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Different genes have their protein products localized in various subcellular compartments.
The diversity in protein localization may serve as a gene characteristic, revealing gene
essentiality from a subcellular perspective. To measure this diversity, we introduced a
Subcellular Diversity Index (SDI) based on the Gene Ontology-Cellular Component
Ontology (GO-CCO) and a semantic similarity measure of GO terms. Analyses revealed
that SDI of human genes was well correlated with some known measures of gene
essentiality, including protein–protein interaction (PPI) network topology measurements,
dN/dS ratio, homologous gene number, expression level and tissue specificity. In addition,
SDI had a good performance in predicting human essential genes (AUC = 0.702) and drug
target genes (AUC = 0.704), and drug targets with higher SDI scores tended to cause
more side-effects. The results suggest that SDI could be used to identify novel drug
targets and to guide the filtering of drug targets with fewer potential side effects. Finally, we
developed a user-friendly online database for querying SDI score for genes across eight
species, and the predicted probabilities of human drug target based on SDI. The online
database of SDI is available at: http://www.cuilab.cn/sdi.

Keywords: cellular components, localization diversity, gene characteristic, gene essentiality, drug target
INTRODUCTION

After gaining the potential genes of interest from a large-scale screen, it comes to the need to
determine which particular gene is worthy of future research. By linking the genes of interest and
their functional annotations together, the enriched functions of interest can be found and evaluated.
On the other hand, when considering the gene per se, important characteristics can be used as
references to assess the status of each gene of interest, in different dimensions, in the entire genome.

At a genomic level, the idea to minimize the genome into “the right size” led to the notion of gene
essentiality and essential genes (Maniloff, 1996). Essential genes were defined as those genes which
are indispensable for reproductive success, and that loss of their function compromises viability of
the individual (Bartha et al., 2017; Rancati et al., 2017). Nowadays, multiple essential genes have
been identified by gene deletion technologies in genome-scale across organisms and cell types
(Wang et al., 2015; Evers et al., 2016; Morgens et al., 2016). On the other hand, computational
methods have revealed that gene essentiality is correlated with other measurements of a gene, such
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as the sequence conservation, the protein–protein interaction
(PPI) network topology and the expression patterns (Liang and
Li, 2007; Deng et al., 2010; Zhao et al., 2016).

For a cell, proteins must be transported to the appropriate
subcellular locations in order to provide the context support for
their biological functions. The subcellular mislocalization of
human proteins can cause severe diseases such as Alzheimer's
disease, kidney stones and cancer (Hung and Link, 2011). The
subcellular localization diversity of the protein products of a gene
may serve as an important characteristic in revealing gene
essentiality, in the context of subcellular locations. Previous
studies have discussed the protein localization specificity in
prokaryotes (Peng and Gao, 2014), and integrated the
subcellular localized information with PPI topology for
predicting essential genes (Acencio and Lemke, 2009; Li et al.,
2016; Li et al., 2018), using annotation data from the Gene
Ontology-Cellular Component Ontology (GO-CCO)
(Ashburner et al., 2000). Although the priority of these
components definitely needs to be discussed, another
potentially important characteristic of protein localization
seems to be ignored, which is the subcellular diversity. Proteins
that occur in a wild range of components may be more essential
than proteins with a unique component membership.

In this work, we presented an algorithm to calculate a
Subcellular Diversity Index (SDI), and it was applied to genes
in eight species based on the GO-CCO. SDI can be used to assess
subcellular diversity of a gene, and qualitatively speaking, higher
SDI of a gene means it has its products present in a greater
diversity of cellular components. SDI can be calculated directly
for all GO-CC-annotation-covered genes, and can be ranked and
compared at a genomic level. Analysis result for SDI suggests
that SDI can quantify gene essentiality, and can be used as a new
characteristic for assessing gene potential in various aspects. SDI
also showed its usefulness in predicting novel drug targets and
those with fewer drug side effects.
MATERIALS AND METHODS

Calculating the SDI for Genes in
Eight Species
We used GO-CCO to reflect subcellular diversity of genes. The
information of GO-CC terms is available for most genes across
species and has a large deviation between different genes, making
this data preferable for reflecting subcellular diversity. As GO-
CCO is structured as a directed acyclic graph (DAG), there may
be inheritance relationships between the annotated terms of each
gene. The inheritance relationships can lead to certain overlap in
the information of all annotated terms, and in this case, the
overlap information reveals redundant quantity of localization
information. The SDI is calculated based on the quantification
and removal of the redundancy in GO-CC terms of each gene.

We presented the following equation to calculate the SDI of
a gene:

SDI = 1 − p1ð Þ + 1 − p2ð Þ +⋯+ 1 − pnð Þ
where
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For each gene, a cluster of all GO-CC terms in the annotation
file was referred as c, and the number of terms in c was referred as
n (terms in all evidence codes were included, repetitive terms was
only counted once). Then, for each term i in c, a penalty score pi
was calculated to estimate the similarity to all other terms. If n =
1, the penalty score equals to 1. If n > 1, a similarity score s
(ranges from 0 to 1) was calculated for i and all other terms in c
one by one, using the semantic similarity measure of GO terms
from Wang et al. (2007), and calculated for a Root Mean Square
(RMS) as pi.

We chose Wang's method because it is not only node-based
or edge-based but a hybrid method, and it is widely used and
proved to be strong in a decade. Wang's method was compared
to a more recent and well-conducted method, TCSS (Jain and
Bader, 2010), and the result showed a slight difference (Figure
S1). The RMS was used because applying RMS in the SDI
algorithm gave the best performance in validating human
essential genes, compared with the arithmetic mean or the
geometric mean (Figure S2).

We applied the above algorithm to calculate gene SDI for
eight species by writing a Python script. Representing the
structure of the GO-CCO, a GO-basic file was read in as a
directed acyclic graph (DAG) using Python package NetworkX
(Hagberg et al., 2008). When implementing Wang's method, we
tested a few groups of different contribution factors for “is-a” and
“part-of” relations in GO-CCO in human data (Table S1). As the
results only showed slight differences, we chose 0.8 for “is-a” and
0.6 for “part-of” as the authors recommended in the article.

The GO-basic (OBO) file was obtained from the Gene
Ontology Consortium (http://www.geneontology.org/page/
download-ontology) (Ashburner et al., 2000). The GO
annotation files for eight species were obtained from National
Center for Biotechnology Information (NCBI, http://ftp.ncbi.
nih.gov/gene/DATA/gene2go.gz) (NCBI, 2016).

The Correlation Between SDI of Human
Genes and Other Known Measures of
Gene Essentiality
The dN/dS ratio (the ratio between nonsynonymous
substitutions rate and synonymous substitutions rate) dataset
for each human–mouse homolog was derived from the Ensembl
database (release 83) (Aken et al., 2016) to estimate the balance
between neutral mutations, negative selection mutations and
positive selection mutations on homologous genes. The
homologous gene number dataset was obtained from the
Homologene database (build 68) (NCBI, 2016). The expression
level and tissue specificity for each gene were calculated based on
the data from Su et al. (2004). The human and mouse PPI
network was downloaded from the BioGRID database (build
3.4.140), with the deletion of links including non-human or non-
mouse proteins, respectively (Chatr-aryamontri et al., 2017), and
the network degree and betweenness for each gene node were
January 2020 | Volume 10 | Article 1342
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calculated using Python package NetworkX (Hagberg et al.,
2008). Spearman's correlation tests were carried out between
SDI and dN/dS ratio, homologous gene number, expression
level, tissue specificity, PPI degree and PPI betweenness.

Sensitivity Test and Comparison Test for
the Performance of SDI in Predicting
Essential Genes and Drug Targets
The human essential genes (2,501) and essential genes of the
other six species were derived from the DEG database (version
10.6) (Luo et al., 2014). For unbiased essential gene datasets,
4,426 essential genes from Hart et al.’s CRISPR screens data
(Hart et al., 2015) were derived from DEG database (version
15.2), and 2,132 essential genes from Cancer Dependency Map
were downloaded from the DepMap website (https://depmap.
org/portal/depmap/) (Tsherniak et al., 2017). The drug target
genes (approved, 2,682) were downloaded from Drugbank
(release 5.0.10) (Wishart et al., 2018).

The receiver operating characteristic (ROC) curves for
validating the essential genes and drug targets and calculation
for the Area Under Curve (AUC) were performed by R package
pROC (Robin et al., 2011). The binary logistic regression models
and 10-fold cross-validations were performed using R package
caret (Kuhn, 2008). For comparison tests, the Pearson Chi-
squared tests were performed to compare the fraction of
essential genes and drug targets in 10 equally divided groups
ranked by SDI.

The Relationship Between SDI and Side-
Effects in Drug Targets
The active drug targets (approved, pharmacologically active, 821)
and the ID—drug name transformation file were obtained from
DrugBank (Wishart et al., 2018). The information of side-effects
of the corresponding drugs were obtained from the SIDER
database (Kuhn et al., 2015) and VigiAccess (Shankar, 2016).
Terms including “product issues” and its sub terms were filtered
Frontiers in Genetics | www.frontiersin.org 3
for data in VigiAccess. As a result, 369 and 712 drug targets were
mapped to drug side-effect terms from SIDER and VigiAccess,
respectively. Spearman's correlation tests were carried out
between SDI and number of terms of side-effects of the
corresponding drug targets.

Data Availability
A web server was built for querying SDI of genes in eight species,
and the predicted probabilities of human drug target from a
binary logistic regression model based on SDI (www.cuilab.cn/
sdi). The source code (running in Python 2.7) for calculating SDI
and all data in the database are available in the web server.
RESULTS

The SDI
The SDI was calculated for 122,435 genes in eight species,
including Homo sapiens, Mus musculus, Rattus norvegicus,
Drosophila melanogaster, Caenorhabditis elegans, Danio rerio,
Arabidopsis thaliana and Saccharomyces cerevisiae (Figure 1,
Table 1). As the distribution of SDI was slightly different across
species, we examined the total GO-CC term counts for each gene
in all eight species, and calculated for a percentage of the number
of genes with one to five GO-CC terms to the total number of
genes in each species (Table S2). Homolog genes in human and
mouse have highly similar rank of SDI scores (14,647 genes,
Spearman's correlation test: r = 0.83, P = 0). The top 30 genes
with high SDI scores have functions mainly related to
endocytosis and transendothelial migrations. Among these
genes, two genes (DNM2, NUMA1) are listed in three essential
gene datasets, five genes (CTNNB1, ITGB1, EGFR, CALR, CDH2)
are listed in two essential gene datasets, and 11 genes are listed
in one essential gene dataset (Table 2). For those genes not listed
in three essential gene datasets, they also play important roles in
severe diseases. The first-ranked gene FMR1 was proved to be
FIGURE 1 | The distribution of SDI in eight species. The density plots show the distribution of SDI in thee mammals (Bandwidth = 0.9134) (A) and 5 other species
(Bandwidth = 0.4149) (B). Gene number for each species is presented in the brackets. C.elegans has a larger proportion of genes with two GO-CC terms than other
species which may lead to its bimodal distribution (Table S2). SDI, Subcellular Diversity Index; GO-CC, Gene Ontology-Cellular Component.
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associated with mental diseases like mental retardation and
autism (Mila et al., 2018), and five other genes (APP, SNCA,
MAPT, SIRT2, APOE) are known to be associated to Alzheimer's
disease. We mainly used human genes to further analyze the
correlation of SDI and gene essentiality at a genomic level.

The Correlation Between SDI and Other
Essentiality Measures of Human Genes
Firstly, we performed correlation analyses for SDI and well-
established metrics revealing gene essentiality from three
Frontiers in Genetics | www.frontiersin.org 4
dimensions, PPI topology, conservation and expression
patterns (Figure 2). As a result, SDI was significantly
correlated with those scores [r = 0.35, P = 0; r = 0.36, P = 0
with PPI degree and betweenness (14,113 genes) respectively, r =
-0.20, P =7.08e-132 with dN/dS ratio (14,254 genes), r = 0.22,
P =1.02e-181 with homologous gene number (16,696 genes), r =
0.21, P = 4.91e-156 with expression level, and r = 0.12, P = 7.29e-
52 with tissue specificity (15,167 genes), Spearman's correlation
tests]. The correlation results suggest SDI may contribute to gene
essentiality as a complement of other measures.
SDI Performed Well in Predicting
Essential Genes
We further explored the correlation of SDI and gene essentiality.
Firstly, comparison analyses were performed for the number of
essential genes and other genes in ten equally divided human
gene groups ranked by SDI. The number of essential genes was
observed to increase gradually between the sixth to the tenth
group (Figure 3A; P = 1.19e-140, Pearson's Chi-squared test).
Then, we evaluated the prediction ability of SDI using human
essential genes from DEG10 (Luo et al., 2014). The result showed
that SDI had a good performance in validating the essential genes
in 19,134 human genes (AUC = 0.702). To compare the
performance of SDI with other metrics, validation tests for SDI
and other scores were performed in 11,355 human genes (with all
metrics available). As a result, SDI showed the best performance
in comparison with other well-established metrics (Figure 3B;
AUC = 0.638), which suggests its competitive performance in
defining gene essentiality. Besides, we performed the prediction
and validation of human essential genes by all metrics separately
and the integration of all metrics, using logistic regression
models and 10-fold cross-validations. SDI was observed to
have better performance than other six metrics using the
regression models separately (AUC = 0.637), but the model
which integrated all metrics had the best performance (AUC =
0.681, Figure 4A). This result suggests that SDI and other
metrics can reflect gene essentiality from different aspects.

The human essential gene list that we used above contains
multiple well-acknowledged essential genes and it may have a
certain of bias. Therefore, we further estimate the performance of
SDI and other metrics in validating essential genes based on two
TABLE 1 | Statistical summary for SDI.

Species Minimum The 1st

Quartile
Median Mean The 3rd

Quartile
Maximum Gene

Number

Mammals
H. sapiens 0 1.455 2.875 3.577 4.911 44.386 19,341
M. musculus 0 1.707 2.950 3.966 5.532 51.211 18,499
R. norvegicus 0 1.401 2.502 3.393 4.622 51.216 18,105
Others
C. elegans 0 1.471 1.848 2.116 2.809 25.609 11,581
S. cerevisiae 0 1.861 2.959 3.436 4.847 23.078 5,844
D. melanogaster 0 0 1.318 1.549 2.540 22.688 9,122
D. rerio 0 0 1.848 2.083 2.924 25.247 15,209
A. thaliana 0 0 1.588 1.680 2.814 15.486 24,726
January
 2020 | Volume 10 | Art
The SDI scores show three digits after the decimal point. SDI, Subcellular Diversity Index.
TABLE 2 | Top 30 human genes with the highest SDI scores.

Gene Symbol SDI SDI Ranking DEG Hart
et al.

DepMap Drug
Target

FMR1 44.386 1 　

EZR 40.349 2 A 　

LRRK2 40.098 3 A 　

CTNNB1 37.571 4 A A A
APP 36.614 5 A
DNM2 35.516 6 A A A 　

HSPA8 34.595 7 A A
ANXA2 31.624 8 A
ITGB1 31.343 9 A A A
NUMA1 29.691 10 A A A 　

DLG1 29.585 11 A 　

SNCA 29.443 12 A
ANXA1 28.637 13 A
DAG1 27.765 14 A 　

MAPT 27.476 15 A
VAMP2 27.233 16 A A
JUP 26.783 17 A A
EGFR 26.671 18 A A A
RHOA 26.617 19 A 　

STX4 26.568 20 A 　

GPER1 26.46 21 A
SIRT2 26.33 22 　

CALR 26.25 23 A A A
CDH2 25.761 24 A A 　

DLG4 25.716 25 A A
PSEN2 25.685 26 　

ANK3 25.627 27 　

HSP90AB1 25.607 28 A 　

APOE 25.59 29 A
RAB5A 25.373 30 　 　 　 　
The SDI scores show three digits after the decimal point. “A” means this gene is available
in this particular essential gene or drug target gene list. SDI, Subcellular Diversity Index.
icle 1342
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unbiased datasets from genome-scale essential gene screening
experiments in human cell lines (Hart et al., 2015; Tsherniak
et al., 2017). SDI shows steady performance in these two datasets
(Figure S3).

In addition, we also performed the validation tests in the
other species to get a better insight. In 6,190 mouse genes with
the annotation of SDI, PPI degree and PPI betweenness scores,
SDI showed a slightly weaker performance (Figure S4A; AUC =
0.627) than PPI degree (AUC = 0.657) and betweenness (AUC =
0.643). For the other 5 species, the results vary from species, yet
generally, SDI gives a good performance (Figure S4B). The
difference in results may be due to different gene number and
Frontiers in Genetics | www.frontiersin.org 5
the number of essential genes mapped to the data for
each species.
SDI May Reveal Druggable Targets of
Human Genes
Gene essentiality information has been used to determine the
prioritization of novel drug targets or predicting gene
druggability (Hu et al., 2007; Radusky et al., 2014). Therefore,
we further explored the ability of SDI in revealing gene
druggablity. In the top 30 human genes with the highest SDI
score, 15 genes are listed as approved drug targets. The 15
FIGURE 2 | The correlations between SDI and other known measures of essentiality in human genes. The scatter plots show the correlations between SDI and
other measures. Genes with higher SDI tend to have higher PPI degrees (A); higher PPI betweenness (B); lower evolutionary rate measured by dN/dS ratio (C);
higher homologous gene number (D); higher expression level (E) and higher tissue specificity (F). SDI, Subcellular Diversity Index; PPI, protein–protein interaction.
January 2020 | Volume 10 | Article 1342
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unidentified drug targets are mostly phosphoproteins and with
products localized in membrane (Table 2).

Similar to essential genes, genes with higher SDI scores are
more likely to be drug targets (Figure 3C; P = 7.84e-101,
Pearson's Chi-squared test). For validation tests of drug target
prediction, SDI performed well in 19,134 human genes (AUC =
0.704). Compared with other measures in overlap genes, SDI
showed the best performance (Figure 3D, AUC = 0.639).

In addition, we validated the above result by performing the
prediction and validation of drug targets by all metrics
separately, using logistic regression models and 10-fold cross-
validations. SDI was observed to have the best performance
among all separate prediction models (AUC = 0.637). Similar to
essential genes, the performance became better when all features
are used as independent variables in one regression model
compared to separate models (AUC = 0.679, Figure 4B),
indicating the difference between SDI and other metrics in
interpretation contributing to the prediction of drug targets.
Overall, SDI reveals its ability in predicting drug targets,
suggesting its potential in defining gene druggability.
Frontiers in Genetics | www.frontiersin.org 6
Drug Targets With Higher SDI Tend to
Cause More Side-Effects
In the pharmaceutical industry, a number of the market
withdrawals were caused by drug toxicity (Schuster et al., 2005).
Assessing the potential severity of side-effects that a drug target
may cause can make great contributions in areas like drug design
and clinical drug selection. The subcellular diversity of drug targets
seems like one reasonable cause, accounting for the difference in
severity of the side-effects that they are responsible for. Under this
hypothesis, we explored the relationship between SDI and the
number of side-effect terms of a corresponding drug target. We
observed a moderate correlation between SDI and term number of
side-effects in both data [Figures 5A, B; r = 0.26, P = 6.13e-7 with
SIDER data (369 genes in total), and r = 0.24, P = 1.36e-10 with
data from VigiAccess (712 genes in total), Spearman's correlation
tests]. In addition, average number of side-effects of genes in each of
ten equally divided groups ranked by SDI were calculated (Figures
5C, D). There was a tendency for the average number of side-effect
terms to rise between groups in both data. These results suggest SDI
may shed new light in estimating poor outcome in drug research.
FIGURE 3 | Validation of SDI in human essential genes. The human genes were equally divided into ten groups ranked by SDI. The number of the human essential
genes (A), and the human drug targets (C) are shown in the bar graphs. The ROC curves show the results from sensitivity tests for validating the human essential
genes (B) and the human drug targets (D). The sensitivity tests were performed on 11,355 genes. The AUC scores are presented in the brackets. SDI, Subcellular
Diversity Index; ROC, receiver operating characteristic; AUC, Area Under Curve.
January 2020 | Volume 10 | Article 1342
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FIGURE 4 | Further validation for the performance of SDI in predicting human essential genes and drug targets. The ROC curves show the results from 10-fold
cross-validation of the logistic regression models in predicting human essential genes (A) and drug targets (B). All features were used in separate regression models,
and a model including all available features was also provided for both essential genes and drug targets. The ROC curves were performed on 11,355 genes. The
AUC scores are presented in the brackets. ROC, receiver operating characteristic; AUC, Area Under Curve.
FIGURE 5 | The relationship between SDI and the potential side-effects associated with drug targets. The scatter plots show the correlation between SDI and
number of side-effect terms from SIDER database (A); VigiAccess (B) of drug targets. The paired scores were smoothed through adequate window and step size.
The involved drug target genes were equally divided into ten groups ranked by SDI, and calculated for average numbers of side effect terms from SIDER (C) and
VigiAccess (D). SDI, Subcellular Diversity Index.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13427
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Sensitivity Analysis
To examine the robustness of SDI, we randomly chose 5% to 20%
of human genes and mouse genes, and changed their GO-CC term
into random terms range from 1–45 as the range of actual GO-CC
counting of human genes. The performance of SDI in validating
essential genes and drug targets only suffered limited loss after
8

manually replacing the actual GO-terms into random GO-terms
(Table 3). This result indicates the robustness of the SDI algorithm.

In addition, to reduce the bias in gene annotation, we
considered all evidence codes included in GO, including the
Inferred from Electronic Annotation (IEA) evidence code when
performing the SDI algorithm. The SDI calculated by GO-CC data
with the removal of IEA annotation proved to be less powerful in
performance than IEA included algorithm (Figure 6).
DISCUSSION

Gene annotations in GO-CCO are mainly used for querying for a
specific gene, or performing the enrichment analysis of a gene
set. The semantic similarity measures of GO terms are also used
to reduce redundancy for enrichment analysis in most cases. Our
work on SDI was intended to create a measurement of gene
characteristic in the context of subcellular locations of gene
products, and in the meantime, to make full use of the
abundant annotation data and well-developed methods from a
different perspective.

Apart from profiling the compartments that gene products
localized in as previous studies did, the localization diversity is
another way to evaluate the subcellular characteristic of a gene,
and it is more convenient for scoring genes at a genomic level.
The high performance of SDI in validation of the essential genes
and drug targets suggests its applicability in assessing potentially
important genes in various aspects.

Based on the annotation data, SDI has some limitations. For
example, it can only be performed on genes with annotations,
which are mainly protein-coding genes, and it may have a certain
kind of bias. However, compared to the other two domains of
GO, the GO CC data has less research bias, and the result of
unbiased essential gene datasets and sensitivity analyses both
confirmed the robustness of SDI. With the increasing interest in
the subcellular annotation of genes, the SDI method can be
developed to be more robust in the future.

Though limitations exist, our data highlight that the current
SDI reveals in part determinants of gene essentiality and
druggability. Therefore, the SDI can be used as another gene
characteristic in screening and predicting potential genes of
importance, to complement other known measurements, which
will potentially make contributions to biology and medicine.
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TABLE 3 | Sensitivity analyses show the robustness of the SDI algorithm.

Human Essential
genes
Actual SDI Test

Group
5% Fake
Data

10% Fake
Data

20% Fake
Data

0.702 Group 1 0.685 0.671 0.635
Group 2 0.687 0.667 0.644
Group 3 0.682 0.668 0.641
Average 0.685 0.669 0.64

Mouse Essential genes
Actual SDI Test

Group
5% Fake
Data

10% Fake
Data

20% Fake
Data

0.695 Group 1 0.686 0.673 0.659
Group 2 0.680 0.675 0.651
Group 3 0.687 0.677 0.655
Average 0.684 0.675 0.655

Human Drug Targets
Actual SDI Test

Group
5% Fake
Data

10% Fake
Data

20% Fake
Data

0.704 Group 1 0.687 0.675 0.629
Group 2 0.688 0.674 0.637
Group 3 0.685 0.673 0.636
Average 0.687 0.674 0.634
The table shows AUC scores of ROC curves for each test. Sensitivity analyses were per
formed on 19,341 human genes or 18,499 mouse genes. SDI, Subcellular Diversity Index
FIGURE 6 | SDI based on non-IEA data was proved to be less powerful than
IEA included data. The ROC curves show the performance of SDI based on
non-IEA and IEA-included data in validating human essential genes and drug
targets. The tests are performed in 19,341 human genes. The AUC scores
are presented in the brackets. SDI, Subcellular Diversity Index; ROC, receiver
operating characteristic; AUC, Area Under Curve; IEA, Inferred from Electronic
Annotation.
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