity parameters (AR and HE).
TABLE 4 | Selection of best fitting model explaining the genetic diversity pattern.

A AR Intercept Abn. Loc. Spss Abn : Loc Loc : Per Abn : Per Abn : Loc:Per df logLik AIC Delta Weight

M5 3.128 NA NA + NA NA NA NA 9 −666.590 1,351.6 0.00 0.717
M6 3.134 + NA + NA NA NA NA 10 −666.525 1,353.5 1.96 0.270
M7 3.229 NA + + NA NA NA NA 14 −665.868 1,360.6 9.08 0.008

B HE Intercept Abn. Loc. Spss Abn : Loc Loc : Per Abn : Per Abn : Loc:Per df logLik AIC Delta Weight
M5 0.567 NA NA + NA NA NA NA 9 −12.202 42.8 0.00 0.726
M6 0.568 + NA + NA NA NA NA 10 −12.172 44.8 2.03 0.263
M7 0.584 NA + + NA NA NA NA 14 −11.525 52.0 9.17 0.007
December 201
9 | Volume
 10 | Artic
Of all possible models run under MUMIn using location (= Loc.), species abundance (= Abn), species (= Spss), and time periods (= Per.) as fixed effects, and locus as a random effect, the
best fitting linear mixed-effect models (with a delta <10) are given. Based on their high (negative or positive) Akaike’s Information Criterion (AIC), the best models for AR (A) and HE (B) with + =
parameters included in the model, and NA, not included parameters. Selected best models for AR and HE are given in bold.
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normally have a higher amount of genetic variation than may be
observed at a location where this species is less abundantly
present. However, this is not always true. Indeed, when the
local environment has enough food, resources, and is well suited
to harbor a large population of bumblebees, then a bumblebee
population can become locally large without increasing its
genetic diversity levels. This may be partly explained by
bumblebees’ haplodiploid sex-determination system in which
unfertilized eggs develop into haploid males and fertilized eggs
into diploid females, where workers do not mate and normally
do not contribute to the next generation, and where each colony
consists of a single mated queen and her offspring (Alford, 1975;
Goulson, 2010). Such colonies can have large numbers of
specimens which are in fact all "clones" with 75% or more
genetic similarity between them (Goulson, 2010). A population
consisting of large colonies founded by closely related queens will
harbor many closely related workers and thus can have large
population numbers but lower genetic variation than one might
expect. Furthermore, several studies have shown that
bumblebees are able to recover from genetic bottlenecks by
increasing population sizes without increasing their genetic
diversity levels (Schmid-Hempel et al., 2007). Although these
populations are characterized with having many specimens, and
thus are at first glance in a healthy condition, these populations
are under severe fitness risks, due to the low genetic variation
which makes these populations vulnerable to additional future
Frontiers in Genetics | www.frontiersin.org 7
environmental changes (Frankham, 2005; Zayed, 2009; Habel
et al., 2014; Koch et al., 2017). Indeed, populations with low
genetic variation show less population growth and survival
(Whitehorn et al., 2009), and are more susceptible to diseases
(Whitehorn et al., 2011; Cameron et al., 2011; Whitehorn et al.,
2014). Hence, when neighboring populations have rather similar
levels of genetic diversity, then increasing a populations’ genetic
diversity through high amounts of gene flow will not be possible
within a short time span, making these populations even at
higher risk. The latter, implying that neighboring populations
have similar genetic diversity cannot be proven in our study, as
no in depth sampling of multiple locations was performed and
much variation may thus be missed from unsampled
populations. However, the similar genetic diversity levels we
observed within the populations of a certain bumblebee species
(Table 2), suggest that genetic diversity levels in neighboring
populations may be very similar. This in turn would mean that
for conservational purposes, increasing genetic diversity levels
may not so easily be achieved.

Here, grouping the bumblebee species by IUCN status into
“declining” and “stable” (Table 6) showed similar results as
described by Maebe et al. (2016), confirming lower genetic
diversity levels within the populations of declining species than
observed within widespread, stable species (as been observed
and/or discussed in: Darvill et al., 2006; Ellis et al., 2006; Goulson
et al., 2008; Charman et al., 2010; Cameron et al., 2011).
TABLE 5 | Post hoc results of the selected linear mixed models (LMM).

AR B. hortorum B. hypnorum B. lapidarius B. pascuorum B. ruderarius B. soroeensis B. sylvarum

B. hortorum − − + − − − −

B. hypnorum *** − + + = + =
B. lapidarius ** *** − − − − −

B. pascuorum *** ** *** − − = −

B. ruderarius *** NS *** * − + =
B. soroeensis * *** *** NS *** − −

B. sylvarum *** NS *** *** NS *** −

HE B. hortorum B. hypnorum B. lapidarius B. pascuorum B. ruderarius B. soroeensis B. sylvarum
B. hortorum − − + − − = −

B. hypnorum *** − + = = + =
B. lapidarius *** *** − − − − −

B. pascuorum *** NS *** − − = −

B. ruderarius *** NS *** ** − + =
B. soroeensis NS ** *** NS *** − −

B. sylvarum *** NS *** *** NS *** −
Decemb
er 2019 | Volume 10
Impact of the factor lrdquo;species” in the model on AR and HE. Significant levels p < 0.001 = ***, p < 0.01 = **, p < 0.05 = *, and NS = not significant, with in bold and italic negative and
positive interactions, respectively.
TABLE 6 | Post hoc results of the LMM comparing genetic diversity between species groups LMM’s results for (A) AR and (B) HE.

A. AR Estimate SE t-value p-value Sign. level

IUCN_Threatened vs Non-threatened 0.611 0.104 5.874 <0.001 ***
Declining vs Non-declining −0.051 0.105 −0.489 0.625

B. HE Estimate SE t-value p-value Sign. Level
IUCN_Threatened vs Non-threatened 0.373 0.060 6.226 <0.001 ***
Declining vs Non-declining 0.005 0.026 0.172 0.864
|

With the estimate, standard error (SE) and p-value of each factor in the model. Significant factors are indicated in bold, with significant levels p < 0.001 = ***, p < 0.01 = **, and p < 0.05 = *.
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Furthermore, our results showed clear differentiation of genetic
diversity based on species. Indeed, the best models explaining
observed AR and HE included species as fixed factor (Table 4),
and post hoc tests showed multiple significant differences in
genetic diversity between species (Table 5). Those results assume
that the maximum level of genetic diversity which a species could
achieve might be always lower than in other species. The latter
might be due to species-specific population characteristics such
as lower queen production, smaller colonies, low dispersal
capacity, etc., which all could limit the generation of higher
genetic diversity levels within the populations of a certain
species, and/or due to past population dynamics which have
altered diversity levels within species’ populations in the past (as
hypothesized in Maebe et al., 2016). The hypothesis of past
population dynamics influencing genetic variability has been
raised attention as a recent study showed a clear drop in genetic
diversity over time in south-Brazilian bumblebee species (Maebe
et al., 2018) which contradicted the temporal stability observed
within the European bumblebees (Maebe et al., 2016). The
authors explained this difference due to deforestation
differences between both continents, hypothesizing that in
Europe major reductions in genetic diversity occurred earlier
in time (Maebe et al., 2018). Whether this holds true must be
further investigated, but the lower levels in genetic diversity
observed in certain species might thus be due to different impact
of land-use changes, such as deforestation, on particular
bumblebee species.

To conclude, our results showed that measuring bumblebees’
local abundance cannot be used to directly determine the health
status of a population, especially on a longer term. Furthermore,
as bumblebee species with less genetic diversity have lower fitness
(e.g. Cameron et al., 2011; Whitehorn et al., 2011; Whitehorn
et al., 2014), it seems that for conservation purposes, measuring
genetic diversity parameters can give a good prediction value
whether a certain population or bumblebee species is more or
less vulnerable towards future population decline.
Frontiers in Genetics | www.frontiersin.org 8
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