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Butyrylation plays a crucial role in the cellular processes. Due to limit of techniques, it is a
challenging task to identify histone butyrylation sites on a large scale. To fill the gap, we
propose an approach based on information entropy and machine learning for
computationally identifying histone butyrylation sites. The proposed method achieves
0.92 of area under the receiver operating characteristic (ROC) curve over the training set
by 3-fold cross validation and 0.80 over the testing set by independent test. Feature
analysis implies that amino acid residues in the down/upstream of butyrylation sites would
exhibit specific sequence motif to a certain extent. Functional analysis suggests that
histone butyrylation was most possibly associated with four pathways (systemic lupus
erythematosus, alcoholism, viral carcinogenesis and transcriptional misregulation in
cancer), was involved in binding with other molecules, processes of biosynthesis,
assembly, arrangement or disassembly and was located in such complex as consists
of DNA, RNA, protein, etc. The proposed method is useful to predict histone butyrylation
sites. Analysis of feature and function improves understanding of histone butyrylation and
increases knowledge of functions of butyrylated histones.

Keywords: butyrylation, random forest, histone, post-translational modification, information entropy
INTRODUCTION

Butyrylation, a type of post-translation modification (PTM), refers to a biochemical interaction
process where the butyryl functional group covalently modifies the lysine amino acid (Chen et al.,
2007; Lu et al., 2018). Protein butyrylation is a newly discovered PTM (Chen et al., 2007). In the past
5 years, butyrylation's roles in the cellular process have been gradually uncovered. For example,
Goudarzi et al. (2016) confirmed that histone butyrylation directly stimulates gene expression and
inhibits Brdt Binding, Xu et al. (2018) found that butyrylation and acetylation are responsible for the
phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum, and Lu et al.
(2018) revealed that butyrylation prefers poising gene activation by external stresses in the rise of
submergence and starvation. Nevertheless, compared to such extensively-studied PTMs as
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acetylation (Kiemer et al., 2005; Basu et al., 2009; Gnad et al.,
2010; Choudhary et al., 2014) and methylation (Chen et al., 2006;
Shi et al., 2012b; Hamamoto et al., 2015; Shi et al., 2015; Wei
et al., 2018), few functions of butyrylation are known. With in-
depth exploration of butyrylation, more biological functions of
butyrylation will undoubtedly be found.

Identifying butyrylation sites is an important foundation to
further explore its functions. Biotechnologies whose
representative is mass spectrometry provide a necessary
approach to identify PTMs including butyrylation. Zhang et al.
(2008) found four lysine butyrylation sites in histone yeast, Xu
et al. (2014) 11 histone butyrylation sites in human cells, and Lu
et al. (2018) identified four histone butyrylation sites in rice using
mass spectrometry. Obviously, this strategy is not only labor-
intensive and time-consuming, but also generally low-
throughput. On the contrary, bioinformatics approaches
provide an alternative to explore PTM sites, with characteristic
being high-throughput. Since Hansen et al. (1995; 1998)
proposed a method for computationally predicting mucin type
O-glycosylation sites in the 1990s, dozens of computational
approaches have been developed for identifying PTM sites
(Blom et al., 2004; Xue et al., 2006; Zhou et al., 2006; Xu et al.,
2008; Xu et al., 2010; Liu et al., 2011; Cai et al., 2012; Shi et al.,
2012b; Zhang et al., 2012; Zhao et al., 2012; Xu et al., 2013; Zhang
et al., 2013; Zhao et al., 2013; Huang et al., 2014; Shi et al., 2015;
Xu et al., 2015a; Zhou et al., 2016). For instances, glycosylation
identification includes the neural network-based method
(Hansen et al., 1998), the support vector machine-based
method (Li et al., 2006; Chen et al., 2008; Sasaki et al., 2009),
the random forest-based method (Hamby and Hirst, 2008;
Chuang et al., 2012), and ensemble learning algorithms
(Caragea et al., 2007). Features used for predicting methylation
sites are from protein sequences (Shao et al., 2009; Zhang et al.,
2013; Qiu et al., 2014; Zhang et al., 2015; Wei et al., 2018),
structure (Shien et al., 2009) or amino acid properties (Shi et al.,
2012a). Xu et al. (2015b) proposed a pseudo amino acid
composition-based method for predicting lysine succinylation.
Zhou et al . (2004) proposed the GPS method for
phosphorylation prediction, and Xu et al. (2008) proposed the
method SUMOpre for sumoylation prediction. These
computational methods are capable of screening potential
modified sites on a large scale in a little time and help the
former methods narrow the scope of verification of it. Here, we
didn't plan to comprehensively review and discuss them, but
propose a novel method based on information entropy and
random forest for predicting histone butyryllysine. To the best
of my knowledge, this is the first computational method for
predicting butyrylation.
METHOD AND MATERIALS

Materials
One hundred butyrylated proteins were retrieved by searching
both the Uniprot database (UniProt Consortium, 2018): https://
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www.uniprot.org/ and the Protein Lysine Modifications
Database (PLMD): http://plmd.biocuckoo.org/ (Xu et al.,
2017). The Uniprot database is a comprehensive repository of
function annotation and sequences of proteins, which is updated
every 2 months. The PLMD is dedicated to specifically collect
lysine-modified proteins, and the current version 3.0 contains
284,780 modification events of 20 types of lysine-modified PTMs
from 53501 proteins, including butyrylation, crotonylation and
propionylation. Searching the Uniprot database with the
keyword “butyryllysine”, we retrieved 91 butyrylated histones
containing 317 butyrylation sites with the manual assertion. We
downloaded the butyrylation data from the PLMD. Merging
these two datasets and then removing abnormal proteins, we got
100 unique histones. To eliminate dependency of the
computational method on homology, it is a general step to
remove homology among prote in sequences . The
computational clustering tool (Huang et al., 2010) was used to
cluster these 100 protein sequences with the sequence identity
cut-off 0.7. Thirteen representative protein sequences were
obtained among which sequence identity of any two is no
more than 0.7. We selected six proteins from the Uniprot
database as the training set which contained 17 butyrylation
sites and the remaining seven from the PLMD as the testing set
which contained nine butyrylation sites.

Method
As shown in Figure 1, the overall workflow of the proposed
method consists mainly of four steps: cutting sequence, sequence
encoding, training and predicting. The training and the
predictive butyrylation histone sequences were cut into
fragments which centered lysine with respectively N amino
acid residues in the upstream and the downstream of it. That
is, the window of (2N+1) residues centering lysine were separated
out. For the windows containing lysine but less than 2N+1
residues, we prefixed or suffixed the character “X” to it for
complement. The fragments undergoing butyrylation event
were viewed as positive samples. We randomly selected 18
non-butyrylation fragments from the training set as training
negative samples, and 18 non-butyrylation ones from the
testing set as the testing negative samples. The Supplementary
Table 1 listed all the training and the testing butyrylation as well
as the non-butyrylation sites. For each fragment with (2N+1)
resides, the information entropy-based encoding (IEE) and the
composition of k-space amino acid pair (CKSAAP) transformed
it into numerical feature. After the random forest algorithm
trained a classifier using the training set with the numerical
features, the unknown protein sequences were input into the
trained classifier for final prediction.

IEE
Histone butyrylation is assumed as a stochastic system described
as Pi(a) which stands for probability of the amino acid a
occurring at the i-th position. Obviously, Pi(a) is an m-by-n
matrix where m is the number of characters of amino acid (here
m is 21) and n the length of the sequence (here n=2*N+1). This
stochastic system is measured by the information entropy of
February 2020 | Volume 10 | Article 1325
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amino acid (PIEA) and the information entropy of position
(PIEP), which are denoted respectively by

PIEA að Þ = o
2N+1

i=1
− Pi að Þ log Pi að Þ (1)

and
PIEP ið Þ = o

a∈F
− Pi að Þ logPi að Þ (2)

whereF represents the set of characters of amino acid. Pi(a) can
be estimated by calculating frequencies of amino acid over all the
positive samples in the training set, respectively. The PIEA and
the PIEP represent uncertainty of the butyrylation system. The
more the PIEA and the PIEP are, the more uncertainty the
system is. After a new sample s was added to the system, its
information entropies of amino acid and position are denoted by
PIEPs and PIEAs. The variation of information entropies after
addition of the new sample to the system is defined by

PVIEA = PIEA að Þ − PIEAs að Þ (3)

and
PVIEP = PIEP ið Þ − PIEPs ið Þ : (4)

Similarly, the non-butyrylation system is also assumed as a
distinct stochastic system Ni(a) which is estimated by calculating
Frontiers in Genetics | www.frontiersin.org 3
frequencies of amino acid over all the negative samples in the
training set, respectively. The information entropies of amino
acid (NIEA) and the information entropies of position (NIEP)
for the non-butyrylation system are defined by

NIEA að Þ = o
2N+1

i=1
− Ni að Þ logNi að Þ (5)

and
NIEP ið Þ = o

a∈F
− Ni að Þ logNi að Þ (6)

The variation of information entropies after addition of the
new sample s to the non-butyrylation system is defined by

NVIEA = NIEA að Þ − NIEAs að Þ (7)

and
NVIEP = NIEP ið Þ − NIEPs ið Þ, (8)

where NIEAs and NIEPs denote respectively information
entropies of amino acid and position after addition of the new
sample to the non-butyrylation system. The new sample is
encoded by PVIEA-NVIEA and PVIEP-NVIEP. Therefore, for
each sample, we obtain (21 + 2N+1) feature to represent it.

CKSAAP
The CKSAAP is occurrence frequency of k-spaced amino acid
pair which is spaced by up to k residues. k is equal to or more
than 0. For example, AA, AC, ..., YX and XX belong to 0-spaced
amino acid pair, while AA, AC, ...., XX, ABA, ABC, ..., and XBX
to 1-spaced amino acid pair. Generally, there are (K+1)*21*21
features for k-spaced amino acid pair. The CKSAAP were widely
applied to prediction of phosphorylation, methylation,
palmitoylation, pupylation, ubiquitination and O-glycosylation
(Chen et al., 2008; Wang et al., 2009; Chen et al., 2011; Zhao
et al., 2012; Tung, 2013; Zhang et al., 2013).

Feature Normalization
All the features are normalized by the following formula

Xn
k =

xnk −min
m

xmkf g
max
m

xmkf g −min
m

xmkf g , (9)

where xk
n denotes the k-th non-normalized feature of the sample

n. The normalized feature lies between 0 and 1.

Random Forest
Random forest by Breiman (2001) is an ensemble learning
algorithm which combines decision trees for vote. The random
forest is composed mainly of constructing of decision trees and
voting over all the decision trees for the given sample. Each
decision tree grow out of the new training set drawn with
replacement from the training set and with m << M randomly
selected features (M is the total number of sample features). The
majority of vote for a sample is the output class for classification.
The advantage of Random forests is that it overcome overfitting
which occurred in decision trees, and meanwhile produce a
limiting value of the generalization error. For more details of
random forest, readers can refer to relevant references. Here, we
FIGURE 1 | The flowchart of the proposed method.
February 2020 | Volume 10 | Article 1325
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use Weka software package (Hall et al., 2009) which realized a
wide range of machine learning algorithms using the Java
programming language.
CROSS VALIDATION AND METRICS

We used 3-fold cross validation to examine performance of the
proposed method. For 3-fold cross validation, n training samples
are divided into three parts in approximate or equal size. Each
part is in turn used as the testing set which is predicted by the
trained classifier over the other two parts. Independent test was
used to examine generalization ability of the proposed method.

The receiver operating characteristic (ROC) curve was used to
assess the predictive performances, which is plotting true positive
rate against false positive rate under various threshold. Area
under the ROC curve (AUC) was used to compare it, ranging
from 0 to 1. The AUC was 1, meaning the perfect prediction,
while the AUC was 0.5, indicating the uninformative classifier.
RESULTS AND DISCUSSION

To investigate effects of the parameter N (length of amino acid
residues in the upstream or the downstream of the butyrylation
sites) on the predictive performances, we conducted 3-fold cross
validation over the training set. Most approaches for predicting
PTM sites generally set N to the interval of 10 to 15 (Hou et al.,
2014; Huang et al., 2014; Xu et al., 2015a; Hasan et al., 2016; Jia
et al., 2016a; Jia et al., 2016b; Xu et al., 2016; Wang et al., 2017).
For example, the iSulf-Cys for predicting s-sulfenylation sites
(Xu et al., 2016) adopted a window of 21 residues (i.e., N=10),
while the iSuc-PseOpt (Jia et al., 2016a), a tool for predicting
lysine succinylation sites, used N=15 amino acid residues of the
upstream/downstream of the modified site. Therefore, we tested
N only between 10 to 15. As shown in Figure 2, the ROC curves
of 3-fold cross validation under various N were plotted. The best
AUC (N=13) is 0.92, while the worst (N=15) is 0.73. Therefore,
we set N to 13.

ROC curves of 3-fold cross validation over the training set for
single type of IEE and for single type of CKSAAP features were
shown in Figure 3A. The IEE outperformed the CKSAAP and
the combination of two. ROC curves of independent test were
plotted in Figure 3B. Obviously, the combination performs best,
followed by the CKSAAP and then by the IEE feature. The single
performance of the IEE feature is best over the training set, but
worst over the testing set. The single performance of the
CKSAAP is worst over the training set. The combination of
IEE and CKSAAP features performs most stable, with 0.92 of
AUC over 3-fold cross validation and 0.80 of AUC over
independent test respectively.

Analysis Of Sequence Pattern
We used the WebLogo program (Crooks et al., 2004) to draw a
sequence logo of all the 26 positive samples both from the
training and the testing sets, as shown in Figure 4A. The
Frontiers in Genetics | www.frontiersin.org 4
stacks at the positions 13, 25 and 26 is higher, followed by the
positions 22, 18 and 11, indicating that these positions would be
more evolutionarily conservative. On the contrary, the stacks at
the positions 1, 7, 8 and 19 is lower, implying these positions
would be less conservative. The symbols A (alanine) at the
positions 3, 6, 12, 13, and 26, K (lysine) at the positions 5, 10,
18, 21 and 24, G (glycine) at the positions 9, 11 and 22, and R
(arginine) at the position 25 are higher at respective stack,
indicating that these amino acids alanine, lysine, glycine and
arginine would appear more frequently at these corresponding
positions. The two-sample sequence logo was plotted using a web-
based software (Vacic et al., 2006) http://www.twosamplelogo.org/
index.html. The positive samples were 26 non-redundant
fragments containing butyrylation sites, while the negative ones
were 36 fragments, 62 in total. In comparison to previous single-
sample sequence logo, the two-sample logo more intuitively
exhibited statistically significant differential residues between two
classes. As shown inFigure 4B , the symbols K at these positions 21
and 22, A at these positions 3, 13,19 and 20, P (proline) at the
position 2, M (methionine) at the position 9, Q (glutamine) at the
position 10, S (serine) at the position 12, G andR at the position 25,
were enriched in the butyrylation fragments, while G at the
position 1, A at the position 9, K at the position 13, S at the
position 22, V (valine) at the positions 15 and 25, andT (threonine)
at the position 25 were depleted. Combining the information from
Figures 4A, B, we speculated that alanine at the position 3 and
13, lysine at the position 21 and arginine at the position 25 would
be associated with histone butyrylation.

Analysis of Information Entropy Feature
As shown in Figure 5, we calculated information entropies of all
the used positive and the negative samples in the experiment
using the equations (1) and (2). Regardless of amino acid or
position, information entropies of butyrylation wholly are less
than those of non-butyrylation, indicating that the distribution
of amino acid followed more a rule in the butyrylation than at
random. The information entropies of C (cysteine) and W
(tryptophan) are near or equal to zero (Figure 5A), implying
that two types of amino acid would occur in a fixed way not at
random. The information entropies of F (phenylalanine) and N
(asparagine) are much less in the butyrylation than in the non-
butyrylation, indicating that phenylalanine and asparagine
would play a role in the butyrylation. Information entropies of
G, P, M and R in the positive sample is approximately equal or
more than those in the negative samples, respectively. This
indicated non-difference of these amino acids between
butyrylation and non-butyrylation. The information entropies
of position in the butyrylation is less than those in the non-
butyrylation exception the position 14 (Figure 5B), indicating
that amino acid distribution in the butyrylation would follow
more rules than at random.

Analysis of CKSAAP Feature
We calculated pairs of amino acid separated by up to one residue.
Namely, amino acid pair might be of such form as ab and aDb,
where D represent an amino acid. Figure 6 shows frequency of
pair of amino acid. Obviously, distribution of amino acid pairs in
February 2020 | Volume 10 | Article 1325
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the butyrylation differs largely from that in the non-butyrylation.
The butyrylation focuses mainly on these amino acid pairs of
DN, GG, GK, KA, KD, KL, KP, KS, KV, PE, RH, RN, VY, XM
and XX, while the non-butyrylation on GK, KA, KK and XX.

Analysis of Function for Histone
Butyrylation
We used the PANTHER classification system (Mi et al., 2013)
(http://www.pantherdb.org/) for functional analysis of histone
butyrylation. Both statistical over-representation tests of Homo
sapiens butyrylation histones against the whole H. sapiens genes
and ofMus musculus butyrylation histones against the whole M.
musculus genes were performed. The significantly over-
Frontiers in Genetics | www.frontiersin.org 5
represented GO terms (P < 0.05) for biological process,
molecular function and cellular composition are listed in
Supplementary Table 2–7. It is obviously observed that all GO
terms of M. musculus butyrylated histones appeared in the H.
sapiens histones, except cytosol (GO:0005829) which is defined
as the part of the cytoplasm which does not contain organelles
but contain such particulate matter as protein complexes.
However, some GO terms of H. sapiens butyrylated histones
fail to fall into the set of GO terms of M. musculus histones. For
example, in terms of molecular function, STAT family protein
binding (GO:0097677), RNA polymerase II core promoter
sequence-specific DNA binding (GO:0000979), core promoter
sequence-specific DNA binding (GO:0001046), core promoter
binding (GO:0001047), chromatin binding (GO:0003682),
protein-containing complex binding (GO:0044877), protein
binding (GO:0005515) and binding (GO:0005488) are
significant over-represented GO terms in H. sapiens
butyrylation histone, not in M. musculus histones. The
difference of the first four molecular functions between two
species would be caused by the small-sample question. The
number of studied M. musculus butyrylated histones is 17, less
than the number of H. sapiens histones. The term GO:0097677
appeared two times, and these three terms GO:0000979,
GO:0001046 and GO:0001047 appeared three times in these 30
butyrylated H. sapiens histones, while they would likely appear
less than two times in these 17 butyrylatedM. musculus histones.
Only functions appearing two times or more would be
statistically analyzed. Therefore, these four molecular functions
could not separate H. sapiens from M. musculus histones.
GO:0044877 appeared 10 times, GO:0003682 11 times,
GO:0005515 29 times, while GO:0005488 appeared 30 times in
the H. sapiens histone. It is rational to infer occurring more than
two times in 17M. musculus butyrylation histones, but they were
not significant over-represented GO terms. This indicated that
FIGURE 2 | ROC curves under various parameter N.
FIGURE 3 | ROC curves. (A, B) depict ROC curves of 3-fold cross validation and independent test, respectively.
February 2020 | Volume 10 | Article 1325
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these later four molecular functions were enriched only in the H.
sapiens, not in all the species.

Table 1 listed the most significant five GO terms of molecular
function, biological process and cellular component in the
butyrylated H. sapiens histone which all belonged to the set of
the over-represent GO terms in the M. musculus histones
respectively. These three terms GO:0003677 (DNA binding),
GO:0003676 (nucleic acid binding) and GO:0031492
(nucleosomal DNA binding) are defined as interacting
selectively and non-covalently with DNA, with any nucleic
acid and with the DNA portion of a nucleosome, respectively.
GO:0046982 (protein heterodimerization activity) is defined as
interacting selectively and non-covalently with a non-identical
Frontiers in Genetics | www.frontiersin.org 6
protein to form a heterodimer, whose relationship with
GO:0046983 (protein dimerization activity) is “is a”. All the
five terms belongs to the ancestor GO:0005488 (binding) via the
“is a” relationship, implying that butyrylation histones could
bind other molecules such as DNA, nucleic acid or protein.
GO:0006334 (nucleosome assembly) is defined as the
aggregation, arrangement and bonding together of a
nucleosome, the beadlike structural units of eukaryotic
chromatin composed of histones and DNA, which is of “is a”
relationship with GO:0034728 (nucleosome organization) and of
“part of ” relationship with GO:0031497 (chromatin assembly).
The term GO:0031497 is of “part of” relationship with
GO:0006323 (DNA packaging) and of “is a” relationship with
FIGURE 4 | Sequence logo. (A) is sequence logo of all the positive samples and (B) is sequence logo of all the positive and the negative samples.
FIGURE 5 | Information entropies. (A) represents information entropies of PIEA and NIEA. (B) represents information entropies of PIEP and NIEP.
February 2020 | Volume 10 | Article 1325
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GO:0006333 (chromatin assembly or disassembly). These five
terms finally are traced up to two terms: GO:0016043 (cellular
component organization) and GO:0044085 (cellular component
biogenesis), indicating that butyrylation histones might be
associated with these processes of biosynthesis, assembly,
arrangement or disassembly. The term GO:0000786
(nucleosome) refers to a complex consisting of DNA wound
around a multi-subunit core and associated proteins, which
forms the primary packing unit of DNA into higher order
structures. The term GO:0000786 is of “is a” relationships both
with the term GO:0044815 (DNA packaging complex) and with
GO:0032993 (protein-DNA complex) and is of “part of”
relationship with the term GO:0000785 (chromatin) which is
of part of relationship with the term GO:0005694 (chromosome).
These results indicate that butyrylation histone might be located
in a complex composed of DNA, proteins, etc.

We used the David (Database for Annotation, Visualization
and Integrated Discovery) (Huang da et al., 2009a; Huang da
et al., 2009b) to explore biological pathways in which the
butyrylated histones are potential to be involved. The David is
one of most popular tool for enrichment analysis of gene
function, currently including over 40 annotation categories,
such as ordinary GO terms, protein functional domains, bio-
pathways, etc. The backgrounds for H. sapiens and M. musculus
Frontiers in Genetics | www.frontiersin.org 7
butyrylation histones were respectively the whole H. sapiens and
the whole M. musculus genes. The statistically significant Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways (P-
value < 0.01) are systemic lupus erythematosus, alcoholism,
viral carcinogenesis and transcriptional misregulation in
cancer, whether for H. sapiens or for M. musculus genes,
indicating that histone butyrylation is involved in similar
bio-pathway.
CONCLUSION

Histone butyrylation is a newly discovered PTM, whose
mechanism remains unknown. In this paper, we presented an
approach based on information entropy and machine learning
for identifying histone butyrylation sites. To the best of our
knowledge, this is the first computational method for identifying
histone butyrylation sites. By comparing sequences, IEE and
CKSAAP between butyrylation and non-butyrylation, we found
some specific characteristics implying potential and hidden
pattern of histone butyrylation. The statistical test suggests that
the butyrylation histone might be of binding with other
molecules, be associated with the processes of biosynthesis,
assembly, arrangement or disassembly, be located in the
FIGURE 6 | Heatmap of amino acid pair. (A) represents heatmap of all the positive samples and (B) heatmap of all the negative samples.
TABLE 1 | Most significant five GO terms of molecular function, biological process and cellular component for Homo sapiens.

Molecular function Biological process Cellular component

Protein heterodimerization activity (GO:0046982) Nucleosome assembly (GO:0006334) Nucleosome (GO:0000786)
DNA binding (GO:0003677) Chromatin assembly (GO:0031497) DNA packaging complex (GO:0044815)
Protein dimerization activity (GO:0046983) Chromatin assembly or disassembly (GO:0006333) Protein-DNA complex (GO:0032993)
Nucleic acid binding (GO:0003676) Nucleosome organization (GO:0034728) Chromatin (GO:0000785)
Nucleosomal DNA binding (GO:0031492) DNA packaging (GO:0006323) Chromosome (GO:0005694)
Fe
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complex of DNA, protein, etc, and be involved in the such
pathway as systemic lupus erythematosus, alcoholism, viral
carcinogenesis and transcriptional misregulation in cancer.
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