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Cereal grains have historically played a critical role in sustaining the caloric needs of the
human population. The major cereal crops, wheat, rice, and maize, are widely cultivated
and have been subjected to biofortification to enhance the vitamin and mineral nutrient
content of grains. In contrast, grains of several other cereals as well as non-grass
pseudocereals are naturally rich in micronutrients, but have yet to be explored for
broad-scale cultivation and consumption. This mini review focuses on the micronutrient
and phytochemical profiles of a few emerging (pseudo)cereals and examines the current
constraints of their integration into the global food system. Prospects of leveraging whole
genome sequence information and modern breeding technologies to promote the
breeding and accessibility of these crops are also discussed.
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INTRODUCTION

Among staple foods, cereal grains are advantaged for high starch content, relatively long-term
storage capacity, and values as seed stocks. Wheat, rice, and maize constitute the major cereal crops
that sustain over 50% of the caloric demand of the world population. Although these cereal grains
make up a critical portion of many diets, they lack substantial amounts of micronutrients (vitamins
and minerals) and phytonutrients (nutraceuticals and phytomedicines). Consequently, the hidden
hunger due to micronutrient deficiency reportedly affects approximately 2 billion people globally
(FAO, 2013), which raises the health concern regarding our heavy reliance on major cereal crops. To
this end, multifaceted approaches including fortification, biofortification, and nutrient supplements
have been deployed to ensure access to nutritious food, an important pillar of food security. On the
other hand, some micronutrient and/or phytonutrient-rich (pseudo)cereal crops have historically
taken on the role of a staple crop across many cultures, but are currently underutilized—having only
percolated into small niches in the global food system. The present review examines the nutritional
characteristics, cultivation, and germplasm collections of seven underutilized (pseudo)cereals. The
limitations and opportunities for breeding and marketing these (pseudo)cereal grains for improving
human nutrition are also discussed.
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LOOKING BEYOND STAPLE CEREALS
AND INTO THE NUTRIENT-DENSE
UNDERUTILIZED (PSEUDO)CEREALS

Like wheat, rice, and maize, broomcorn millet (Panicum
miliaceum L.), canary seed (Phalaris canariensis L.), and teff
[Eragrostis tef (Zuccagni) Trotter] are monocotyledonous plants
in the family of Poaceae (grasses) (Figure 1A; Table 1).
Amaranth (Amaranthus spp.), buckwheat (Fagopyrum
esculentum Moench.), chia (Salvia hispanica L.), and quinoa
(Chenopodium quinoa Willd), despite having seeds resembling
the cereal grains, do not belong to Poaceae and are considered
pseudocereals (Figure 1A; Table 1). Currently, these (pseudo)
cereals or grain products are used as breakfast cereals, snacks,
additions to salads, processed foods, flour, and beverages, etc.,
but not a substantial source of calories.

Although these underutilized grains contain similar or lower
starch contents than the staple cereal grains, they possess
comparable or higher caloric values because decreases in
carbohydrate content are offset by higher protein and lipid
content (Table 1). The anatomy of the underutilized grains
differs from the staple cereals in that they contain less
endosperm (accumulating starch) and a higher proportion of
embryos (accumulating proteins and lipids) (Prego et al., 1998;
Valdivia-López and Tecante, 2015). It is noteworthy that higher
caloric content, while a drawback in food systems of developed
nations, is an asset in developing regions of the world where
calorie deficiencies are a prevalent issue. Additionally, the higher
protein content and more balanced amino acid composition of
these underutilized grains is desirable. For instance, amaranth
and quinoa grains are abundant in essential amino acids and
showed a near optimal protein composition—one resembling
that of cow milk (National Academy of Science, 1984). Bioactive
peptides have also been found in amaranth and chia grains
(Silva-Sánchez et al., 2008; Grancieri et al., 2019). Furthermore,
the lack of gluten in these grains make them suitable for
consumption by patients with coeliac disease.

With some exceptions, mineral nutrient content (potassium,
phosphorus, magnesium, zinc, calcium, iron) of these
underutilized grains is generally higher than that of their
staple counterparts (Table 1). This discrepancy is as high as
an order of magnitude in some cases (e.g., calcium in chia,
amaranth, and teff). These underutilized grains are also more
abundant in vitamins than white rice. In particular, grains of
quinoa, canary seed, broomcorn millet, and amaranth are
remarkably rich in folate (Table 1). Besides micronutrients,
these underutilized grains also accumulate significant
quantities of phenolic acids and flavonoids (phytonutrients)
with antioxidant activities (Li et al., 2011; Gebremariam et al.,
2014; Martínez-Cruz and Paredes-López, 2014; Zhang et al.,
2014; Singh and Sharma, 2017; Tang and Tsao, 2017). However,
some phytochemicals found in cereal grains (often located in
husks), such as phytate, saponins, and tannins, are deemed as
antinutrients because they tend to interfere with nutrient
absorption and/or utilization.
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CURRENT LIMITATIONS FOR
DEVELOPING UNDERUTILIZED
(PSEUDO)CEREALS

In spite of the potential advantages of more extensively
leveraging these underutilized grain crops, several factors
hinder the widespread incorporation of these crops into food
systems and breeding regimes—factors that are bolstered by a
relative lack of research into these crops (Figure 1B). These
factors range from agronomical (growth acreage, yield potential),
technological (trait improvement), social (knowledge diffusion),
and economic (market buy-in), and have stark similarities
regardless of the underutilized grain in question.

The agronomic potential of these underutilized grain crops is
thus far poorly characterized. Grain crops grown outside of the
plots of developed nations, such as quinoa, teff, chia, and
amaranth, do not benefit from the high-input agriculture
customary in the cultivation of major staple grains. As such,
our knowledge of the yield and quality of these underutilized
crops comes largely from low-input systems, limiting our ability
to gauge their potential alongside major staple grains. Of the
underutilized grains detailed here that benefit from high-input
agriculture, such as broomcorn millet, buckwheat, and canary
seed, their use is often constrained to that of a secondary crop—
one grown to replace destroyed fields of staple crops or as a quick
alternative to summer fallow. The short and less-than-optimal
growth season allocated to these grains, while a sensible decision
for a grower, hinders our ability to compare their yield and
quality to their staple grain counterparts. This pattern of usage
manifests in the low acreage of planting allocated to
underutilized grains, magnitudes lower than major cereal crops
(Figure 1C). Nevertheless, there was a gradual increase in quinoa
production during the last few decades (Figure 1C).

Genetic limitations exist for some underutilized (pseudo)
cereal crops. For instance, buckwheat is naturally cross-
pollinated and exhibits self-incompatibility (Ueno et al., 2016).
As such, it is necessary to develop self-compatible buckwheat
lines for breeding and trait improvement. In addition, pipelines
for mutagenesis and transformation are yet undeveloped and/or
require optimization, resulting a reliance on natural variations
for breeding in these grain crops. Currently, the intersection
between genomics and breeding is also limited or nonexistent for
these underutilized grains. Overall, underutilized grain crops are
at present constrained by a lack of concerted breeding efforts
commit ted to expanding the i r use in h igh- input
agricultural systems.

Although cultivation and breeding knowledge exists in local
communities for many of the underutilized grains noted here,
the diffusion of this knowledge is often barred from reaching the
broader global community of growers. In the case of chia,
amaranth, teff, quinoa, and even buckwheat, both traditional
knowledge and modern research trickles slowly across the
language barrier into common languages used in global science
and agriculture. This is especially pronounced for teff, where
relevant information is commonly displayed only in Amharic.
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FIGURE 1 | (A) Image of major staple cereal grains and seven selected underutilized (pseudo)cereal grains. (B) Google scholar hits from 2018 and before using the
search terms indicated in the panel. When two search terms were used for a (pseudo)cereal grain, the not operator (-) was used in conjunction with the second
search term to exclude results that also contain the first search term; the hits from the two searches were added. (C) Global growth acreages of major staple cereal
grains and three selected underutilized (pseudo)cereal grains from 1961 to 2017. Data shown are Food and Agriculture Organization of the United Nations (FAO)
aggregated estimates.
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TABLE 1 | Comparison of nutritional data and general characteristics of major staple cereal grains and seven selected underutilized (pseudo)cereal grains.

d Teff Amaranth Buckwheat Chia Quinoa

169747 170682 170687 170554 168874

s Whole grain Whole grain Whole–groat
flour

Whole grain Whole grain

367 371 335 486 368
73.13 65.25 70.59 42.12 64.16
13.3 13.56 12.62 16.54 14.12
2.38 7.02 3.1 30.74 6.07
8 6.7 10 34.4 7
9 2 0 54 14

0.482 0.591 0.582 – 0.487
– 4.2 0 1.6 –

0.08 1.19 0.32 0.5 2.44
– 82 54 49 184

429 557 337 860 457
427 508 577 407 563
7.63 7.61 4.06 7.72 4.57
180 159 41 631 47
3.63 2.87 3.12 4.58 3.1
184 248 251 335 197

Monocot Dicot Dicot Dicot Dicot
Poaceae Amaranthaceae Polygonaceae Lamiaceae Amaranthaceae

an East Africa Mexico and
Central America

Central Asia
and Siberia

Guatemala and
southern Mexico

Peru and
Bolivia

C4 C4 C3 – C3

Yes (Vanburen
et al., 2019)

Yes (Clouse et al.,
2016)

Yes (Zhang
et al., 2017)

No Yes (Jarvis
et al., 2017)

f Agriculture Food Data Central (https://fdc.nal.usda.gov/) with the exception of canary seed data, which were
seed.ca/). Dashes indicate information not yet reported in the literature. FDC ID, Food Data Central identification
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Wheat Maize Rice Broomcorn
millet

Canary se

Nutritional data (per 100 g grain or grain flour)

FDC ID 169761 170288 169756 169702 –

Form Consumed Wheat flour, white, all–
purpose, unenriched

Whole grain,
yellow

White, long–grain,
unenriched

Whole grain Whole groa

Calories (kcal) 364 365 365 378 399
Carbohydrate (g) 76.31 74.26 79.95 72.85 68.7
Protein (g) 10.33 9.42 7.13 11.02 21.3
Total lipid (g) 0.98 4.74 0.66 4.22 6.7
Dietary Fiber (g) 2.7 7.3 1.3 8.5 6.2
Vitamin A, IU 0 214 0 0 –

Vitamin B–6 (mg) 0.044 0.622 0.164 0.384 –

Vitamin C (mg) 0 0 0 0 –

Vitamin E (mg) 0.06 0.49 0.11 0.05 –

Folate (µg) 26 19 8 85 100
Phosphorus (mg) 108 210 115 285 664
Potassium (mg) 107 287 115 195 400
Iron (mg) 1.17 2.71 0.8 3.01 6.6
Calcium (mg) 15 7 28 8 32
Zinc (mg) 0.7 2.21 1.09 1.68 3.7
Magnesium (mg) 22 127 25 114 216

General characteristics

Group Monocot Monocot Monocot Monocot Monocot
Family Poaceae Poaceae Poaceae Poaceae Poaceae
Center of
origin

Middle East Southern Mexico Asia Northern
China

Mediterrane

Photosynthesis C3 C4 C3 C4 C3

Sequenced
genome

Yes (Appels et al., 2018) Yes (Schnable
et al., 2009)

Yes (Yu et al.,
2002)

Yes (Zou
et al., 2019)

No

Nutrition data in the uncooked, most commonly consumed form of the grains were obtained from the United States Department
extracted from the nutritional factsheets published by Canaryseed Development Commission of Saskatchewan (https://www.canar
number; IU, international unit.
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While language barriers do not exist in excess for broomcorn
millet and canary seed, the diffusion of information about their
cultivation is inhibited by their niche in the market. As
broomcorn millet is used as birdseed outside of East Asia, and
canary seed almost ubiquitously so, their cultivation has been
restricted to growers with connections to distributers in the
birdseed market—a market already possessing a limited demand.

Except for quinoa, the noted underutilized grains have thus
far received little media and market attention. Without a
considerable marketing effort, investment in a farm-to-fork
pipeline for underutilized grains may prove unfruitful. Quinoa
serves as an example of a marketing success in this regard. The
endorsement of quinoa as a functional grain crop by high-
visibility public figures contributed to its global spike in
cultivation—a spike that was aided by the integration of
growers into the global marketplace (Figure 1C) (Bazile et al.,
2016). Other underutilized grains would need to overcome their
marketing constraints to bring their cultivation and
consumption out of obscurity and to establish a stronger
foothold in the global market.
PROMISES AND POTENTIAL FOR
DEVELOPING UNDERUTILIZED
(PSEUDO)CEREALS

The above-mentioned limitations present a clear avenue for
development that could bring with it many fruitful possibilities
—an avenue with promise substantiated by ongoing scientific
progress on these underutilized grains. Although the yields of
underutilized grains are generally lower than staple grains, this
could at least be partially attributable to the fact that these grains
are often grown on less arable land with fewer inputs (e.g., teff,
quinoa, amaranth, chia) or are briefly grown as cover crop to
avoid summer fallow (e.g., buckwheat, broomcorn millet).
Therefore, allotment of suitable cropland and growing seasons
to underutilized grain crops can uncover their yield potential
relative to the grains that serve as the cornerstone of global
research, development, and consumption.

The classic breeding methods remain applicable and valuable
to these underutilized grains. Except for the limited germplasm
collections for chia (Bochicchio et al., 2015) and canary seed
(Cogliatti et al., 2011), there are over 3,000 accessions reported
for quinoa (FAO, 2011; FAO, 2013), 5,000 accession for teff
(Assefa et al., 2015), more than 10,000 accessions for buckwheat
(Zhou et al., 2018), over 29,000 accessions for broomcorn millet
(Vetriventhan et al., 2019), and at least 61 collection centers for
amaranth (Das, 2016). Comprehensive evaluation and
characterization of these germplasm collections will provide
critical resources for breeding high-yield, elite crop varieties.
To this end, next-generation sequencing technologies can be
utilized to examine the genetic diversity of germplasms that have
been adapted to different regions and production environments.
Additionally, whole-genome sequencing (WGS) data of the
germplasm collections encompass a broad range of genomic
Frontiers in Genetics | www.frontiersin.org 5
variants and can boost the power of genomic prediction (Hickey
et al., 2017). Besides natural variations, the genetic diversity of
the breeding population for the underutilized grains can be
further enhanced through physical and chemical mutagenesis.

The emergence of genomic information for buckwheat,
broomcorn millet, quinoa, amaranth, and teff pave the way for
the development of breeding pipelines for desirable traits in the
post-genomic era—pipelines that can integrate the emerging
omics, phenotyping, and genome editing technologies (Table
1). These available reference genomes facilitate not only WGS in
genotyping, but also discovery of genes, single nucleotide
polymorphisms (SNPs), and genomic structural variants. High
throughput genotyping coupled with high throughput
phenotyping (phenomics) and crop modeling will enable
acquisition of valuable trait data to assist in breeding. The
genome sequences also allow precise and effective genome
editing of target genes (Chen et al., 2019). With the exception
of canary seed, there have been reports on genetic transformation
and regeneration of these underutilized (pseudo)cereal plants
(Jofre-Garfias et al., 1997; Eisa et al., 2005; Plaza-Wüthrich and
Tadele, 2012; Gebre et al., 2013; Marconi et al., 2013; Suvorova,
2016). Although the efficiency of plant transformation remains
to be optimized, it enables delivery of the genome-editing system
to these crops. The underutilized (pseudo)cereals are reportedly
tolerant/resistant to biotic and abiotic stresses that threaten crop
production, such as insects, pathogens, weeds, drought, high
temperature, UV-B radiation, heavy metal contamination, as
well as salinity, alkalinity, acidic, or low fertility in soil (Assefa
et al., 2015; Habiyaremye et al., 2017; Hinojosa et al., 2018).
Genomic analyses have already begun to associate stress
tolerance/resistance to molecular and physiological responses.
Understanding the underlying mechanisms of stress tolerance in
these underutilized cereals will also be useful for breeding other
agronomically and economically important crops.

There is promise for these underutilized (pseudo)cereals in
the marketing sector as well. The success of quinoa in being
marketed as a functional grain crop with a rich history has laid
the groundwork for other grain marketers to follow suit. Even
outside the grains, functional foods are increasingly sought after
in global markets, with clear parallels being visible in the western
markets of avocado, kale, pomegranate, and wine. Globally,
marketing these grain crops as a nutritious source of
carbohydrates could promote their import to developing
regions—a treatment that even quinoa could benefit from.
Marketing and subsequent supply chain reconfiguration should
of course proceed such that local demand for the traditional
crops is still satisfied, as a leading criticism of the rapid adoption
of quinoa was the resulting lapse in quinoa consumption by the
locals that had depended on it for generations (Friedman-
Rudovsky, 2012).

Promises in marketing are substantiated by the fact that most
of these grains are sold and consumed either as whole grains or
whole grain products (Table 1), a form that retains the nutrient
content (without losing it to postharvest processing) and fits
easily into the functional food space of western markets. The
exceptions to this are buckwheat, canary seed, and broomcorn
December 2019 | Volume 10 | Article 1289
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millet. Buckwheat is almost exclusively sold as dehulled grouts
and flour produced from dehulled groats. Canary seed’s potential
in the human diet has been elucidated thus far for dehulled
groats also (Abdel-Aal et al., 2011; Mason et al., 2018), while
broomcorn millet is occasionally sold as white flour. The
additional processing steps reduced the mineral nutrient
content in dehusked buckwheat grains as observed similarly in
the major cereals (Oghbaei and Prakash, 2013; Pandey et al.,
2015). On the other hand, these additional steps in processing
could have unstudied roles in removing antinutritional
phytochemicals from these grains as well, much like the
saponin removal steps in quinoa production (Jarvis et al.,
2017). Thorough examination of the role that postharvest
processing could have for antinutrient mitigation in other
underutilized grain crops could aid in their wider application
while simultaneously providing yet another selling point to
leverage in marketing.
PERSPECTIVES

Although it is not envisioned that the underutilized grains will
play a major role as food staple in the near future, an expansion
of their cultivation and utilization will build nutritional synergy
with the major cereal grains. Climates non-conducive to staple
crop cultivation such as hot semi-arid, subtropical highland, and
arid subtropical could be leveraged for food production,
contingent on investment in the biology and marketing of
these underutilized crops. A diversity of photosynthetic modes
in the underutilized grains substantiates this potential for
broader cultivation—with the existence of C4 species removing
the need for extensive engineering efforts such as those carried
out in rice (Table 1).

By leveraging available germplasm collections and expanding
genetic resources, climate-adapted elite varieties can be
developed for the underutilized grain crops. Increased
Frontiers in Genetics | www.frontiersin.org 6
understanding of the genetic underpinnings of many plant
traits such as lodging resistance, seed size, grain shattering, and
stress tolerance/resistance, as well as development of advanced
techniques such as mechanical harvesting, food processing, and
postharvest storage, will bring into focus clear avenues for
improvement of underutilized grains that can be pursued
through strategic plant breeding. In addition, making
innovative breeding technologies and integrated plant breeding
platforms accessible to local breeders and small farmers is
essential for implementation of these breeding strategies.
Furthermore, international collaborations and partnerships,
such as the African Orphan Crops Consortium (AOCC)
(Hendre et al., 2019), will accelerate the development of the
climate-resilient (pseudo)cereals. Overall, complementary to
biofortification of major cereal grains, better utilization of
underutilized grains in diet will have far-reaching impact on
alleviating the burden of the hidden hunger crisis.
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