
Frontiers in Genetics | www.frontiersin.org

Edited by:
Quan Zou,

University of Electronic Science and
Technology of China, China

Reviewed by:
Guohua Huang,

Shaoyang University, China
Guoxian Yu,

Southwest University, China

*Correspondence:
Geng Tian

tiang@genesis.com
Liqian Zhou

zhoulq11@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 27 September 2019
Accepted: 09 December 2019
Published: 31 January 2020

Citation:
Peng L, Liu F, Yang J, Liu X, Meng Y,
Deng X, Peng C, Tian G and Zhou L

(2020) Probing lncRNA–Protein
Interactions: Data Repositories,

Models, and Algorithms.
Front. Genet. 10:1346.

doi: 10.3389/fgene.2019.01346

REVIEW
published: 31 January 2020

doi: 10.3389/fgene.2019.01346
Probing lncRNA–Protein Interactions:
Data Repositories, Models, and
Algorithms
Lihong Peng1†, Fuxing Liu1†, Jialiang Yang2, Xiaojun Liu1, Yajie Meng3, Xiaojun Deng1,
Cheng Peng1, Geng Tian2* and Liqian Zhou1*

1 School of Computer Science, Hunan University of Technology, Zhuzhou, China, 2 Department of Sciences, Genesis (Beijing)
Co. Ltd., Beijing, China, 3 College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

Identifying lncRNA–protein interactions (LPIs) is vital to understanding various key
biological processes. Wet experiments found a few LPIs, but experimental methods are
costly and time-consuming. Therefore, computational methods are increasingly exploited
to capture LPI candidates. We introduced relevant data repositories, focused on two
types of LPI prediction models: network-based methods and machine learning-based
methods. Machine learning-based methods contain matrix factorization-based
techniques and ensemble learning-based techniques. To detect the performance of
computational methods, we compared parts of LPI prediction models on Leave-One-Out
cross-validation (LOOCV) and fivefold cross-validation. The results show that SFPEL-LPI
obtained the best performance of AUC. Although computational models have efficiently
unraveled some LPI candidates, there are many limitations involved. We discussed future
directions to further boost LPI predictive performance.

Keywords: lncRNA–protein interaction, computational method, network-based method, machine learning-based
method, data repositories
INTRODUCTION

Long non-coding RNAs (lncRNAs) are transcripts with greater than 200 nucleotides but lack
protein coding capacity (Sanchez Calle et al., 2018). lncRNAs are closely associated with various key
biological processes, such as cell cycle regulation, immune response, and embryonic stem cell
pluripotency (Liu et al., 2018; Agirre et al., 2019; Li et al., 2019b). More importantly, lncRNAs play
an important role in understanding pathogenesis of various diseases, especially tumors (Chen et al.,
2016a; Fu et al., 2017; Jiang et al., 2018; He et al., 2018a; Dallner et al., 2019). Although lncRNAs play
a spectrum of regulatory roles across different cellular pathways, understanding about their
regulatory mechanisms is very limited (Munschauer et al., 2018).

Recently, one broad theme is that lncRNAs can drive the assembly of RNA–protein complexes
by facilitating the regulation of gene expression (Rinn and Chang, 2012; Chen and Yan, 2013;
Hentze et al., 2018; Munschauer et al., 2018; Nozawa and Gilbert, 2019). lncRNAs achieve their
specific functions by interacting with multiple proteins and thus regulating multiple cellular
processes (Zhang et al., 2018c; Pyfrom et al., 2019). Studies reported that lncRNAs can activate
post-transcriptional gene regulation, splicing, and translation by binding to proteins (Zhang et al,.
2018c; Li et al., 2019a) Therefore, identifying possible lncRNA–protein interactions (LPIs) is
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essential for unraveling lncRNA-related activities (Qian et al.,
2018; Zhang et al., 2018c; Zhao et al., 2018c). Wet experiments
validated parts of LPIs, but experimental methods remain costly
and time-consuming. Therefore, different computational models
are explored to infer potential LPIs (Pan et al., 2016; Cheng et al.,
2018; Zhang et al., 2018c; Zhao et al., 2018c). There exist
numerous unexplored lncRNAs and proteins in public
databases, which makes it possible to efficiently identify their
underlying associations.

In this study, we introduced relevant repositories, summarized
computational models and algorithms for LPI prediction, discussed
their advantages and weaknesses by comparison, and presented
further directions for boosting LPI prediction performance. We
focused on two categories of computational models: network-based
methods and machine learning-based methods. The machine
learning-based methods contain matrix factorization-based
methods and ensemble learning-based methods.
RELEVANT REPOSITORIES

There are abundant repositories related to LPI prediction. These
repositories provide diverse information for efficiently
uncovering potential LPIs.

Noncode
The NONCODE database (Zhao et al., 2015) (http://www.
noncode.org/) is an interactive database aiming to collect the
most complete annotation for ncRNAs, especially lncRNAs. The
latest NONCODE database (current version v5.0) contains
lncRNA information from 17 species including human, mouse,
cow, rat, chimp, gorilla, orangutan, rhesus, opossum, platypus,
chicken, zebrafish, fruit fly, Caenorhabditis elegans, yeast,
Arabidopsis, and pig. There are 548,640 lncRNAs in the latest
version. There are 172,216 and 131,697 lncRNAs from human
and mouse, respectively. More importantly, NONCODE has
introduced some important features including conservation
annotation, lncRNA–disease associations, and an interface to
select credible datasets.

NPInter
The NPInter database (Hao et al., 2016) (http://www.bioinfo.org.
cn/NPInter/contact.htm) provides abundant association data
that are experimentally verified. For example, the database
contains information on interactions between noncoding
RNAs (ncRNAs) and biomolecules including proteins,
mRNAs, miRNAs, and genomic DNAs. The database contains
491,416 interactions in 188 tissues/cell lines from 68 types of
experimental technology.

RAID
The RAID database (Yi et al., 2016) (http://www.rna-society.org/
raid/) includes more than 40,668 lncRNA-associated RNA–
protein interactions and more than 34,790 lncRNA-associated
RNA–RNA interactions.
Frontiers in Genetics | www.frontiersin.org 2
starBase
The starBase database (Li et al., 2013) (http://starbase.sysu.edu.cn/)
contains more than 1,100,000 miRNA–ncRNA (CLIP) interactions,
117,000 RNA-binding protein (RBP)–ncRNA interactions, and
32,000 miRNA–ncRNA interactions. In addition, it provides more
than 10,800 RNA-seq data and 10,500 miRNA-seq data from 32
cancer types and 3,236,000 mutations from 366 disease types.

VirBase
The ViRBase database (Li et al., 2014) (http://www.rna-society.
org/virbase) integrates experimental and predictive association
information from manual literature curation and other resources
based on one common framework from 119 species, especially
ncRNA-associated virus–virus, host–host, host–virus, and virus–
host interactions.

POSTAR2
The POSTAR2 database (Zhu et al., 2018) (http://lulab.life.
tsinghua.edu.cn/postar2/index.php) provides various post-
transcriptional regulation data based on CLIP-seq, Ribo-seq,
RNA-seq, and other high-throughput sequencing information
from six species: yeast, Arabidopsis, fly, worm, mouse, and
human. It hosts about 40 million RBP binding sites validated
by CLIP-seq experiments. It provides three modules: the “RBP”
module, “RNA”module, and “Translatome”module. The “RBP”
module contains RBP binding sites and their annotations and
functions. The “RNA” module is composed of a few sub-
modules, including “disease,” “variation,” “crosstalk,” and
“binding sites,” and is applied to annotate the RBP binding sites.

ChIPBase
The ChIPBase database (Zhou et al., 2016) (http://rna.sysu.edu.
cn/chipbase/) is used to identify transcription factor binding sites
and motifs, and decode transcriptional regulatory networks of
miRNA, lncRNAs, and other ncRNAs from ChIP-seq data. It
provides about 10,200 curated peak datasets from 10 species:
human, mouse, fruit fly, worm, Arabidopsis thaliana, yeast, rat,
zebrafish, Xenopus tropicalis, and chicken.

LNCipedia
The LNCipedia database (Volders et al., 2018) (https://lncipedia.
org) is a comprehensive database. Its central work is to merge
redundant transcripts from different data sources and group the
transcripts into genes, thus producing a highly consistent
database. The latest update of lncRNA (LNCipedia 5) contains
information about annotation and sequence for 1,555 human
lncRNAs from 2,482 lncRNA publications. This information
originates from Ensembl (Cunningham et al., 2018), RefSeq
(Rajput et al., 2018), and FANTOM CAT (Hon et al., 2017).

lncRNA2target
The lncRNA2Target database (Cheng et al., 2018) (http://123.59.
132.21/lncrna2target) contains a comprehensive repository of
lncRNA target genes to provide information about target genes
regulated by lncRNAs. The latest version provides a special web
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interface in which users can search the targets for a particular
lncRNA or the lncRNAs for a particular gene.

lncRNAdb
The lncRNAdb database (Quek et al., 2014s) (http://lncrnadb.
org) is a comprehensive database in compliance with the
International Nucleotide Sequence Database Collaboration. It
provides 287 eukaryotic lncRNAs and an interface enabling users
to access sequence data, expression information, and the
literature. The latest update of lncRNAdb integrated nucleotide
sequence information, Illumina Body Atlas expression profiles,
and a BLAST search tool.

lncRNASNP2
The lncRNASNP2 database (Miao et al., 2017) (http://bioinfo.
life.hust.edu.cn/lncRNASNP2) provides 7,260,238 single
nucleotide polymorphisms (SNPs) on 141,353 human lncRNA
transcripts, and 3,921,448 SNPs on 117,405 mouse lncRNA
transcripts. More importantly, it contains abundant
information about mutations in lncRNAs and their impacts on
lncRNA structure and function. It also provides online tools for
analyzing new variants in lncRNA.

LbcRNAwiki
The lncRNAWiki database (Ma et al., 2014) (http://lncrna.big.ac.cn)
integrated various human lncRNAs from different resources. It
makes existing lncRNAs able to be updated, edited, and curated by
diverse users. More importantly, any user can add newly
uncovered lncRNAs.

Lnc2Cancer
TheLnc2Cancer database (Gao et al., 2018) (http://www.bio-bigdata.
net/lnc2cancer) provides lncRNA–cancer associations supported by
experiments. It contains 4,989 associations between 165 human
cancer subtypes and 1,614 human lncRNAs, 366 experimentally
validated circulating-related lncRNA-cancer associations, 593 drug-
resistance-related lncRNA-cancer associations, and 1,928 prognosis-
related lncRNA–cancer associations, and abundant lncRNA
regulatory mechanisms in cancers including 211, 1139, 225, and
319 lncRNAs regulated by variant, miRNA, transcription factor, and
methylation, respectively.

LncRNAdisease
The lncRNADisease database (Bao et al., 2018) (http://www.
rnanut.net/lncrnadisease/) integrated experimentally validated
circular RNA–disease associations, and regulatory mechanisms
among mRNA, miRNA, and ncRNA. Particularly, it contains
more than 200, 000 lncRNA–disease associations. In addition, it
gives confidence scores for all ncRNA–disease associations and
maps each disease to disease ontology and medical
subject headings.

MNDR
The MNDR database (Cui et al., 2017) (http://www.rna-society.
org/mndr/) integrates more than 260,000 ncRNA–disease
Frontiers in Genetics | www.frontiersin.org 3
associations. These associations are supported by 10
experiments and 4 predictive algorithms. The experimental
repositories include Lnc2Cancer (Gao et al., 2018), dbDEMC
(Yang et al,. 2016), LncRNADisease (Bao et al., 2018), MNDR
(Wang et al., 2013), HMDD (Huang et al., 2018b), NSDNA (Wang
et al., 2016a), LincSNP (Ning et al., 2016), miRCancer (Xie et al.,
2013),PhenomiR(Rueppet al., 2012), andmiR2Disease (Jianget al.,
2008). The four prediction algorithms are LDAP (Lan et al., 2016),
miRDP (Mørk et al., 2013) LncDisease (Wang et al., 2016b), and
PBMDA(You etal., 2017). Itprovides8,824 experimental lncRNA–
disease, 70,381 experimental miRNA–disease, 118 experimental
piRNA–disease, and67 experimental snoRNA–disease associations
across 6 mammalsix (Homo sapiens, Macaca mulatta, Mus
musculus, Pan troglodyte, Rattus norvegicus, and Sus scrofa). In
addition, it provides 153,508 predicted lncRNA–disease
associations and 28,144 predicted miRNA–disease associations
for H. sapiens. MNDR contains 19,575, 110, 4,150, and 23 non-
redundant lncRNA–disease, piRNA–disease, miRNA–disease, and
snoRNA–disease interactions, respectively, associated with
1,416 disease.

UniProt
The UniProt database (Consortium et al., 2018) (http://www.
uniprot.org/) is an important database providing protein
sequences and annotations. It provides 80 million sequences
and is a useful tool. Users can calculate a new proteome identifier
to find a particular assembly for a species or subspecies. It also
provides an effective measurement for computing an annotation
score for all entries.
METHODS

Most computational methods contain two procedures: data
extraction and model selection. In the first part, computational
methods usually extract LPIs related to human lncRNA, lncRNA
sequences, and protein sequences from NPInter (Hao et al.,
2016), NONCODE (Zhao et al., 2015), and UniProt (Consortium
et al., 2018), respectively. Computational methods filter LPIs by
removing lncRNAs/proteins only interacting with one protein/
lncRNA. In the second procedure, computational methods
design various models to uncover potential LPIs. These models
can be roughly classified into two categories: network-based
methods and machine learning-based methods.

Data Representation
Computational methods utilize an lncRNA set l = {l1, l2, l3…. ln},
a protein set, P = {p1, p2, p3 …. pm}, and an LPI matrix Yn×m,
where yij = 1 if there is an association between an lncRNA li and a
protein pj; otherwise, yij = 0.

Network-Based Methods
Network-based methods obtain better performance by effectively
integrating related biological information and network
propagation algorithms into a unified framework.
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LPIHN
Li et al. (2015) developed an LPI prediction method combing a
heterogeneous network model and random walk with restart,
LPIHN. LPIHN can be broken down into four steps:

Step 1 Extracting known ncRNA–protein associations from
the Npinter 2.0 database (Hao et al., 2016) and filtering the
ncRNAs and their associated proteins based on organism and
type of ncRNAs. LPIHN then selects lncRNAs from filtered
ncRNAs based on the human lncRNA dataset provided by the
NONCODE database (Zhao et al., 2015).

Step 2 Obtaining lncRNA expression profiles from the
NONOCODE 4.0 database (Zhao et al., 2015). Given the
expression profiles of two lncRNAs E1 and E2, LPIHN
calculates lncRNA expression similarity based on the Pearson
correlation coefficient:

SL(i, j) =
cov(E1,E2)
se1se2

����
���� (1)

where cov(E1, E2) is the covariance of E1 and E2, and se1 and se2
are the standard deviations of E1 and E2, respectively.

Step 3 Extracting protein–protein interactions (PPIs) from
STRING 9.1 (Szklarczyk et al., 2016) and obtaining 804 PPIs and
the corresponding score matrix SP. SP is normalized as follows:

SP*ij =
SPijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M i, ið ÞM j, jð Þp (2)

whereM is a diagonal matrix, andM(i, i) is the sum of row i in SP.
Step 4 Propagating the random walk to score for unknown

lncRNA–protein pairs based on the following iterative equation:

Yt+1 = (1 − d )WTYt + d  Y0 (3)

The details are shown as Figure 1.

LPLNP
Zhang et al. (2018b) proposed a linear neighborhood
propagation-based method, LPLNP, to probe potential LPIs.
LPLNP found novel LPIs through the following steps.

Step 1 Extracting 4,158 LPIs between 27 proteins and 990
lncRNAs from NPInter (Hao et al., 2016) and NONCODE (Zhao
et al., 2015) by filtering unreliable lncRNA sequences and
removing lncRNAs/proteins only interacting with one
protein/lncRNA.

Step 2 Obtaining three types of features for lncRNAs
(interaction profile, expression profile, and sequence
composition) and two types of features for proteins [interaction
profile and CTD (composition, transition, and destruction)].

Step 3 Computing linear neighborhood similarity and
regularized linear neighborhood similarity between lncRNA/
proteins by Eqs. (4) and (5), respectively:

ϵi = ‖Xi − o
ij :Xij

∈N(Xi)

wiijXij ‖
2

s : t : o
ij :Xij

∈N(Xi)

wiij = 1,wiij ≥ 0
(4)
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where Xi denoted the feature vector of the ith lncRNA, and N(Xi)
is K nearest neighbors of Xi.

ϵi = wT
i (G

i + lI)wi

s : t : o
ij :Xij

∈N(Xi)

wiij = 1,wiij ≥ 0 (5)

where Gijik = (Xi − Xij )
T (Xi − Xij).

Step 4 Computing the interaction probabilities for
unobserved lncRNA–protein pairs:

Y = (1 − a)(I − aW)−1Y0 (6)

The details are shown in Figure 2.

LPI-BNPRA
Zhao et al. (2018a) developed a novel LPI prediction model based
on a bipartite network projection recommended technique, LPI-
BNPRA. LPI-BNPRA can be broken down into five steps.

Step 1 Extracting 4,158 high-confidence LPIs between 990
lncRNAs and 27 proteins from NPInter (Hao et al., 2016) and
NONCODE (Zhao et al., 2015) by filtering unreliable lncRNA
sequences and removing lncRNAs/proteins only associated with
one protein/lncRNA.

Step 2 Calculating lncRNA–lncRNA similarity based on the
Smith–Waterman technique:

LSM li, lj
� �

=
sw li, lj

� �
max   (sw li, lið Þ, sw lj, lj

� �
)

(7)

where sw(li, lj) denotes the Smith–Waterman score between two
lncRNAs li and lj.

Step 3 Calculating the protein–protein similarity matrix based
on the Smith–Waterman technique:

PSM(pi, pj) =
sw(pi, pj)

max (sw(pi, pi), sw(pj, pj))
(8)

where sw(pi, pj) denotes the Smith–Waterman score between two
proteins pi and pj.

Step 4 For a given lncRNA lj, computing its bias ratings of
lncRNAs for a protein pi with the agglomerative hierarchical
clustering and associated measurement of minimum variance
method:

r(pi, lj) =
ncr
T(pi)

(9)

where ncr is the number of lncRNAs in the cluster cr including lj,
and Tpi is the number of all lncRNAs interacting with pi.

Step 5 Finding LPI candidates based on the recommended
bipartite network projection technique and bias ratings of every
lncRNA for proteins:

Rfin(lj) =o
n

i=1
Rfin(pi, lj) (10)
January 2020 | Volume 10 | Article 1346
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where

Rfin(pi, lj) =
r(pi, lj)

o
n

k=1

r(pk, lj)
� R(pi) (11)

R(pi) =o
m

j=1
R(pi, lj) (12)

R(pi, lj) =
rini(pi, lj)

o
n

k=1

rini(pk, lj)
� Rini(lj) (13)

Rini(lj) = rini(pi, lj) (14)
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rini(pi, lj) =
r(pi, lj)

rave(pi, lj)
(15)

r(pi, lj) =
ncr
T(pi)

(16)

rave(pi, lj) =
o
m

j=1
r(pi, lj)

T(pi)
(17)

The details are shown in Figure 3.

LPISNFHS
Zheng et al. (2017) presented a new LPI identification method,
LPISNFH. LPISNFHS fused multiple protein–protein
similarity networks, the similarity network fusion (SNF)
FIGURE 1 | Flowchart of LPI prediction method based on heterogeneous network model and random walk with restart.
January 2020 | Volume 10 | Article 1346
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technique, HeteSim algorithm, and known LPI network into a
unified framework. LPISNFH can be broken down into
three steps.

Step 1 Obtaining 4,467 LPIs between 1,050 unique lncRNAs
and 84 unique proteins from NPInter (Hao et al., 2016) and
NONCODE (Zhao et al., 2015) by manually filtering LPIs not
involving lncRNAs and removing the lncRNAs only associated
with one protein.

Step 2 Constructing a protein–protein similarity network.
LPISNFHS fused the sequence similarity, functional annotation
semantic similarity (Go), domain similarity, and STRING
similarity into a unified protein–protein similarity network
based on the SNF technique.
Frontiers in Genetics | www.frontiersin.org 6
Step 3 Inferring novel LPIs by combining the HeteSim
algorithm and heterogeneous LPI network.

LPI-IBNRA
Xie et al. (2019) developed a LPI prediction model, LPI-IBNRA.
LPI-IBNRA integrated lncRNA–protein interactions, protein–
protein interactions, and similarity matrix for proteins and
lncRNAs, and improved bipartite network recommender
algorithm. LPI-IBNRA can be broken down into seven steps.

Step 1 Obtaining 4,796 LPIs between 1,105 lncRNAs and 26
proteins from NPInter (Hao et al., 2016) and NONCODE (Zhao
et al., 2015) after filtering lncRNAs and proteins that have only
one association.
FIGURE 2 | Flowchart of linear neighborhood propagation-based LPI prediction method.
January 2020 | Volume 10 | Article 1346
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Step 2 Computing lncRNA similarity matrix simL based on
lncRNA expression similarity and Gaussian interaction profile
(GIP) kernel similarity, and protein similarity matrix simP based
on protein interaction similarity and GIP kernel similarity.

Step 3 Computing the score between protein pi and lncRNA lj
based on protein similarity and lncRNA similarity by Eqs. (18)
and (19), respectively.
Frontiers in Genetics | www.frontiersin.org 7
SP pi, lj
� �

=

o
np

k=1

simP
pi ,pkð ÞI pk ,ljð Þ

o
np

k=1

simP
pi ,pkð Þ

 if I pi, lj
� �

= 1

0      otherwise

8>>>>><
>>>>>:

(18)
FIGURE 3 | Flowchart of LPI prediction model based on the recommended bipartite network projection technique.
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SL pi, lj
� �

=

o
nl

k=1

I pi ,lkð ÞsimL lk ,ljð Þ

o
np

k=1

simL
lk ,ljð Þ

 if I pi, lj
� �

= 1

0      otherwise

8>>>>>><
>>>>>>:

(19)

Step 4 Obtaining the initialized association score matrix as
follows:

Sini = g SP + 1 − gð ÞSL (20)

Step 5 Computing the first-round scores of the lncRNA lk
over all proteins:
Frontiers in Genetics | www.frontiersin.org 8
s1 lkð Þ =o
np

j=1

Sini pj, lk
� �

s0 pj
� �

d pj
� � (21)

Step 6 Computing the second-round scores of the protein pi
over all lncRNAs:

s2 pið Þ = o
nl

k=1

Sini pi, lkð Þ
d lkð Þ o

np

k=1

Sini pj, lk
� �

s0 pj
� �

d pj
� � (22)

Step 7 Computing the final association score matrix:

S0fin = W 0Sini (23)

where W′ = W + aW2 and a ∈ (−1,0).
The details are shown in Figure 4.
FIGURE 4 | Flowchart of LPI prediction method based on improved bipartite network recommender algorithm.
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LPBNI
Ge et al. (2016) proposed an lncRNA–protein bipartite network
inference method, LPBNI, to find potential LPIs. LPBNI can be
broken down into five steps.

Step 1 Extracting data. LPBNI first downloads 7,576 ncRNA–
protein associations from NPInter 2.0 (Hao et al., 2016) with the
restricted type of “NONCODE” and organism “Homo sapiens.”
LPBNI then selects 2,380 lncRNAs based on a human lncRNA
dataset provided by the NONCODE database (Zhao et al., 2015).
Finally, LPBNI extracts 4,870 LPIs between 2,380 lncRNAs and
106 proteins.

Step 2 Utilizing the LPI network to construct a bipartite graph
G (L, P, Y).

Step 3 Propagating known biological information in G. For a
lncRNA lj, SL (lj) denotes the score on lj after the first step of
propagation:

SL(lj) =o
m

i=1

aijS0(i)

d(pi)
, j ∈ 1, 2, 3…: nf g (24)

where S0 (i) = sij, i ∈ {i, 2,…,m} denotes the original information
of P for a given lncRNA lj. sij = 1 if pi associates with lj; otherwise,
sij = 0. d(pi) =on

j=1aij denotes the number of lncRNAs associated
with pi.

Step 4 Propagating all information in L back to P. SF(pi)
represents the final information on protein pi to denote the
associated score between pi and lj:

SF ið Þ =o
n

j=1

aijSL lj
� �

d lj
� � =o

n

j=1

aij
d lj
� �om

k=1

akjS0 kð Þ
d pkð Þ (25)

where d(li) =om
i=0aij is the number of proteins interacting

with lj.
Step 5 Computing the final associated score SF after the above

two-step information propagation yields

~SF = WS0
!

(26)

where~S0 denotes the column vector of S0, SF(i) =om
k=1wikS0(k),

where wij = 1
d(pi)o

n
j=1

aijakj
d(lj) .

The details are shown in Figure 5.

ACCBN
Zhu et al. (2019) exploited an ant-colony-clustering-based
bipartite network method for revealing potential LPIs,
ACCBN. The model can be roughly broken down into
three steps.

Step 1 Describing lncRNA interaction profiles and protein
interaction profiles as row vectors and column vectors based on
the LPI network, respectively.

Step 2 Calculating the probability that two entities xi and xj
belong to the same cluster basedon the ant colony clusteringmethod:

pij tð Þ =
Tij tð Þ
� �a hij tð Þ

� �b
o
k

j=1
Tij tð Þ
� �a hij tð Þ

� �b (27)
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where

hij =
1
dij

(28)

dij = (om
k=1jxik − xjkj2)

1
2 (29)

Tij t + 1ð Þ = 1 − rð ÞTij tð Þ + DTij tð Þ (30)

Tij tð Þ =
1 dij ≤ r

0 dij > r

(
(31)

DTij tð Þ =
Q

d xi, cj
� � (32)

where r is the cluster radius, cj is the cluster center of the jth
cluster, and a ∈ (0, 5), b ∈ (0, 5), r ∈ (0.1, 0.99), and Q ∈
(1, 10000).

Step 3 Applying lncRNA–protein bipartite network to
identify LPI candidates. Given a protein pk, its association
scores with all lncRNAs at the tth iteration Pt

k can be
computed as follows:

Pt
k = rWPt−1

k + 1 − rð ÞM :, kð Þ (33)

where W is a similarity matrix.
The association scores for all proteins {p1, p2,…, pm} can be

represented as follows:

Pt = rWPt−1 + 1 − rð ÞM (34)
Machine Learning-Based Methods
Machine learning-based LPI prediction methods utilize machine
learning-based models and algorithms to uncover potential LPIs.
This type of method can be roughly classified into two categories:
matrix factorization-based methods and ensemble learning-
based methods.

Matrix Factorization-Based Models
Matrix factorization is exploited in recommendation systems and
has been widely applied to bioinformatics (Shi et al., 2018; Zhang
et al., 2018a; Zhao et al., 2018b; Cantini et al., 2019). Matrix
factorization-based LPI prediction techniques transformed the
problem of LPI identification into a recommender task, and
adopted the matrix factorization model to capture unobserved
LPIs. Given an LPI matrix Y and two nonnegative matrices W ∈
ℜk x n and H ∈ ℜk x m the problem of predicting LPIs can be
formulated as the following objective function:

min  
W,H

‖Y −WTH ‖2F  s:t: W ≥ 0,H ≥ 0 (35)

A few LPI identification methods have been designed based
on matrix factorization method.
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LPGNMF
Zhang et al. (2018a) designed a graph regularized nonnegative
matrix factorization-based (NMF) method to predict potential
LPIs, LPGNMF. LPGNMF consists of three steps.

Step 1 Extracting LPI information based on data provided by
NONCODE (Zhao et al., 2015), NPInter (Hao et al., 2016), and
UniProt (Consortium et al., 2018). Obtaining 9,484 LPIs between
50 proteins and 2,190 lncRNAs after filtering and removing
lncRNAs/proteins only interacting with one protein/lncRNA.

Step 2 Computing lncRNA similarity and protein similarity.
Frontiers in Genetics | www.frontiersin.org 10
LPGNMF computes the lncRNA expression profile similarity
Sl (i, j):

Given the expression profiles of two lncRNAs E1 and E2,
LPIHN calculates lncRNA expression similarity based on the
Pearson correlation coefficient:

Sl i, jð Þ = cov(E1,E2)
se1se2

����
���� (36)

where cov(E1, E2) is the covariance of E1 and E2, and se1 and
se2 are the standard deviations of E1 and E2, respectively.
FIGURE 5 | Flowchart of lncRNA–protein bipartite network inference method.
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LPGNMF computes the weight matrix based on lncRNA
similarity:

Ml
ij =

1 i ∈ N lj
� �

    &    j ∈ N lið Þ
0 i ∉ N lj

� �
    &    j ∉ N lið Þ

0:5     otherwise

8>><
>>: (37)

Here,N(li) andN(lj) denote the p nearest neighbors of li and lj.
LPGNMF then calculates the sparse similarity matrix of

lncRNAs Sl*:

S
l*
ij = Ml

ijS
l
ij (38)

Similarly, LPGNMF calculates the sparse similarity matrix of
proteins Sp*.

Step 3 Building the following optimization model based on
the graph regularized nonnegative matrix factorization method:

min
W ,H

‖Y −WTH ‖2F +lpo
n

i,j=1
‖wi − wj ‖2S

p*
ij

+ llo
m

i,j=1
‖ hi − hj ‖2S

l*
ij + b1o

n

i,j=1
‖W( :, i) ‖21

+ b2o
m

i,j=1
‖H( :, i) ‖21s : t : W

≥ 0,H ≥ 0 (39)
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The details are shown in Figure 6.

LPI-NRLMF
Liu et al. (2017) designed a novel LPI identification model based
on neighborhood regularized logistic matrix factorization, LPI-
NRLMF. LPI-NRLMF can be roughly broken down into
three steps.

Step 1 Extracting the lncRNA sequence, protein sequence,
and LPIs based on data provided by NONCODE (Zhao et al.,
2015), NPInter (Hao et al., 2016), and UniProt (Consortium
et al., 2018); and obtaining 4,158 LPIs between 27 proteins and
990 lncRNAs.

Step 2 Computing lncRNA sequence similarity matrix LSM
and protein sequence similarity matrix PSM based on the Smith–
Waterman algorithm:

LSM li, lj
� �

=
sw li, lj

� �
max   (sw li, lið Þ, sw lj, lj

� �
)

(40)

PSM pi, pj
� �

=
sw pi, pj

� �
max   (sw pi, pið Þ, sw pj, pj

� �
)

(41)

Step 3 Defining neighborhood information for lncRNAs and
obtaining the adjacency matrix A of lncRNAs:

aiu =
sliu if lu ∈ N lið Þ
0   otherwise

(
(42)
FIGURE 6 | Flowchart of LPI prediction method based on graph regularized nonnegative matrix factorization.
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Similarly, LPI-NRLMF computes the adjacency matrix B
of proteins.

Step 4 Computing associated scores SN for unknown
lncRNA–protein pairs based on the neighborhood regularized
logistic matrix factorization model:

pij =
exp   (uiv

T
j )

1 + exp   (uivTj )
(43)

Here, ui ∈ ℜ1xr and vj ∈ ℜ1xr can be computed by the
following neighborhood regularized logistic matrix factorization
model:

min
U ,Vo

m

i=1
o
n

j=1
(1 + cyij − yij) ln½1 + exp (uiv

T
j )� − cyijuiv

T
j

+
1
2
tr½UT (llI + aLl)U � + 1

2
tr½VT (lpI + bLp)V� (44)

where Ll = (Dl
i + Dl

u) − (A + AT ), Dl
i =om

u=1aiu,D
l
u =om

i=1aiu.
Similarly, LP can be computed. U ∈ ℜm x r and V ∈ ℜ1 x r can
be calculated by dividing L.

The details are shown in Figure 7.
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IRWNRLPI
Zhao et al. (2018b) fused the random walk into LPI-NRLMF and
exploited a novel LPI prediction model based on LPI-NRLMF,
IRWNRLPI. IRWNRLPI is a semi-supervised learning-based
model and does not require negative samples. IRWNRLPI
contains the following five steps.

Step 1 Extracting the lncRNA sequence, protein sequence,
and LPIs from NONCODE (Zhao et al., 2015), NPInter (Hao
et al., 2016), and UniProt (Consortium et al., 2018); and
obtaining 4,158 LPIs between 27 proteins and 990 lncRNAs.

Step 2 Computing the lncRNA sequence similarity matrix LS
and protein sequence similarity matrix PS based on the Smith–
Waterman algorithm:

LS li, lj
� �

=
sw li, lj
� �

max   sw li, lið Þ, sw lj, lj
� �� � (45)

PS pi, pj
� �

=
sw pi, pj

� �
max   sw pi, pið Þ, sw pj, pj

� �� � (46)

Step 3 Building a random walk model to compute associated
scores SR for unknown lncRNA–protein pairs:
FIGURE 7 | Flowchart of LPI prediction model based on neighborhood regularized logistic matrix factorization.
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S t + 1ð Þ = rQL
T
QS(t) + pQ 1 − rQ

� �
X + rUL

T
US(t) + pU 1 − rUð ÞX

(47)

where rij represents the extent of association between a neighbor
vj and a protein p for a given node vi. L(lij)M x M is computed by
lij = rij=oN

j=1rij. IRWNRLPI divides L into two arrays of LU
and LQ.

Step 4 Computing associated scores SN for unknown
lncRNA–protein pairs based on the neighborhood regularized
logistic matrix factorization model:

pij =
exp   (uiv

T
j )

1 + exp   (uiv
T
j )

(48)

ui ∈ ℜ1 x r and vj ∈ ℜ1 x r can be computed by the following
neighborhood regularized logistic matrix factorization model:

min
U ,Vo

m

i=1
o
n

j=1
(1 + cyij − yij) ln½1 + exp (uiv

T
j )� − cyijuiv

T
j

+
1
2
tr½UT (llI + aLl)U � + 1

2
tr½VT (lpI + bLp)V� (49)

where U ∈ ℜm x r and V ∈ ℜn x r.
Step 5 Computing the final associated scores for unknown

lncRNA–protein pairs:

S =
SR + SN

2
(50)

The details are shown in Figure 8.

LPI-KTASLP
Shen et al. (2019) designed a kernel target alignment-based semi-
supervised model, LPI-KTASLP, to find novel LPIs. LPI-
KTASLP utilizes matrix factorization and an approximation
technique. LPI-KTASLP can be roughly broken down into
three steps.

Step 1 Computing lncRNA kernels and protein kernels from
four levels.

Level 1 GIP kernel:
The GIP kernels between two lncRNAs and two proteins are

defined as follows, respectively:

Klnc
GIP(li, lj) = exp ( − glnc ‖Yli − Ylj ‖

2 ) (51)

Kpro
GIP(pi, pj) = exp ( − gpro ‖Ypi − Ypj ‖

2 ) (52)

Level 2 Sequence kernel:
The sequence kernels of two lncRNAs and two proteins are

defined as follows, respectively:

Klnc
SW(li, lk) =

SW(Sli , Slk )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Sli , Sli )

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Slk , Slk )

p (53)

Kpro
SW(Pi, Pk) =

SW(Spi , Spk )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Spi , Spi )

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SW(Spk , Spk )

p (54)
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where SW(.,.) is the Smith–Waterman score, and S represents the
sequence information of a lncRNA/protein.

Level 3 Sequence feature kernel:
Constructing radial basis function kernels Klnc

SF and Kpro
SF for

lncRNAs and proteins based on the conjoint triad and pseudo
position-specific score matrix, respectively.

Level 4 lncRNA expression kernel:
Calculating the expression kernel of lncRNA Klnc

EXP based on
the expression profiles of lncRNAs provided by the NONCODE
database (Zhao et al., 2015).

Step 2 Fusing the above kernels to generate the optimal kernel
based on kernel target alignment:

K*lnc = o
4

a=1
wlnc
a Klnc

a , Klnc
a ∈ℜn�n (55)

K*pro = o
3

a=1
wpro
a Kpro

a , Kpro
a ∈ℜm�m (56)

Step 3 Constructing the following model to compute
interaction probabilities for unobserved lncRNA–protein pairs
based on matrix factorization, low-rank approximation, and
eigen decomposition:

Y* =
1

1 + 3d
Y +

1
1 + 3d 2 Vlnc D⊙ VT

lncFVpro

� �� �
VT
pro (57)

The details are shown in Figure 9.

Ensemble-Based Methods
Ensemble learning methods are widely applied to LPI prediction.
HLPI-Ensemble (Hu et al., 2018) and SFPEL-LPI (Zhang et al.,
2018c) are two state-of-the-art ensemble-based LPI
prediction methods.

HLPI-Ensemble
Hu et al. (2018) developed the HLPI-Ensemble method for
human LPI identification. HLPI-Ensemble consists of two
major processes: benchmark dataset construction and HLPI-
Ensemble model construction.

In the first process, HLPI-Ensemble downloads lncRNA
sequences, protein sequences, and LPIs from NONCODE
(Zhao et al., 2015), UniProt (Consortium et al., 2018), and
NPinter (Hao et al., 2016). HLPI-Ensemble then extracts 82
features of lncRNAs and 1,516 features of proteins based on
Kmer, DAC, and PC-PseDNC-General.

In the second process, HLPI-Ensemble utilizes the ensemble
technique and generates three ensemble learning frameworks,
HLPI-SVM, HLPI-XGB, and HLPI-RF. These three frameworks
are based on support vector machines (SVMs), extreme gradient
boosting (XGB), and random forests (RFs), respectively. The
details are shown in Figure 10.

SFPEL-LPI
Zhang et al. (2018c) exploited a sequence-based feature
projection ensemble learning framework, SFPEL-LPI, to
uncover novel LPIs. SFPEL-LPI integrated ℓ1,2-norm
regularization, ensemble graph Laplacian regularization, and
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various biological information into a unified framework. It can
be roughly broken down into five steps.

Step 1 Downloading LPIs, lncRNA sequences, and protein
sequences from NPInter (Hao et al., 2016), NONCODE (Zhao
et al., 2015), and SUMPERFAMILY (Pandurangan et al.,
2018), respectively.

Step 2 Describing lncRNA and protein features based on
sequence information and known LPIs.

SFPEL-LPI describes lncRNA features based on parallel
correlation pseudo dinucleotide composition (PSEDNC). Given
the occurrence frequency of different dinucleotides and the
physicochemical properties of every dinucleotide, the PseDNC
Frontiers in Genetics | www.frontiersin.org 14
feature vector for an RNA sequence L can be represented as

L = ½d1, d2,……:: d16, d16+1,…d16+t � (58)

where

dk =

fk

o16
i=1fi+wot

j=1qj
1 ≤ k ≤ 16

wqk−16
o16

i=1fi+wot
j=1qj

17 ≤ k ≤ 16 + t

8><
>: (59)

In addition, SFPEL-LPI represents the interaction profile of
an lncRNA as a row vector of the LPI matrix Y: IPLi = Y(i, : ).
FIGURE 8 | Flowchart of LPI prediction model based on the random walk and neighborhood regularized logistic matrix factorization.
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SFPEL-LPI describes protein features based on the parallel
correlation pseudo amino acid composition (PseAAC):

P = ½c1, c2,……:: c20, c20+1,…, c20+t � (60)

where

ck =

fk

o20
i=1fi+wot

j=1qj
1 ≤ k ≤ 20

wqk−20
o20

i=1fi+wot
j=1qj

20 ≤ k ≤ 20 + t

8><
>: (61)

Similarly, the interaction profile of a protein can be defined as
a column vector of the LPI matrix Y: IPpi = Y( :, i).

Therefore, a features for lncRNAs/proteins can be
represented as feature matrix: fXigai=1.

Step 4 Computing lncRNA similarity and protein similarity.
Frontiers in Genetics | www.frontiersin.org 15
SFPEL-LPI first computes the linear neighborhood similarity
of lncRNAs based on PseDNC and IP.

SFPEL-LPI then computes the Smith–Waterman subgraph
similarity (SWSS) of lncRNAs:

SWSS(Li, Lj) =oP01∈A(Li)oP02∈A(Lj)
SW(Po1, Po2)
n1� n2

(62)

Similarly, the PseAAC similarity, IP similarity, and SWSS
similarity of proteins can be computed.

Therefore, b types of similarities of lncRNAs/proteins can be
represented as b similarity matrices fWigbi=1.

Step 5 Computing the association scores for novel lncRNAs/
proteins based on Eqs. (63) and (64).

Rl =o
u

i=1
qliXliG

T
li (63)
FIGURE 9 | Flowchart of kernel target alignment-based semi-supervised model for LPI prediction.
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Rp =o
v

i=1
qpiXpiG

T
pi (64)

Gi, R, and q can be obtained by solving the following
optimization model:

min
Gi ,R,q

‖R − Y ‖2F +mo
a

i=1
‖XiG

T
i − R ‖2F +o

b

i=1
qh
i tr(R

T (Di −Wi)R)

+ lo
a

i=1
‖Gi ‖21,2

s : t :  Gi ≥ 0,o
b

i=1
qi = 1

(65)

The details are shown in Figure 11.

Other Methods
There are several methods used to predict possible LPIs except
for matrix factorization-based methods and ensemble learning-
based methods, for example, Fisher's linear discriminant-based
LPI prediction method (IncPro) (Lu et al., 2013), eigenvalue
Frontiers in Genetics | www.frontiersin.org 16
transformation-based semi-supervised model (LPI-ETSLP) (Hu
et al., 2017), and kernel ridge regression model based on fast
kernel learning(LPI-FKLKRR) (Shen et al., 2018).

lncPRO
Lu et al. (2013) explored a Fisher's linear discriminant-based LPI
prediction method, lncPro. lncPro found new LPI through
executing the following four steps.

Step 1 Downloading complexes data from the PDB database.
Step 2 Encoding sequence information into numerical feature

vectors for lncRNAs and proteins based on the secondary
structure, the Van der Waals' propensities, and the hydrogen-
bonding propensities.

Step 3 Transforming the feature vectors to unify the
dimension based on the Fourier series:

X0
k =

ffiffiffiffi
2
L

r
o
L

i=0
Xi cos

p
L

n +
1
2

� 	
k +

1
2

� 	
 �
  

k = 0, 1,…, 9

(66)

where L is the length of feature vector of lncRNAs/proteins.
FIGURE 10 | Flowchart of ensemble-based LPI identification method.
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Step 4 Calculating the final score matrix < p|M|r> for the
RNA feature vector r and a protein feature vector p based on
Fisher's linear discriminant method:

< p Mj jr >= M1p1r1 +M2p1r2 +M3p2r1 +M4p2r2 (67)

LPI-ETSLP
Hu et al. (2017) presented an eigenvalue transformation-based
semi-supervised model, LPI-ESTLP, to uncover the underlying
LPIs. LPI-ESTLP can be broken down into three steps.

Step 1 Downloading lncRNA sequences, protein sequences,
and LPIs from NONCODE (Zhao et al., 2015), UniProt
(Consortium et al., 2018), and NPInter (Hao et al., 2016); and
extracting 4,158 LPIs between 27 proteins and 990 lncRNAs
after preprocessing.
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Step 2 Computing the lncRNA sequence similarity matrix
LSM and protein sequence similarity matrix PSM based on the
Smith–Waterman algorithm:

LSM(l(i), l(j)) =
sw(l(i), l(j))

max (sw(l(i), l(i)), sw(l(j), l(j)))
(68)

PSM(p(i), p(j)) =
sw(p(i), p(j))

max (sw(p(i), p(i)), sw(p(j), p(j)))
(69)

Step 3 Calculating the score matrix based on the following
objective function:

�Y =
�Yl + �Yp

2
(70)
FIGURE 11 | Flowchart of LPI prediction method based on sequence feature projection ensemble learning framework.
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where

�Yl = (sLl + I)−1Y

�Yp = (sLp + I)−1Y
(71)

and Ll = I – LSM and Lp = I – PSM denote the Laplacian
matrices of lncRNAs and proteins, respectively.

LPI-ETSLP can obtain the final scores between unobserved
lncRNA–protein pairs by integrating eigenvalue transformation
into Eq. 70:

Y =
1
2
(VlUlV

T
l + VT

p UpVp) (72)

where Ūl is a diagonal matrix with ½�Ul�ii = (1 + s(1 − lali ))
−1.

Ll = I – Dl
–0.5 Kl Dl

–0.5 and the eigen decomposition of Kl can be
expressed as Kl = VlUl  Vl . Similarly, Kp = VpUp Vp and  Up can
be defined.

The details are shown in Figure 12.

LPI-FKLKRR
Shen et al. (2018) developed an LPI prediction algorithm, LPI-
FKLKRR, combining a kernel ridge regression model based on
fast kernel learning. LPI-FKLKRR can be broken into six steps:

Step 1 Computing lncRNA GIP, sequence feature, sequence
similarity, and lncRNA expression kernels Klnc

GIP , K
lnc
SW , Klnc

SF , and
Klnc
EXP .
Step 2 Computing protein GIP, sequence features, protein

sequence similarity, and protein GO kernel Kpro
GIP, K

pro
SW , Kpro

SF , Kpro
GO .
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Step 3 Generating the optimal lncRNA and protein kernels
with fast kernel learning:

Klnc = o
4

a=1
wlnc
a Klnc

a ,Klnc
a ∈ ℜm�m (73)

Kpro = o
4

a=1
wpro
a Kpro

a ,Kpro
a ∈ ℜm�m

where wlnc
a and wpro

a represent each element in wlnc and wpro,
respectively; Klnc

a and Kpro
a denote the corresponding normalized

similarity matrices in lncRNA and protein spaces, respectively.
Step 4 Constructing the optimization model to compute the

optimal solution for wlnc or wpro:

min
w

 wT (A + lI)w − 2bTw

s : t :o
J

a
wa = 1

Au,v = tr(KT
u Kv)

(74)

where w denotes the optimal solution wlnc or wpro, Ku and Kv

denote two different kernel matrices, and tr(·) denotes the
trace function.

Step 5 Computing lncRNA–protein association score matrix:

F* = Klnc(Klnc + l‘I)
−1F(Kpro + lpI)

−1Kpro (75)
FIGURE 12 | Flowchart of eigenvalue transformation-based semi-supervised model.
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Step 6 Producing the optimal F* by adjusting the parameters
lℓ and lp.

The details are shown in Figure 13.
DISCUSSION

lncRNAs play important regulatory roles in diverse biological
processes, such as protein modification, DNA methylation, and
chromosome (Weber et al., 2018; Huang et al., 2018a; He et al.,
2018b; Zhao et al., 2018c). However, the regulatory mechanism
remains unknown (Esteller, 2011; Jiang et al., 2018; Agirre et al.,
2019). Studies reported that identifying protein molecules
binding specific lncRNAs help to probe the mechanism of
lncRNAs (Lu et al., 2013; Ge et al., 2016; Chen et al., 2018).
Therefore, identifying possible LPIs has an important role in
understanding lncRNA-related activities (Lu et al., 2013; Pan
et al., 2016; Peng et al., 2017; Zhang et al., 2018c).

However, experimental methods are expensive and time-
consuming. For limited existing knowledge, computational
methods become vital as a silver-bullet solution to capture
LPIs on a large scale, which contributes to prioritize LPI
candidates and deploys further experimental validation (Chen
et al., 2018).

In this study, databases involved in LPI identification are
summarized. More importantly, the components of state-of-the-
art computational models for LPI prediction, such as network-
based methods and machine learning-based methods, are
introduced. Particularly, machine learning-based models can
be broken into matrix factorization-based methods and
ensemble learning-based methods. To consider the
performance of LPI prediction methods, we compared nine
models (IRWNRLPI, LPBNI, LPGNMF, LPI-BNPRA, LPI-
ETSLP, LPIHN, LPI-NRLMF, LPLNP, and SFPEL-LPI) on
leave-one-out cross-validation (LOOCV). These nine models
are conducted on the datasets provided by the corresponding
papers. Parameters are set as the values recommended by the
corresponding studies. Table 1 shows the comparison results
based on AUC, precision, accuracy, and F1. In Table 1, SFPEL-
LPI obtained the best performances of AUC and accuracy;
LPGNMF obtained the best performances of precision and F1.
The results demonstrated that SFPEL-LPI can correctly predict
LPIs with a relative high proportion. LPGNMF can better
identify potential LPIs when taking into account the
proportion of correctly predicted LPIs and successfully
predicted LPIs.

To further detect the performance of SFPEL-LPI, we
compared it with four representative LPI prediction methods,
LPBNI, LPI-ETSLP, LPIHN, and LPLNP, on fivefold cross-
validation. The experiments were conducted on the same
dataset, i.e., LPIs, lncRNA sequences, and protein sequences
are from NPInter (Hao et al., 2016), NONCODE (Zhao et al.,
2015), and SUMPERFAMILY (Pandurangan et al., 2018),
respectively. The details are shown in Table 2. The results
demonstrate that SFPEL-LPI obtained the best performance of
AUC and can better identify possible LPIs.
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In general, network-based methods have become one type of
effective tool in possible LPI identification by utilizing LPI
network, lncRNA similarity network, and protein similarity
matrix. Although network-based methods efficiently discovered
unknown LPIs and obtained promising results from the
perspective of propagation (Li et al., 2015; Ge et al., 2016;
Zheng et al., 2017; Zhao et al., 2018b), this type of method has
some weaknesses.

1. Parts of computational methods tested their performances
only on one database, which may result in biased predictions
because of the sparse nature of LPI data (Li et al., 2015). More
importantly, the lack of known LPIs limits the further research
of LPI prediction in a larger network (Ge et al., 2016).

2. It is important to unravel potential LPIs for lncRNAs/
proteins without any associated information (we represent
these lncRNAs/proteins as new lncRNAs/proteins); however,
most network-based models fail to capture LPI candidates
(Zhang et al., 2018b).

3. Current network-based methods tend to be biased to the
lncRNAs/proteins with more known associated proteins.
Some lncRNAs/proteins interact with multiple proteins/
lncRNAs and others interact with a few or even only one
protein/lncRNA in an LPI network. The unbalanced nature
of degree distributions in the LPI network may affect
prediction performance. Increasing resistance based on the
random walk may improve predictive accuracy for LPI
prediction models (Li et al., 2015).

4. Parts of methods compute lncRNA similarities based on the
expression profile and may produce incomplete coverage of
the lncRNA similarity network when adding LPI datasets.
This problem may be solved by increasing appropriate data
including LPIs (Li et al., 2015).

5. Network-based methods can be applied to an LPI network in
which there exists at least one link between two nodes.
Especially for a bipartite network, network-based methods
require that each node in the network has at least two
linkages. However, the LPI network is usually composed of
a few isolated subnetworks, and most of the existing network-
based models fail to identify the LPIs between the lncRNAs in
one subnetwork and the proteins in another (Ge et al., 2016).

6. Most current network-based methods utilized local network
information and showed better performance; however, many
previous computational biology studies showed that global
network information contributes to capturing the
associations between two entities, such as LPIs (Karuza
et al., 2016; Meng et al., 2016; Shi et al., 2017).

7. Biology finally aims at providing personalized medicine for
cancer patients, and it is a key issue to predict relevant drugs/
targets for a certain disease by integrating multiple
heterogeneous networks and constructing multiple-partite
biological networks, such as protein–lncRNA–disease
association networks and drug–protein–lncRNA–disease
networks. However, current network-based methods are
still not applied to this type of prediction (Yao et al., 2016;
Yang et al., 2017; Bester et al., 2018; Lu et al., 2018; Ping et al.,
2018; Fan et al., 2019).
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In summary, machine learning-based LPI prediction methods
have some limitations.

1. There are no non-LPIs (negative samples) with experimental
validation; therefore, most supervised learning-based LPI
prediction models can only randomly select unknown
Frontiers in Genetics | www.frontiersin.org 20
lncRNA–protein pairs as negative LPIs. However, this part
of randomly selected negative LPIs may contain true LPIs
(positive samples) as well, which significantly influences the
predictive performance (Liu et al., 2017; Zhao et al., 2018a;
Zhao et al., 2018b; Zhang et al., 2018c; Shen et al., 2019).
Although semi-supervised learning-based models utilized
FIGURE 13 | Flowchart of LPI prediction method based on fast kernel learning with kernel ridge regression.
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unlabeled information to decrease the limitations of negative
LPI selection, it still has the same disadvantage as classifier
combination (Liu et al., 2017; Zhang et al., 2018a; Shen et al.,
2019).

2. Some machine learning-based methods constructed two
different classifiers, based on lncRNAs and proteins,
respectively. The final results are an average of the
performances of two predictive models. This type of model
will produce biased results (Zhao et al., 2018b).

3. Many lncRNAs/proteins do not have known association
information with any proteins/lncRNAs, and we represent
them as new lncRNAs/proteins. Most current predictive
models are unable to capture possible proteins/lncRNAs for
new lncRNAs/proteins (Zhang et al., 2018c).

4. The proposed methods rely heavily on known LPI data;
however, the current number of known LPIs is still very
low. Therefore, most machine learning-based models are
trained using RNA–protein interaction information instead
of LPI data. This results in limited predictive performances
(Liu et al., 2017; Zhao et al., 2018a). With the increase in
experimentally validated LPIs, the prediction performances
of models will improve (Zhao et al., 2018b).

5. The better performances of existing machine learning
methods rely severely on data called features (Goodfellow
et al., 2016). Current computational methods utilize various
lncRNA features and protein features. However, identifying
more appropriate features for a given task is still a challenge
(Liu et al., 2017; Min et al., 2017). More importantly, these
features are not available for all proteins or lncRNAs (Liu
et al., 2017; Zhang et al., 2018c).

6. Most experimental data are provided by the NPInter
database. NPInter is a relatively abundant database for
lncRNA and protein data, but it only provides gene–
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protein interaction data corresponding to relevant lncRNAs
instead of direct LPIs. Gene–protein interactions were
directly applied to machine learning-based methods to find
possible ncRNA–protein associations and did not discover
true LPIs (Liu et al., 2017; Zhao et al., 2018a; Zhao et al.,
2018b).

7. Most current computational models for LPI interaction
prediction are measured based on cross-validation. Park
and Marcotte (2012) used a proteochemometrics model
(Wikberg and Mutulis, 2008) for drug–protein interaction
prediction and observed that the paired nature of input
samples has significant implications on the cross-validation
of these pair-input methods. That is to say, there are
significant cross-validation differences between input
sample and out-of-sample interactions (Park and Marcotte,
2012). For drug–target interaction identification problems,
the paired feature of input samples may produce a natural
partition of test pairs, and thus the pair-input methods may
obtain significantly distinct prediction accuracies for different
test classes (Chen et al., 2015). The same situation applies to
LPI prediction, which is still a pair-input computational
identification problem.
CONCLUSION AND FURTHER RESEARCH

There are a few LPIs and numerous unknown lncRNA–protein
pairs not validated by experimental methods in the existing
databases. In addition, similar lncRNAs tend to interact with
similar proteins, and vice versa (Xiao et al., 2017; Zhang et al.,
2018a). Therefore, LPI data have a sparse, low-rank, and
unbalanced nature (Li et al., 2015; Zhang et al., 2018a; Shen
et al., 2019). With the development of experimental technology,
more LPIs will be confirmed, and thus the prediction accuracy of
computational models will increase. In this section, we present
some suggestions for further research based on the nature of
LPI data.

Fusing Comprehensive LPI Datasets
Parts of computational methods tested their performances only
on one database, which may result in biased predictions because
of the sparse nature of LPI data (Li et al., 2015). More
importantly, existing computational models utilize various
biological information from proteins and lncRNAs, for
example, physicochemical properties including hydrogen
bonding, secondary structure, and van der Waals propensities
(Belluci et al., 2011; Xiao et al., 2017). It is important to utilize
diverse biological features to improve the performances of LPI
prediction models. However, these features are not available for
all proteins or lncRNAs, and thus computational methods
cannot capture LPI candidates when information is unavailable
(Zhang et al., 2018c). Therefore, exploring advanced data fusion
methods to integrate more available data sources may further
boost the performance of LPI identification.

Focusing on the drawbacks of current network-based LPI
identification methods, future research can begin with
TABLE 1 | Performance of LPI prediction methods on LOOCV.

Methods AUC precision accuracy F1

IRWNRLPI 0.9150 0.7178 0.9009 0.6516
LPBNI 0.8586 0.9681 0.9581 0.3868
LPGNMF 0.8520 1 0.7854 0.6871
LPI-BNPRA 0.8754 0.6540 0.8799 0.5564
LPI-ETSLP 0.8876 0.5932 0.8834 0.5978
LPIHN 0.8030 0.3713 0.9581 0.3868
LPI-NRLMF 0.9025 0.6129 0.8804 0.6197
LPLNP 0.9594 0.1153 0.9592 0.1621
SFPEL-LPI 0.9735 0.0016 0.9731 0.0033
These bolded texts represent that the corresponding method is the best among
comparison methods.
TABLE 2 | Performance of LPI prediction methods on fivefold cross-validation.

Methods AUC Precision Accuracy F1

LPBNI 0.84177 0.2898 0.9431 0.3336
LPI-ETSLP 0.8876 0.5932 0.8834 0.5978
LPIHN 0.8531 0.4139 0.9581 0.3868
LPLNP 0.9104 0.4102 0.9646 0.4520
SFPEL-LPI 0.9200 0.4490 0.9600 0.4702
These bolded texts represent that the corresponding method is the best among
comparison methods.
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integrating more heterogeneous networks, such as protein–
protein interaction network (Zhang et al., 2019a), lncRNA–
miRNA interaction network (Zeng et al., 2016; Huang et al.,
2018c; Zhao et al., 2019), lncRNA–mRNA interaction network
(Alaei et al., 2019), lncRNA–disease association network (Fu
et al., 2017; Wang et al., 2019), and lncRNA–miRNA–mRNA
regulatory network (Chen et al., 2018; Zhang et al., 2019b).
However, how to address the data conflict problems while
integrating diverse LPI data from different repositories is
a challenge.

Although there are not currently data conflict solutions for
LPI prediction, we can find some clues by other problems in the
area of bioinformatics. For example, Liu et al. (2015) set a
confidence level for each DTI and gave a higher score to a DTI
from a more reliable data repository. For example, the STITCH
database assigns a score with a range [0, 1,000] to each DTI based
on four types of different sources: model prediction, text mining,
manually curated databases, and experimental validation.
Particularly, Liu et al. (2015) gave DTIs from Matador and
DrugBank the highest values (1,000) because DTIs from these
two databases are reported by biochemical experiments and
relevant studies. Lou et al. (2017) exploited another type of
data fusion from a multiple-views perspective. This involved five
steps: screening relevant information from different data sources;
removing isolated nodes without edges in the networks; fusing
various types of nodes and edges and building a heterogeneous
network; constructing multiple similarity networks to boost the
network heterogeneity; and excluding homologous nodes from
the constructed heterogeneous networks to further reduce the
possible redundancy of associated information. Inspired by these
two methods, we can fuse diverse heterogeneous data to improve
performance in future research. More importantly, new exploited
network-based methods should be implemented on a
constructed heterogeneous network rather than a single network.

Screening Credible Negative Samples
There are some known LPIs (positive samples) and abundant
unknown lncRNA–protein pairs in existing LPI data resources.
More importantly, there are no experimentally validated non-
LPIs, and thus most supervised learning-based models have no
other choice but to randomly screen negative LPIs from
unlabeled lncRNA–protein pairs or even regarded all unlabeled
lncRNA–protein pairs as negative samples (Liu et al., 2017; Zhao
et al., 2018b). However, the randomly screened negative LPIs
may contain positive LPIs as well, and thus there are severe biases
in supervised learning-based techniques. Therefore, exploiting
an efficient model to select high-quality negative samples is a
challenging task for boosting LPI prediction accuracy.

Cheng et al. (2017) designed a FInding Reliable nEgative
samples method (FIRE) to select negative RNA–protein
interactions. FIRE was based on the following assumption:
given a known RNA–protein interaction between an RNA i
and a protein j, for an RNA k, the more differences between i and
k, the less possibility that k interacts with j, and vice versa. FIRE
screened negative RNA–protein interactions through the
following steps: computing the protein similarity matrix,
building a positive sample set based on known interaction
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information, scoring an unknown RNA–protein pair not
included in positive sample set based on protein similarities,
generating m negative samples by sorting these RNA–protein
pairs via their scores in increasing order, and selecting the top-m
RNA–protein pairs. Similarly, we may generate negative LPIs
based on lncRNA–lncRNA similarities, protein–protein
similarities, and the above assumption.

Positive-unlabeled (PU) learning (de Campos et al., 2018;
Sansone et al., 2018; Yang et al., 2018) is applied to various
situations. In PU learning, a supervised learning-based method is
designed to learn a classification model from a positive sample
set and an unlabeled dataset from an unknown class. Yang et al.
(2018) designed an adaptive sampling framework with class label
noise based on PU learning and introduced two new
bioinformatic applications: identifying kinase-substrates and
identifying transcription factor target genes. Therefore, PU
learning may be one strong way to solve the problem of
lacking negative LPIs.

Deep Learning
Existing computational methods have utilized different lncRNA
features and protein features. For example, Bellucci et al. (2011)
integrated three types of physicochemical properties, including
hydrogen bonding, secondary structure, and van der Waals
propensities; meanwhile, Lu et al. (2013) used six types of
RNA secondary structures (besides physicochemical
properties), which were provided by Bellucci et al. (2011).
Therefore, designing more powerful models to integrate
relevant biological features is a key issue. However, features are
typically exploited by human biomedical engineers, and
determining which features are more suitable for LPI
prediction remains difficult. More importantly, encoding
vectors that are too short may restrict the prediction accuracy
of classification model. More importantly, most computational
models only used sequence information but did not consider
structure information (Peng et al., 2019).

Deep learning-based computational models composed of
multiple processing layers require very little engineering
knowledge and can efficiently extract features from raw data
and construct high-level representations (Wei et al., 2018; Peng
et al., 2019). These types of models have been applied to diverse
analysis problems, and have obtained better performance due to
the excellent power of feature learning (Jurtz et al., 2017; Min
et al., 2017; Peng et al., 2019). Therefore, it is valuable and feasible
to exploit deep learning-based methods to highly and effectively
represent biological features for relevant entities in bioinformatics
(Min et al., 2017; Zhang et al., 2018d; Peng et al., 2019; Zeng et al.,
2019), such as information relevant to LPI prediction (Xiao et al.,
2017; Shen et al., 2019; Zhu et al., 2019). More importantly,
although deep learning demonstrated promising performance, it
is not a silver bullet in LPI prediction. There still exist many
challenges in LPI identification, such as the imbalanced nature of
LPI data, limited LPI data, appropriate architecture selection,
hyper parameter selection, and interpretation of learning results
(Min et al., 2017). Therefore, solving these problems is the key to
promoting deep learning-based LPI prediction models in
future research.
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Particularly, deep learning can be combined with PU learning
and improve the performance of computational models (Bepler
et al., 2018; Pati et al., 2018). For example, Bepler et al., 2018
designed the first particle-picking framework, Topaz. Topaz
combined a convolutional neural network with a generalized-
expectation-binomial-based objective function. The
convolutional neural network was used to train classification
models using only positive and unlabeled samples. Meanwhile,
the generalized-expectation-binomial-based objective function
was used to learn model parameters based on positive and
unlabeled samples. Topaz utilized convolutional neural network
classifiers to fit labeled particles (samples) and the remaining
unlabeled samples based on the minibatched stochastic gradient
decent method. Deep learning methods based on PU learning
provide valuable insight and may be a starting point for deep
learning applied to LPI prediction in future research.

Capturing LPI Candidates for New
LncRNAs/Proteins
Network-based methods can be applied to an LPI network that
has least one link between two nodes. For a bipartite network
especially, network-based methods require that each node in the
network has at least two linkages. That is to say, network-based
methods cannot discover possible proteins for any lncRNA–
protein pair without any known reachable paths in the LPI
network (Ge et al., 2016; Zhang et al., 2018c). These lncRNAs/
proteins without any interaction information are regarded as
new lncRNAs/proteins (Zhang et al,. 2018c).

Given a known LPI dataset, we aim to predict (S1) LPIs
between known lncRNAs and known proteins; (S2) LPIs
between new lncRNAs and known proteins; (S3) LPIs between
known lncRNAs and new proteins; and (S4) LPIs between new
lncRNAs and new proteins. S1 has the most abundant
association information, S2 and S3 have less data, and S4 has
the least data. Computational models appropriate for S2 can still
be applied to S3, and vice versa.

To the best of our knowledge, SFPEL-LPI provided by Zhang
et al. (2018c) may be one of the rare computational methods for
predicting possible LPIs for new lncRNAs/proteins. Although
few computational models can be applied to the last three
situations, some methods have been designed to solve similar
problems in other areas in bioinformatics, and thus provide some
clues for LPI prediction. For example, Shi et al. (2015) enhanced
the similarity measures and introduced the concept of a “super-
Frontiers in Genetics | www.frontiersin.org 23
target” to capture the missing interactions for new drugs/targets.
Furthermore, Chen et al. (2016b) exploited a miRNA–disease
association prediction model based on within and between scores
(WBSMDA) to uncover possible miRNA–disease associations
for new miRNAs/diseases. These solutions provide clues for
capturing LPI candidates for new lncRNAs/proteins.

Cross-Validation
Inspired by the evaluation methods proposed by Park and
Marcotte (2012) and Chen et al. (2015), the test samples of
LPIs could be categorized into four different groups: C1 is
composed of the test samples sharing both lncRNAs and
proteins with the training samples; C2 is composed of the test
samples sharing only lncRNA with the training samples; C3 is
composed of the test samples sharing only proteins with the
training samples; and C4 is composed of the test samples sharing
neither lncRNAs nor proteins with the training samples (Chen
et al. (2015)). Therefore, it is vital to give cross-validation results
under the above four independent test classes for LPI prediction.
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