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The high mortality rate of hepatocellular carcinoma (HCC) is primarily due to its late
diagnosis. In the past, numerous attempts have been made to design genetic
biomarkers for the identification of HCC; unfortunately, most of the studies are based on
small datasets obtained from a specific platform or lack reasonable validation performance
on the external datasets. In order to identify a universal expression-based diagnostic
biomarker panel for HCC that can be applicable across multiple platforms, we have
employed large-scale transcriptomic profiing datasets containing a total of 2,316 HCC
and 1,665 non-tumorous tissue samples. These samples were obtained from 30 studies
generated by mainly four types of profiing techniques (Affymetrix, llumina, Agilent, and
High-throughput sequencing), which are implemented in a wide range of platforms. Firstly,
we scrutinized overlapping 26 genes that are differentially expressed in numerous datasets.
Subsequently, we identified a panel of three genes (FCN3, CLEC1B, and PRC1) as HCC
biomarker using different feature selection techniques. Three-genes-based HCC biomarker
identified HCC samples in training/validation datasets with an accuracy between 93 and
98%, Area Under Receiver Operating Characteristic curve (AUROC) in a range of 0.97 to
1.0. A reasonable performance, i.e., AUROC 0.91-0.96 achieved on validation dataset
containing peripheral blood mononuclear cells, concurred their non-invasive utility.
Furthermore, the prognostic potential of these genes was evaluated on TCGA-LIHC and
GSE14520 cohorts using univariate survival analysis. This analysis revealed that these
genes are prognostic indicators for various types of the survivals of HCC patients (e.g.,
Overall Survival, Progression-Free Survival, Disease-Free Survival). These genes significantly
stratified high-risk and low-risk HCC patients (p-value <0.05). In conclusion, we identified a
universal platform-independent three-genes-based biomarker that can predict HCC
patients with high precision and also possess significant prognostic potential. Eventually,
we developed a web server HCCpred based on the above study to facilitate scientific
community (http://webs.iitd.edu.in/raghava/hccpred/).

Keywords: liver cancer, hepatocellular carcinoma, biomarker, expression, diagnosis, survival, machine
learning, classification
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INTRODUCTION

Cancer is a heterogeneous disease driven by genomic and
epigenomic changes within the cell (Sharma et al., 2010;
Dawson and Kouzarides, 2012; Nagpal et al., 2015; Flavahan
et al., 2017; Kamel and Al-Amodi, 2017; Chatterjee et al., 2018;
Kagohara et al.,, 2018; Narrandes and Xu, 2018; Nebbioso et al.,
2018; Kumar et al,, 2019). Gene dysregulation is considered a
hallmark of cancer. Among the 22 common cancer type,
hepatocellular carcinoma (HCC) ranks at sixth in terms of
frequency of occurrence and fourth at cancer-related mortality
(Siegel et al.,, 2019). The etiology of HCC can be induced by
multiple factors, especially hepatitis viral infection, alcoholic
cirrhosis, and consumption of aflatoxin-contaminated foods
(Ho et al., 2016). Although various traditional and locoregional
treatment strategies such as hepatic resection (RES),
percutaneous ethanol injection (PEI), radiofrequency ablation
(RFA), microwave ablation (MWA), and trans-arterial
chemotherapy infusion (TACI) have improved the survival
rate, patients with HCC still have a late diagnosis and poor
prognosis (Tian et al., 2018).

In the past, several studies focus on the identification of
biomarkers by comparing the global gene expression changes
between cancer tissue and non-tumorous tissues (Shirota et al.,
2001; Jia et al., 2007; Marshall et al., 2013; Gao et al., 2015; Kang
et al,, 2015; Liu et al,, 2015; Emma et al,, 2016; Komatsu et al.,
20165 Cai et al.,, 2017; Li et al., 2017; Zhang et al,, 2017; Li et al,,
2018b; Liao et al., 2018; Meng et al., 2018; Wang et al., 2018; Xu
et al., 2018; Zheng et al., 2018; Cai et al., 2019; Jiao et al., 2019;
Xia et al,, 2019; Zhang et al., 2019). Such analyses yield hundreds
or thousands of gene signature that are differentially expressed in
cancer tissue compared to normal tissue, thus making it difficult
to identify a universal subset of genes that play a crucial role in
neoplastic transformation and progression (Rhodes et al., 2004).
The lack of concordance of signature genes among different
studies and extensive molecular variation between the patient’s
samples restrains the establishment of the robust biomarkers,
promising targets and their experimental validation in clinical
trials (Vasudevan et al, 2018). The transcriptome signatures
have yet to be translated into a clinically useful biomarker, which
may be due to a lack of their satisfactory validation performance
on independent patient’s cohort.

In this regard, treatment of HCC remains unsatisfying as only
diagnostic and prognostic biomarkers alpha-fetoprotein (AFP)
has been established so far. Several other biomarkers AFP-L3,
osteopontin, and glypican-3 are currently being under
investigation for the early diagnosis of HCC patients (Ocker,
2018). Advancement in the genomics has created rich public
repositories of microarray and high throughput datasets from
numerous studies such as The Cancer Genome Atlas (TCGA)

Abbreviations: AUROC, Area under the Receiver Operating Characteristic curve;
ETREES, Extra Trees Classifier; SVC-RBF, Support Vector Machine with RBF
kernel; TCGA, The Cancer Genome Atlas; KNN, K Neighbors Classifier; HCC,
Hepatocellular Carcinoma; MCC, Matthew’s correlation coefficient; LR, Logistic
Regression; NB, Naive Bayes; RF, Random Forest; PBMCs, Peripheral Blood
Mononuclear Cells

(Cancer Genome Atlas Research Network et al., 2013), Genomic
Data Common (GDC), and Gene Expression Omnibus
(Grossman et al., 2016), (Barrett et al., 2013), which provide
the opportunity to study the various aspects of cancer. Thus,
novel methods exploring the computational approach by
merging multiple datasets from different platforms could
provide a new way to establish a robust and universal
biomarker for disease diagnosis and prognosis with increased
precision and reproducibility. Recently, this approach has been
used for biomarker identification of pancreatic adenocarcinoma
(PDAC) (Bhasin et al., 2016; Klett et al., 2018). However, various
studies employed large-scale data or meta-analysis approaches to
identify protein and miRNA expression-based biomarker for
HCC diagnosis (Ji et al., 2016; Ding et al., 2017; Chen et al,
2018b; Ji et al., 2018). But, to the best of our knowledge, RNA-
expression data are not explored in this regard for identification
of the robust biomarker for HCC diagnosis and prognosis.

In order to overcome the limitations of existing methods, we
made a systematic attempt to identify genetic biomarkers for
HCC diagnosis that apply to a wide range of platforms and
profiling techniques. One of the objectives of this study is to
identify robust gene expression signatures for discrimination of
HCC samples by the integration of multiple transcriptomic
datasets from various platforms. Here, we have collected and
analyzed a total of 3,981 samples from published datasets, out of
which 2,316 and 1,665 are of HCC and normal or non-tumorous
tissue samples, respectively. From this, we identified 26 genes,
which are commonly differentially expressed in uniform patterns
among most of the datasets, which provides a universally
activated transcriptional signatures of HCC cancer type.
Further, we have established a robust “three-genes-based HCC
biomarker” implementing different machine learning techniques
to distinguish HCC and non-tumorous samples with high
precision. Additionally, the survival analysis of HCC patient’s
cohorts using these genes revealed their significant prognostic
potential in the stratification of high-risk and low-risk
patient’s groups. To the best of our knowledge, this is the first
study regarding HCC cancer type for the identification of
universal platform-independent diagnostic biomarkers by
integrating data from multiple platforms implementing
machine learning approaches.

MATERIALS AND METHODS

Dataset Collection

Collection of Gene Expression Datasets of HCC

In this study, we extract raw expression data of 30 datasets, where
29 transcriptome datasets were obtained from GEO and one is
from TCGA; each dataset contains at least 10 samples. The
following is the list of datasets obtained from GEO: GSE102079
(Chiyonobu et al., 2018), GSE22405, GSE98383 (Diaz et al,
2018), GSE84402 (Wang et al., 2017), GSE64041 (Makowska
et al.,, 2016), GSE69715 (Sekhar et al., 2018), GSE51401,
GSE62232 (Schulze et al., 2015), GSE45267 (Chen et al,
2018a), GSE32879 (Oishi et al., 2012), GSE19665 (Deng et al.,
2010), GSE107170 (Diaz et al., 2018), GSE76427 (Grinchuk et al.,
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2018), GSE39791 (Kim et al., 2014), GSE57957 (Mah et al.,
2014), GSE87630 (Woo et al, 2017), GSE46408, GSE57555
(Murakami et al., 2015), GSE54236 (Villa et al., 2016; Zubiete-
Franco et al.,, 2019), GSE65484 (Dong et al., 2015), GSE31370
(Seok et al., 2012), GSE84598, GSE89377, GSE29721 (Stefanska
etal,2011), GSE14323 (Mas et al., 2009), GSE25097 (Lamb et al.,
2011; Tung et al., 2011; Wong et al., 2016), GSE14520 (Roessler
et al.,, 2010; Zhao et al,, 2015), GSE36376 (Lim et al., 2013),
GSE36076). All GEO datasets were obtained using GEOquery
package of Bioconductor in R-3.5.3. The TCGA RNA-seq dataset
of TCGA-LIHC was downloaded using gdc-client from the GDC
data portal. All datasets were curated manually to remove all
non-human samples and ensured that only human tissue
samples remain in the dataset. Besides, Probe ID mapped to
gene symbols extracted from respective platform file and
incorporated in the dataset matrix for each dataset. It has been
observed that two datasets, i.e., GSE102079 and GSE64041, have
three types of samples (HCC, adjacent non-tumor, and normal
healthy). Thus, we derived two datasets from GSE102079, called
GSE102079_D1 (contains HCC and adjacent non-tumor
samples) and GSE102079_D2 (contains HCC and healthy
normal samples). Similarly, we derived GSE64041_D1 and
GSE64041_D?2 datasets from GSE64041. Finally, we derived 32
datasets from original 30 datasets as we derived four datasets
corresponding to GSE102079 and GSE64041. Notably, we used
one non-invasive dataset (GSE36076), which contains 20 blood
samples of peripheral blood mononuclear cells (PBMCs) to
evaluate our models.

Pre-Processing of Datasets

Each retrieved raw dataset (Supplementary Data) was subjected
to a detailed curation process. We have pre-processed dataset
matrix individually from each profiling technique for different
platforms in a standardized manner. In case of Affymetrix
datasets, raw data files were pre-processed with background
correction; RMA values were calculated using the Oligo
package (Carvalho and Irizarry, 2010). In case of Illumina
datasets, raw files were processed using Limma and Lumi
packages (Du et al., 2008; Ritchie et al., 2015) and finally log2
values calculated using in-house R scripts. Similarly, raw Agilent-
1-color and Agilent-2-color files were pre-processed using
Limma package individually, then A-values were generated,
which were further transformed to log2 values. Eventually, the
average of multiple probes computed that correspond to a single
gene for each dataset individually employing in-house R scripts.
TCGA-LIHC dataset contains FPKM values, which were further
converted to log2 values. Entrez transcript IDs were mapped to
the gene symbols using GENCODE v22.

Datasets for the Identification of Differentially
Expressed Genes

We divide our datasets into two parts: i) datasets for features
extraction and ii) datasets for the development of the prediction
models. Twenty-seven out of 32 datasets were selected for
identification of differentially expressed genes (DEGs); each
dataset contains more than 10 samples (Figure 1A). These 27
datasets were derived from 25 original GEO datasets. Out of

them, 20 datasets contain HCC v/s adjacent non-tumor samples
and 7 datasets contain HCC v/s healthy samples. These datasets
encompass a total of 1,199 HCC and 949 normal or adjacent
non-tumor samples.

Training and Validation Datasets

In this study, the GSE25097 dataset was used as a training
dataset to develop prediction models; it contains 268 HCC
and 243 non-tumor samples (Figure 1B). The performance of
these models was evaluated on the following three datasets:
GSE14520, GSE36376, and TCGA-LIHC, and called them as
external validation datasets. As shown in Figure 1B, each
dataset has a minimum of 400 samples. The distribution of
all cohorts used in the current study based on sample size is
shown in Figure 1C. To validate the performance of models on
the non-invasive specimen, we also evaluated the performance
on the GSE36076 dataset. This dataset contains 20 blood
samples of PBMCs; it contains 10 HCC and 10 healthy
individuals. In order to reduce the cross-platform artifacts, we
performed quantile normalization using the PreprocessCore
library of Bioconductor (Grossman, et al., 2016) package, for
each dataset as well as for each profiling technique. This
approach is well-adapted in the literature (Huang and
Qin, 2018; Klett et al.,, 2018; Pedersen et al., 2018). These
datasets contain a total of 1,117 HCC and 716 adjacent non-
tumor samples.

Identification of Differentially Expressed
Genes

Each gene in 32 datasets was analyzed for differential expression
using Student’s t-test (Welch f-test and Wilcoxon ¢-test). It is
implemented using in-house R scripts after the assignment of
samples to the respective class, i.e., cancer or normal. These tests
have been applied previously in different studies for the
identification of DEGs (WELCH, 1947; Akaiwa et al., 1999;
Carvalho and Irizarry, 2010; Aino et al., 2014; Schulze et al.,
2015; Best et al., 2016; Bhasin et al., 2016; Bhalla et al., 2017; Cai
et al.,, 2017; Bhalla et al., 2019; Cai et al., 2019; Kaur et al., 2019).
Wilcoxon T-test is used for paired samples and Welch T-test is
used for unpaired samples. Only those sets of genes chosen to
define DEGs that are statistically differentially expressed between
two classes of samples with Bonferroni adjusted p-value less than
0.01. In order to identify a set of differential expression signatures
or “core DEGs of hepatocellular carcinoma,” DEGs in all 27
datasets were compared. Finally, only those overlapping genes
were considered as “core DEGs of hepatocellular carcinoma,”
which have significant differential expression in at least 80% of
cohorts. A similar type of approach was previously implemented
in various studies (Bhasin et al., 2016; Klett et al., 2018; Li
et al., 2018a).

Identification of Robust Biomarkers for
HCC Diagnosis

Ranking and Selection of Features

To reduce the number of genes from the selected set of signature,
i.e., “the core genes of hepatocellular carcinoma,” genes were
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ranked on training dataset (GSE25097) using a simple threshold-
based approach (Bhalla et al., 2017; Bhalla et al., 2019; Kaur et al.,
2019). In the threshold-based approach, genes with a score above
the threshold are assigned to cancer if it is found to be
upregulated in cancer and otherwise normal; whereas sample is
assigned to normal if the gene is downregulated in cancerous
condition. We compute the performance of each gene based on a
given threshold and identify the top 10 features having the
highest performance. We further identified the top 5 features,
which give the best performance when evaluated on the training
dataset using a 10-fold cross-validation technique. Features were
further reduced from five to four and then four to three using a
wrapper-based approach. In this technique, one-by-one each
feature is removed, and the prediction model is developed using
the remaining features. Finally, a combination of features that
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FIGURE 1 | Distribution of samples among datasets used in the study: (A) Datasets used for DEG analysis; (B) Datasets used for Development of Prediction
models; (C) Sample-wise distribution of the datasets.

give the best performance is selected. This technique is also
known as the feature-reduction technique.

Development of Prediction Models

Here, we have developed the prediction models to distinguish
HCC and non-tumorous samples using selected features. These
models were implemented using Python package Scikit-learn
(Pedregosa et al., 2011). A wide range of machine learning
techniques have been used for developing these prediction
models that include ExtraTrees (ETREES), Naive Bayes, K-
nearest neighbor (KNN), Random Forest, Logistic Regression
(LR), and SVC-RBF (radial basis function). The optimization of
the parameters for the various classifiers was done by using a grid
search with AUROC curve as scoring performance measure for
selecting the best parameter.
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Performance Evaluation of the Prediction
Models

In the current study, both internal and external validation
techniques were employed to evaluate the performance of
models. First, the training dataset is used to develop prediction
models and standard 10-fold cross-validation is used for
performing internal validation, which is commonly employed
in the literature (Burton et al., 2012; Bastani et al., 2013; Kourou
et al., 2015; Bhalla et al., 2017; Jiang et al., 2018; Bhalla et al,,
2019; Kaur et al., 2019). It is important to evaluate the realistic
performance of the model on the external validation dataset,
which should not be used for training and testing during model
development. Therefore, we evaluated the performance of our
models on four independent gene-expression cohorts that
include GSE14520, GSE36376, GSE36076, and TCGA-LIHC
obtained from GEO and The Cancer Genome Atlas (TCGA)
(see Figure 1B), which were not used for training. In order to
measure the performance of models, we used both threshold-
dependent and threshold-independent parameters. In the case of
threshold-dependent parameters, we measure sensitivity,
specificity, accuracy, and Matthew’s correlation coefficient
(MCC) using the following equations.

TP
Sensitivity (Sen) = ———— x 100 1
ensitivity (Sen) TP N < (1)

TN
Specificity (S =——x 100 2
pecificity (Spec) TN 2 FP X (2)

TP+ TN

Accuracy (Acc) = * x 100 (3)

TP + FP + TN + FN

(TP x TN) - (FP x EN)
/(TP + FP)(TP + FN)(TIN + FP)(TN + FN)

MCC =

where FP, FN, TP, and TN are false positive, false negative, true
positive, and true negative predictions, respectively.

In case of threshold-independent measures, we used a
standard parameter Area under the Receiver Operating
Characteristic (AUROC) curve. The AUROC curve is
generated by plotting sensitivity or true positive rate against
the false positive rate (1-specificity) at various thresholds. Finally,
the area under the curve is calculated to compute a single
parameter called AUROC.

Prognostic Potential of Identified HCC
Diagnostic Biomarkers

The prognostic potential of the “three-genes HCC biomarker” was
analyzed using gene-expression data of TCGA-LIHC and
GSE14520 cohorts. The TCGA and GSE14520 datasets contain
374 and 219 tumor samples, respectively. Their clinical
information was extracted from GEO, GDC, and the literature
(Roessler et al., 2010; Liu et al., 2018a). The clinical characteristics
of patients are given in Table S1 (Supplementary Information
File 1). Univariate survival analyses and risk assessments were
performed by survival package in R (Therneau and Grambsch,
2000; Therneau, 2013). The distribution of the survival risk groups

is done by using a log-rank test, eventually represented in the form
of Kaplan-Meier plots. A p-value < 0.05 was considered the cut-oft
to describe the statistical significance in all survival analyses. Here,
we analyzed four types of survivals, i.e., OS (Overall Survival), DSS
(Disease-Specific Survival), DFS (Disease-Free Survival), and PFS
(Progression-Free Survival) for TCGA-LIHC cohort, and two
types of survivals, ie., OS and RFS (Recurrence-Free Survival)
(also called as DFS) for GSE14520 cohort. Besides, genes from the
signature, univariate survival analysis is also performed on clinical
characteristics of patients like age, gender, and tumor stage
individually. Additionally, multivariate survival analysis was
performed to assess the combined effect of clinical
characteristics with the signature genes.

Functional Annotation of Signature
Genomic Markers

In order to discern the biological relevance of the signature genes,
enrichment analysis is performed using Enrichr (Kuleshov et al.,
2016). Enrichr executes Fisher exact test to identify enrichment
score. It provides Z-score and adjusted p-value, which is derived
by applying correction on a Fisher exact test. We have considered
only those Gene Ontology (GO) terms that are significantly
enriched with adjusted p-value less than 0.05.

RESULTS

Overview
The pipeline of our analysis is illustrated in Figure 2. The detail
of each step is described below.

Transcriptomic Cores for Hepatocellular
Carcinoma

Identification of the Transcriptomic Cores

The individual statistical differential expression analyses of 27
gene-expression datasets resulted in the identification of hundreds
of DEGs (Supplementary Figure 1). The 9,954 genes are present
among each of the 27 datasets (Supplementary Information File
1, Table S2). Further, the comparative analysis among all 27
datasets scrutinized 26 overlapping genes that are differentially
expressed in 80% or more datasets, i.e., 22 datasets. We called
these genes as “core genes for hepatocellular carcinoma.” Among
these 26 genes, 12 are downregulated and 14 are upregulated in
HCC in comparison to normal samples. The regulatory patterns
of the core genes were consistent among most of the datasets
(Table 1). Additionally, the expression pattern of these genes in
training and three external validation datasets is shown in Figure
S2 (Supplementary Information File 2).

Gene Enrichment Analysis of the Transcriptomic
Cores

Gene enrichment analysis of these “core genes of HCC” revealed
their biological significance. The proteins encoded by the
downregulated genes mainly enriched in complement activation
and lectin pathways related processes. These genes negatively
regulate cellular extravasation. They are also enriched in GO
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FIGURE 2 | Overview for the analysis implemented in the study.

TABLE1 | List of overlapping 26 genes that are differentially expressed (Core DEGs for HCC) between HCC and adjacent normal or adjacent non-tumor samples with
Bonferroni p-values < 0.01.

Gene #Up #Down #Sig #Non-sig Up (%) Down (%) Sig (%) Regulation
FCN3 1 26 24 3 3.70 96.30 88.89 Down
CLEC4M 2 25 24 3 7.41 92.59 88.89 Down
FCN2 2 25 24 3 7.41 92.59 88.89 Down
MARCO 3 24 22 5 11.11 88.89 81.48 Down
CRHBP 2 25 22 5 7.41 92.59 81.48 Down
CFP 2 25 22 5 7.41 92.59 81.48 Down
STEAP3 2 25 25 2 7.41 92.59 92.59 Down
HGFAC 4 23 22 5 14.81 85.19 81.48 Down
CLEC1B 2 25 23 4 7.41 92.59 85.19 Down
CXCL12 3 24 24 3 11.11 88.89 88.89 Down
MT1E 3 24 24 3 11.11 88.89 88.89 Down
NSUN5 25 2 24 3 92.59 7.41 88.89 Down
MCM7 24 3 24 3 88.89 1.1 88.89 Up
MCM3 24 3 24 3 88.89 11.11 88.89 Up
ITGA6 24 3 24 3 88.89 1.1 88.89 Up
SSR2 24 3 23 4 88.89 11.11 85.19 Up
STMN1 23 4 24 3 85.19 14.81 88.89 Up
PRC1 24 3 23 4 88.89 11.11 85.19 Up
POLD1 24 3 23 4 88.89 11.11 85.19 Up
PBK 24 3 24 3 88.89 11.11 88.89 Up
IGSF3 22 5 23 4 81.48 18.52 85.19 Up
DTL 24 3 22 5 88.89 1111 81.48 Up
ZWINT 24 3 22 5 88.89 11.11 81.48 Up
SPATS2 24 3 24 3 88.89 11.11 88.89 Up
GPSM2 23 4 23 4 85.19 14.81 85.19 Up
COL15A1 24 3 22 5 88.89 11.11 81.48 Up

Up, Upregulated in cancer or HCC,; Down, Downregulated in cancer or HCC; #Up: No. of datasets in which gene is overexpressed; #Down: No. of datasets in which gene is under-
expressed; #Sig: No. of datasets in which gene is significantly differentially expressed; #Non-Sig: No. of datasets in which gene is not significantly differentially expressed; Up (%):
Percentage of datasets in which gene is overexpressed; Down (%): Percentage of datasets in which gene is underexpressed; Sig (%): Percentage of datasets in which gene is significantly
differentially expressed.
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molecular functions like serine-type endopeptidase,
oxidoreductase, RNA methyltransferase activity, etc.
(Supplementary Information File 2, Figure S3). Whereas,
upregulated core genes are enriched in cell cycle GO biological
processes like mitotic spindle organization and mitotic sister
chromatid segregation, DNA synthesis and DNA replication,
post-replication repair and cellular response to DNA damage
stimulus, etc. They are also enriched in GO molecular functions
such as exodeoxyribonuclease activity, GDP-dissociation inhibitor
activity, DNA polymerase activity and insulin-like growth factor
binding, etc. (Supplementary Information File 2, Figure S3).

Identification of HCC Biomarkers and
Development of Prediction Models
Single-Gene Based Prediction Models

All 26 DEGs were ranked on the training dataset using
threshold-based approach; ranking is based on their
discriminatory power to distinguish HCC from non-tumorous
samples (Bhalla et al., 2017; Kaur et al., 2019). The performance
of the top 10 genes having maximum discriminatory power is
shown in Table 2; see Supplementary Information File 1, Table
S3 for detail. These top 10 genes showed highest performance
with an accuracy > 85%, MCC > 0.75, and AUROC > 0.85. We
also evaluate the performance of these top 10 genes using 10-fold
cross-validation to understand their robustness as shown in
Table S4 (Supplementary Information File 1). We further
selected 5 genes out of 10 genes, which exhibit the maximum
performance. These genes are FCN3, CLEC1B, CLEC4M, PRCI,
and PBK; models based on these genes have accuracy more than
90% with AUROC > 0.95. In addition, the performance is also
evaluated on the external validation datasets. The performance of
the method was same on the training dataset but decreases on the
external validation for few genes/features (see Table S5,
Supplementary Information File 1).

Multiple-Genes Based Prediction Models

We identified the top five genes based on single gene-based
prediction models, as described above. Further, we developed
machine learning techniques-based classification models using
these top five genes. We called these models as multiple-genes
based prediction models as they take multiple genes as input.

These models were evaluated on the training as well as validation
datasets using internal and external cross-validation. The
performance of these models on training as well as on three
validation datasets is shown in Table 3. As shown in Table 3, we
got AUROC approximately 0.98 on training as well as on the
validation datasets. We further reduced one gene from selected
set of five genes using feature reduction technique as described in
Materials and Methods and obtained a set of four genes (FCN3,
CLECIB, PRCI, PBK). Subsequently, machine learning
prediction models developed based on them classified HCC
and non-tumor samples with accuracy more than 95% with
AUROC in the range of 0.97-0.99 on both training and three
independent validation datasets as shown in Table S6
(Supplementary Information File 1). Results from this
analysis show that we got nearly same performance using four
genes-based biomarkers as we got in case of five genes-based
biomarkers. Thus, reduction of one feature (five to four) does not
affect the performance of our multiple-gene based prediction
method. We further reduced features using feature reduction
technique and got a set of three genes that contains FCN3,
CLECIB, and PRCI. Prediction models based on three genes-
biomarker got accuracy 95-98% with AUROC in the range of
0.96-0.99 on training as well as independent validation datasets
as shown in Table 4. The expression pattern of these three genes
among samples of training dataset and three external validation
datasets is depicted in Figure 3. We also tried two gene
biomarkers, but there is substantial reduction in the
performance on validation datasets. Thus, our final model is
developed using a biomarker panel of three genes that include
FCN3, CLECIB, and PRCI. We considered three-genes based
biomarker as the final model because the number of genes is
limited. Hence, it is easy to implement in real life as well
as economical.

Validation of Models on Blood Samples

In this study, models have been developed on tissue samples,
which is complex and difficult to implement for routine testing.
The question arises whether this model can also be used to
discriminate the samples achieved from non-invasive techniques.
Thus, we assessed the performance of our final model on
PBMCs/blood samples of GSE36076. These signature genes

TABLE 2 | Top 10 genes based on the simple threshold-based approach.

Gene symbol Thresh Sens (%) Spec (%) Acc (%) MCC AUROC Mean in HCC Mean in normal Mean diff
FCN2 9.78 97.76 99.59 98.63 0.97 0.98 5.76 10.89 -5.13
CLEC4M 7.59 97.01 98.77 97.85 0.96 0.98 4.32 9.37 -5.06
FCN3 10.76 95.15 99.18 97.06 0.94 0.97 7.87 12.32 -4.45
CLEC1B 9.46 95.52 97.94 96.67 0.93 0.97 5.96 11.38 -5.42
CFP 8.14 96.64 94.24 95.50 0.91 0.96 6.15 8.63 -2.48
CRHBP 8.69 92.54 96.71 94.52 0.89 0.95 6.35 10.30 -3.95
PRC1 7.76 91.42 97.12 94.13 0.88 0.94 10.03 6.35 3.68
PBK 6.03 91.04 93.42 92.17 0.84 0.93 8.65 4.41 4.24
DTL 6.71 85.82 94.65 90.02 0.80 0.91 8.72 5.20 3.52
IGSF3 6.93 81.34 91.77 86.30 0.73 0.88 8.10 6.08 2.01

Sens, Sensitivity; Spec, Specificity; Acc, Accuracy; MCC, Mathews Correlation Coefficient; AUROC, Area under Receiver operator curve; Thresh, Threshold; Mean diff, Mean in HCC—

Mean in normal.
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TABLE 3 | Performance of five genes (FCN3, CLEC4M, CLEC1B, PRC1, PBK) based models on training and validation datasets implementing various machine learning

techniques.
Classifier ~ Sens (%) Spec (%) Acc (%) MCcC AUROC with 95% CI Sens (%) Spec (%) Acc (%) MCC AUROC with 95% ClI
Training Dataset Validation Dataset1
ETREES 97.39 98.35 97.85 0.96 0.99 (0.99-1 97.78 94.09 95.96 0.92 0.98 (0.97-0.99)
NB 97.76 99.18 98.43 0.97 0.99 (0.99-1 97.33 95.45 96.40 0.93 0.98 (0.97-0.99)
KNN 97.39 98.77 98.04 0.96 0.99 (0.99-1 96.89 96.82 96.85 0.94 0.98 (0.97-0.99)
RF 97.01 97.94 97.46 0.95 0.99 (0.99-1 97.33 94.55 95.96 0.92 0.98 (0.97-0.99)
LR 97.76 99.59 98.63 0.97 0.99 (0.99-1 95.56 97.27 96.40 0.93 0.99 (0.98-0.99)
svC 97.01 100 98.43 0.97 0.99 (0.99-1 96.89 95.00 95.96 0.92 0.99 (0.98-0.99)
Validation Dataset2 Validation Dataset3
ETREES 95 97.41 96.07 0.92 0.98 (0.97-0.99) 97.86 96 97.64 0.89 0.99 (0.98-0.99)
NB 94.58 98.45 96.3 0.93 0.98 (0.96-0.99) 98.13 92 97.41 0.88 0.98 (0.98-0.99)
KNN 92.92 98.45 95.38 0.91 0.97 (0.96-0.99) 97.86 94 97.41 0.88 0.99 (0.98-0.99)
RF 96.67 93.26 95.15 0.9 0.98 (0.97-0.99) 98.4 90 97.41 0.88 0.99 (0.98-0.99)
LR 93.75 98.45 95.84 0.92 0.98 (0.97-0.99) 97.59 98 97.64 0.90 0.99 (0.98-0.99)
SVC-RBF 93.33 98.45 95.61 0.91 0.98 (0.97-0.99) 97.33 98 97.41 0.89 0.99 (0.98-0.99)

ETREES, Extra Trees Classifier; NB, Naive Bayes; KNN, K Neighbors Classifier; RF, Random Forest; LR, Logistic Regression; SVC-RBF, Support Vector Machine with RBF-kernel; Sens,
Sensitivity; Spec, Specificity; Acc, Accuracy; MCC, Mathews Correlation Coefficient; AUROC, Area under Receiver operator curve.

TABLE 4 | Performance of three-genes HCC biomarker-A (FCN3, CLEC1B, PRC1) based models on training and validation datasets implementing various machine
learning techniques.

Classifier Sens (%) Spec (%) Acc (%) McC AUROC with 95% CI Sens (%) Spec (%) Acc (%) MCC AUROC with 95% ClI
Training Dataset Validation Dataset1
ETREES 96.64 97.94 97.26 0.95 0.99 (0.98-0.99) 94.67 95.91 95.28 0.91 0.97 (0.96-0.99)
NB 97.39 99.18 98.24 0.96 0.99 (0.99-1.0) 96.00 95.91 95.96 0.92 0.98 (0.97-0.99)
KNN 97.76 98.77 98.24 0.96 0.99 (0.99-1.0) 93.78 97.73 95.73 0.92 0.97 (0.96-0.99)
RF 97.01 97.53 97.26 0.95 0.99 (0.99-1.0) 94.67 96.36 95.51 0.91 0.97 (0.96-0.99)
LR 93.28 100 96.48 0.93 0.99 (0.99-1.0) 92.89 97.73 95.28 0.91 0.98 (0.97-0.99)
SVC-RBF 94.03 100 96.87 0.94 0.99 (0.98-0.99) 96.00 96.82 96.40 0.93 0.98 (0.97-0.99)
Validation Dataset2 Validation Dataset3
ETREES 93.75 96.37 94.92 0.90 0.98 (0.97-0.99, 95.72 98 95.99 0.84 0.99 (0.98-0.99)
NB 94.58 98.45 96.3 0.93 0.98 (0.97-0.99, 98.13 82 96.23 0.82 0.96 (0.95-0.98)
KNN 95.83 97.93 96.77 0.94 0.98 (0.97-0.99, 97.59 96 97.41 0.88 0.99 (0.98-0.99)
RF 95.42 94.3 94.92 0.90 0.98 (0.97-0.99, 95.45 96 95.52 0.82 0.98 (0.97-0.99)
LR 95.42 98.45 96.77 0.94 0.99 (0.98-0.99, 97.33 98 97.41 0.89 0.99 (0.98-0.99)
SVC-RBF 93.33 97.93 95.38 0.91 0.98 (0.97-0.99, 96.79 98 96.93 0.87 0.99 (0.98-0.99)

ETREES, Extra Trees Classifier; NB, Naive Bayes; KNN, K Neighbors Classifier; RF, Random Forest; LR, Logistic Regression; SVC-RBF, Support VVector Machine with RBF kernel; Sens,
Sensitivity; Spec, Specificity; Acc, Accuracy; MCC, Mathews Correlation Coefficient; AUROC, Area under Receiver operator curve.

correctly predicted 90% of both HCC and healthy samples with
ROC in the range of 0.91-0.96 and MCC 0.80-0.82. Complete
results of prediction models are tabulated in Table 5. This
demonstrates that our three genes-based models have the
ability to discriminate HCC and healthy blood samples with
reasonably high accuracy.

Protein-Based Biomarkers

In the past, proteins have been identified as diagnostic
biomarkers for HCC. These protein biomarkers are AFP
+GPC3 and AFP+GPC3+CK19 (KRT19) (Lou et al., 2017;
Ocker, 2018). As we do not have their protein expression for
these patients’ samples, we employed only their gene expression
values. Models based on the gene expression of AFP+GPC3
+KRT19 classified HCC and normal samples of training
dataset with an accuracy 67-75%. While this model attained
accuracy of 69-77%, 51-87%, and 50-74% on external validation

datasetl, dataset2 and dataset3, respectively, as shown in Table
S7 (Supplementary Information File 1). Further, the prediction
models based on the gene expression of AFP+GPC3 have
improved performance on training dataset with an accuracy of
70-77%, but lower performance on all three validation datasets
as given in Table S8 (Supplementary Information File 1).

Survival Analysis to Determine the
Prognostic Potential of “Three-Genes HCC
Biomarker”

Univariate Survival Analysis for Three-Genes HCC
Biomarker

To examine the prognostic potential of the “three-genes HCC
biomarker,” the univariate survival analysis was performed on
TCGA-LIHC and GSE14520 cohorts. The samples were
partitioned into low-risk and high-risk groups. Interestingly, all
three genes of “three-genes HCC biomarker-A” are significantly
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FIGURE 3 | Boxplot representing the expression pattern of three-genes panel-based HCC biomarker in the (A) Training Dataset, (B) Validation Dataset 1,
(C) Validation Dataset 2, (D) Validation Dataset 3.

TABLE 5 | Performance of three-genes HCC biomarker-A (FCN3, CLEC1B, PRC1) based models on training and validation datasets 4 (containing blood samples, i.e.,
PBMGCs) implementing various machine learning techniques.

Classifier ~ Sens (%) Spec (%) Acc(%) MCC  AUROC with95% Cl  Sens (%) Spec (%) Acc(%) MCC  AUROC with 95% CI

Training Dataset Validation Dataset4
ETREES 94.78 99.18 96.87 0.94 0.99 (0.979-0.998) 100 80 90 0.82 0.93 (0.854-1.0)
NB 97.39 99.18 98.24 0.96 0.99 (0.989-1.0) 90 90 90 0.80 0.95 (0.81-1.0)
KNN 97.01 99.59 98.24 0.97 0.99 (0.986-1.0) 90 90 90 0.80 0.96 (0.878-1.0)
RF 95.52 99.59 97.46 0.95 0.99 (0.991-1.0) 100 80 90 0.82 0.93 (0.81-1.0)
LR 96.64 100 98.24 0.97 0.99 (0.992-1.0) 90 90 90 0.80 0.96 (0.877-1.0)
SvC 956.15 99.18 97.06 0.94 0.99 (0.988-0.999) 90 90 90 0.80 0.91 (0.744-1.0)

ETREES, Extra Trees Classifier; NB, Naive Bayes; KNN, K Neighbors Classifier; RF, Random Forest; LR, Logistic Regression; SVC-RBF, Support Vector Machine with RBF kernel; Sens,
Sensitivity; Spec, Specificity; Acc, Accuracy; MCC, Mathews Correlation Coefficient; AUROC, Area under Receiver operator curve.

associated with the survival of HCC patients. For instance, higher ~ analysis with HR (Hazard Ratio), with 95% CI and p-value, are
expression (greater than mean) of CLECIB and FCN3 is  presented in Table S9 (Supplementary Information File 1).
significantly associated with good outcome of the patients, i.e.

0S, DSS, DFS, and PFS; while the overexpression of PRCI is  Univariate Survival Analysis for Clinical Features
significantly associated with poor survival including DSS, DFS,  The clinical characteristics of the patients like age, gender,
or RFS and PFS of HCC patients for TCGA-LIHC dataset as  tumor size, and stage are considered as important prognostic
shown in Figure 4. In the GSE14520 dataset, higher expression  indicators for the survival of the patients in different malignancies
of PRCI is significantly associated with the poor outcome of including HCC (Best et al., 2016; Liu et al., 2018a; Wu et al,
patients, i.e., OS and DFS or RFS, while the higher expression of 2018; Yang et al, 2019). As the tumor size information is not
FCN3 is significantly associated with the better outcome of HCC ~ present in one of the cohorts, therefore, we performed univariate
patients as depicted in Figure 5. Complete results of survival  survival analysis using only age, gender, and tumor stage of
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the patients. This analysis shows that tumor stage is an important
clinical factor with prognostic potential that significantly
stratified high-risk and low-risk groups of patients in both
cohorts, ie., TCGA-LIHC and GSE14520. For instance, stage
individually significantly (p-value <0.0001) stratified risk groups
for OS, RES with HR = 1.73 and HR = 1.65 of TCGA cohorts and
with HR = 2.29 and HR = 1.79 of GSE14520 cohort, respectively
(Table S10, Supplementary Information File 1). While the
gender and age of patients do not possess high prognostic
potential, as shown in Table S10 (Supplementary Information
File 1).
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FIGURE 4 | Kaplan Meier survival curves for the risk estimation of HCC patient in TCGA cohort based on the RNA expression of (A) FCN3, (B) PRC1, and (C)

Multivariate Survival Analysis

Eventually, the multivariate analysis is performed to assess the
independent impact of clinical characteristics and three genes of
our signature biomarker that are determined as significant
prognostic variables by univariate analysis. From this analysis,
tumor stage is identified as the sole independent prognostic
factor associated with the survival of HCC patients that
significantly (with p-value <0.01) stratified high-risk and low-
risk groups of both TCGA-LIHC and GSE1450 cohorts as
presented in Figures S4-S6 (Supplementary Information
File 2).
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Web Server

To facilitates the scientific community working in the area of
liver cancer research, we developed “HCCpred” (Prediction
Server for Hepatocellular Carcinoma). In HCCpred, we execute
mainly two modules: Prediction Module and Analysis Module
based on robust five-genes, four-genes. and three-genes HCC
biomarkers and 26 Core genes of HCC identified in the present
study for the prediction and analysis of samples from the RNA-
expression data. The prediction module permits the users to
predict the disease status, i.e., cancerous or normal using RNA
expression values of a subset of genes using in silico prediction
models based on robust five-genes, four-genes, and three-genes
HCC biomarkers identified in the present study. Here, the user is
required to submit RMA (for Affymetrix), A-value (for Agilent),
Log?2 value (for Illumina), or FPKM (High throughput RNA-seq
data) for a subset of genes or biomarkers. The output result
displays a list for patient samples and corresponding predicted
status of samples. Moreover, the user can select among the
models, i.e., ETREES-based or SVC-RBF based model. Further,
the Analysis Module permits the user to analyze the expression
pattern of any of the top 10 ranked genes to check whether it is
upregulated or downregulated in comparison to HCC samples

Yime in months

FIGURE 5 | Kaplan Meier survival curves for the risk estimation of HCC patient in GSE14520 cohort based on the RNA expression of (A) RFS for PRC1, (B) RFS for

based on the samples of the current study. This webserver is
freely accessible at http://webs.iiitd.edu.in/raghava/hccpred/.

DISCUSSION

HCC is a type of tumor that is associated with the poor prognosis
and a high mortality rate among the most common cancer types
(Siegel et al.,, 2019). High recurrence rate and low rate
of early detection results in poor prognosis. Accurate diagnosis
of HCC may provide the opportunity for appropriate
treatment, including traditional available treatment like liver
transplantation resection, etc. Although the AFP and DCP
proteins are well-established markers for the diagnosis of HCC,
their sensitivity and specificity are not optimum (Sauzay et al.,
2016). Therefore, the development of a novel robust diagnostic
and prognostic biomarker for HCC is needed as it can assist in the
existing clinical management of tumor. Towards this, our current
report is an attempt to scrutinize a robust transcriptomic
biomarker for HCC diagnosis. Briefly, in this study, we provide
a novel large-scale analysis-based approach to identify a robust
gene expression-based candidate diagnostic biomarker for HCC
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derived from multiple transcriptomic profiles/datasets across a
variety of platforms obtained from GEO and TCGA. This
metadata integration approach employed to elucidate “core
HCC DEGs” subset followed by a class prediction by
implementing various machine learning algorithms. Eventually,
validation on external independent datasets led us to the
identification of multiple-genes based robust biomarkers for HCC.
Here, firstly, we have identified 26 genes named as “Core DEGs
for HCC” that are uniformly differentially expressed among 80%
of datasets. We have considered only these genes for downstream
machine learning analysis. In an urge to identify a manageable
subset with the minimum number of genes from this list that have
a high discriminatory power, we further identified three genes
signature-set containing CLECIB, FCN3, and PRCI. This “three-
genes based HCC biomarker” has predictive accuracy of 95-98%
and AUROC 0.96-0.99 on the training and all three independent
validation datasets. We further hypothesized that this biomarker
gene set might be proved as quite an effective non-invasive
diagnostic biomarker for HCC. Therefore, eventually, we
validated their discriminatory performance on 20 PBMCs
samples (GSE36076) extracted from 10 HCC and 10 healthy
individuals. As anticipated, this biomarker set correctly classified
90% of the samples with AUROC in the range of 0.91-0.96.
Besides, we also developed the prediction models based on the
gene expression of already well-established protein biomarkers of
HCC in the literature, i.e., AFP+GPC3 and AFP+GPC3+KRT19
(Lou et al.,, 2017). The prediction models based on AFP+GPC3
+KRT19 discriminate samples of training dataset with an accuracy
of 67-75% and 69-77% of validation datasetl, 55-87% of
validation dataset2, and 50-74% of validation dataset3, while
the models based on AFP+GPC3 have quite lower performance
on validation datasets. Further, we speculate that “three-genes
HCC biomarker” can be explored as an effective novel protein
based non-invasive biomarker as they have very good predictive
power to distinguish HCC and non-tumor samples at gene
expression level from the tissue and PBMC samples. Moreover,
the product of FCN3 gene is released in the serum and bile
(Akaiwa et al., 1999; Brown et al., 2015; Pan et al., 2015; Tizzot
et al,, 2018); thus, this may serve as non-invasive biomarkers for
diagnosis of HCC. Furthermore, recently, it has been reported that
the protein product of two of the three genes from three-genes
HCC biomarker, i.e., PRCI and FCN3, is also associated with HCC
diagnosis and prognosis independently (Liu et al., 2018b; Shen
et al, 2018). Hence, we anticipate that the three-genes signature
might prove to be a good diagnostic and prognostic marker for
HCC at the protein level as well. There is still a need for the
validation of the protein product of these genes on a large scale of
samples to confirm this hypothesis and their clinical utility.
Interestingly, the robust “three-genes HCC biomarker”
contains FCN3, PRCI, and CLECIB, has very high diagnostic
ability, and also possesses prognostic potential, i.e., they
are significantly associated with survival of HCC patients
as determined by univariate analysis. For instance, higher
expression of CLECIB and FCN3 significantly associated with
the good outcome of HCC patients in TCGA-LIHC cohort; while
higher expression of PRCI is significantly associated with the poor

outcome of HCC patients in both TCGA-LIHC and GSE14520
cohorts. Besides, the role of CLECIB and PRCI was previously
also revealed in the diagnosis and prognosis of HCC (Chen et al,,
2016; Chan et al., 2018; Hu et al.,, 2018; Kaur et al., 2019). Further,
univariate analysis employing clinical factors of patients found
that tumor stage of patients can act as a strong prognostic factor in
the various types of survival, i.e., OS, RES/DFS, PES, and DSS of
patients. Eventually, the multivariate survival analysis revealed the
tumor stage as a sole independent prognostic factor, which was
also corroborated with the previous literature (Aino et al., 2014;
Wang and Li, 2019). The correct tumor stage identification is
quite a tedious and challenging task in comparison to the
quantification of the expression of genes.

In the past, a concern raised by Kaplan et al. is that despite the
number of advantages of big studies, large sample size can also
magnify the bias associated with an error resulting from sampling or
study design (Kaplan et al.,, 2014). Thus, to reduce the
overestimation of inferences from the results of large cohorts, we
have included both types of cohorts, i.e., large cohort (sample size
>50) and small cohort (sample size <50). We hypothesized that
these results might be more reliable and applicable. Additionally, it
might be practically more useful in real life, where, usually, small
cohorts are available with maximum clinical parameters. Therefore,
to ensure that cohort’s size does not affect the results derived from
the overall study, results should be validated on a small cohort as
well. Towards this, we have also validated models built on the
training dataset on three large cohorts of external validation dataset
and one small cohort (contains 20 blood samples). Thus, these
results indicate that there is no overestimation of inferences from
the results of cohorts used in the study.

Taken together, we have established a robust three-gene HCC
diagnostic biomarker with reasonable performance and possesses
both diagnostic and prognostic potential. A meta-data integration
pipeline is employed for the identification of a robust biomarker
using machine learning techniques, which can work across different
platforms. Further, this pipeline can also be used for the analysis of
any other cancer type. Although more and more research is under
the development of novel biomarkers, further work will be required
to implement the clinical utilization of identified biomarker to meet
real-world demand. We are anticipating that identifying novel cost-
efficient biomarker using predictive technology for the detection of
HCC will be promising.

CONCLUSIONS

This study identified and validated a highly accurate three-genes
HCC biomarker for discriminating HCC and non-tumorous
samples; it also possesses a significant prognostic potential that
may facilitate more accurate early diagnosis and risk stratification
upon validation in prospective clinical trials. Reasonable
performance on the validation dataset of PBMCs samples
indicates their non-invasive utility. Moreover, the protein product
of FCN3 is released in the serum and bile. Thus, this may serve as
non-invasive protein diagnostic biomarkers. Large-scale non-
invasive cohorts are required to confirm their non-invasive
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clinical utility. Additionally, the uniform overexpression pattern of
PRCI among numerous HCC samples suggests it as a novel
potential therapeutic target for HCC.
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