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The domestic pig (Sus scrofa) is both an economically important livestock species and a
model for biomedical research. Two highly contiguous pig reference genomes have
recently been released. To support functional annotation of the pig genomes and
comparative analysis with large human transcriptomic data sets, we aimed to create a
pig gene expression atlas. To achieve this objective, we extended a previous approach
developed for the chicken. We downloaded RNAseq data sets from public repositories,
down-sampled to a common depth, and quantified expression against a reference
transcriptome using the mRNA quantitation tool, Kallisto. We then used the network
analysis tool Graphia to identify clusters of transcripts that were coexpressed across the
merged data set. Consistent with the principle of guilt-by-association, we identified
coexpression clusters that were highly tissue or cell-type restricted and contained
transcription factors that have previously been implicated in lineage determination.
Other clusters were enriched for transcripts associated with biological processes, such
as the cell cycle and oxidative phosphorylation. The same approach was used to identify
coexpression clusters within RNAseq data from multiple individual liver and brain samples,
highlighting cell type, process, and region-specific gene expression. Evidence of
conserved expression can add confidence to assignment of orthology between pig and
human genes. Many transcripts currently identified as novel genes with ENSSSCG or LOC
IDs were found to be coexpressed with annotated neighbouring transcripts in the same
orientation, indicating they may be products of the same transcriptional unit. The meta-
analytic approach to utilising public RNAseq data is extendable to include new data sets
and new species and provides a framework to support the Functional Annotation of
Animals Genomes (FAANG) initiative.
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INTRODUCTION

The domestic pig (Sus scrofa) is an important source of meat and
other animal products. Because of its human-like size and
physiology, the pig (including the mini-pig) is also widely used
as an animal model for preclinical studies (Hasenfuss, 1998;
Fairbairn et al., 2011; Freeman et al., 2012; Gutierrez et al., 2015)
especially since the advent of genome-editing technologies
(Whitelaw et al., 2016; Perleberg et al., 2018). In the specific
case of the immune system, pigs have provided a useful model for
postnatal human development of acquired immunity (Butler
et al., 2009); their macrophage-specific gene expression and
response to stimulation by toll-like receptor agonists more
closely resembles humans than commonly used mouse models
(Kapetanovic et al., 2012; Schroder et al., 2012; Kapetanovic et al.,
2013). Indeed, better identification of transcription start sites was
previously validated by cross-species mapping of the large
human FANTOMS5 promoter data set (FANTOM Consortium
et al., 2014; Robert et al., 2015). The potential for genomic
selection and editing for production traits and the utility of the
pig as a model organism has recently been expedited by the
release of a highly contiguous reference genome (Sscrofall.l)
and parallel sequencing and annotation of a second genome
(USMARCvV1.0) (Warr et al,, 2019). Annotation of expressed
sequences and intron-exon boundaries within the genomic
sequence was improved through the integration of long read
IsoSeq and short-read RNAseq data (Beiki et al., 2019).
Although knowledge of the transcriptomic landscape of the
pig is increasing, the functional annotation of the genome
remains a work in progress. Many genes in Ensembl are
described as “novel pig gene” and annotated solely by a gene
number. Around 70-80% of predicted protein-coding genes have
been assigned 1:1 orthology with human (Warr et al., 2019) but
the NCBI and Ensembl annotations of protein-coding genes do
not overlap perfectly. Even where there is 1:1 orthology at the
level of protein-coding sequence and conservation of synteny of
genomic location with other mammals the expression may not
be conserved. Transcriptional regulation has evolved rapidly
among mammalian species (Villar et al,, 2015; Jubb et al,
2016). Pigs are undoubtedly more human-like than mice (Beiki
et al., 2019). Their promoters, identified by cross-mapping of
transcription start sites from the human FANTOMS5 data set, are
more closely related at the DNA sequence level to human
(FANTOM Consortium et al., 2014; Robert et al., 2015). But
even for those genes for which orthology has been accepted and a
gene name assigned, the extent to which expression and function
are shared between pigs, humans, and other animals (notably
rodent models) remains to be established (Schroder et al., 2012;
Jubb et al., 2016). Where expression and function were directly
evaluated, for example, in the response of macrophages to
lipopolysaccharide, humans and pigs were similar but there
were also clear differences (Kapetanovic et al., 2012). What is
needed is a resource for pigs comparable to the FANTOMS5
(FANTOM Consortium et al., 2014) and GTEx human atlases
(GTEx Consortium, 2015). This is a major objective of the

international FAANG Consortium (Andersson et al,, 2015). By
analogy with human data, such a resource could be used to infer
the expression profiles of differentiated cell types within tissues
even when the cells have not been isolated and profiled directly
(Wang et al., 2016).

Although it was once suggested that guilt-by-association is
the exception rather than the rule in gene regulatory networks
(Gillis and Pavlidis, 2012), on a genome-wide scale across large
multitissue data sets the principle is very well established. Genes
associated with specific organs, cell types, organelles, and
pathways (e.g., the cell cycle, protein synthesis, oxidative
phosphorylation/mitochondria) tend to be coexpressed with
the transcription factors that regulate them (Hume et al., 2010;
Freeman et al.,, 2012; Mabbott et al., 2013; FANTOM
Consortium et al., 2014; Ballouz et al., 2017; Carpanini et al.,
2017; Clark et al., 2017; Giotti et al., 2018; Singh et al., 2018). The
only significant exception is a subset of genes that appear to have
idiosyncratic profiles because they have alternative tissue-specific
promoters in some cases encoding different protein isoforms
with alternative N-termini. The identification of the coregulated
partners of genes with alternative promoters depends upon
promoter-based expression profiling (FANTOM Consortium
et al., 2014).

In the pig, the principal of coexpression of genes of related
function was demonstrated previously using a custom
microarray (Freeman et al, 2012), analysing multiple tissues
and cells from a single male and female pig of one breed. Among
other observations this study identified coexpression of
transcripts associated with mitochondria and oxidative
phosphorylation and separate regulation of nuclear and
mitochondria-encoded transcripts. A more focussed network
analysis was used to annotate cell type-specific gene expression
in the pig immunome (Dawson et al., 2013). The annotation of
the new pig genome assemblies (Sscrofall.l and USMARCV1.0)
exploited deep RNAseq data from 27 tissues from the reference
Duroc breed (BioProject PRJEB19386). The RNAseq data are
available in the EBI expression atlas alongside gene expression
atlases from other species (Papatheodorou et al., 2018). However,
as there are many tissues and cell types missing from that data
set, it has limited scope to drive transcriptional network analysis.

There are numerous additional pig RNAseq data sets from
diverse tissues, breeds, and conditions in the public domain. We
recently developed an approach to harvest and normalize such
published data to create an expression atlas for the chicken (Bush
et al,, 2018). Based upon the use of the high-speed “pseudo-
aligner” Kallisto (Bray et al., 2016) to quantify expression this
atlas was rapidly created and easily scalable to include new data
sets. Here we have used the same atlas-creation pipeline to
produce an extended expression atlas for the domestic pig. We
used network analysis to identify sets of coexpressed transcripts
and present evidence that such analysis can add confidence to
orthology and ontology assignments by comparison to human
expression data. The pipeline is extensible to provide further
refinements to functional annotation in pig and to generate
similar resources for other species.
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METHODS

Selecting Samples for an Expression Atlas
of the Domestic Pig

We created an expression atlas for the domestic pig by
aggregating publicly archived RNAseq libraries, using a
pipeline previously described for chickens (Bush et al., 2018).
To identify candidate libraries, we downloaded the daily updated
SRA BioProject summary file (n = 355,400 BioProjects; ftp:/ftp.
ncbi.nlm.nih.gov/bioproject/summary.txt, accessed 1st May
2019), parsing it to extract a list of BioProject accessions with a
data type of “transcriptome or gene expression” and an
associated NCBI taxonomy ID of 9823 (Sus scrofa), 9825 (Sus
scrofa domesticus), or one of 11 recognized subspecies: 291050,
309913, 309914, 375578, 310260, 310261, 375579, 415978,
490583, 1170810, and 2485929. Parsing this file only on the
basis of exact species name would omit data due to inconsistent
use: for example, BioProject PRINA271310 records the species as
Sus Scrofa, and PRINA217840 as Sus scrofa.

We then used the Entrez Direct suite of utilities (https://www.
ncbi.nlm.nih.gov/books/NBK179288/, accessed 1st May 2019) to
associate each BioProject accession with a list of SRA sample and
run accessions (a “RunInfo” file). Runlnfo files were parsed to
retain only those runs where “Platform” was “ILLUMINA,”
“LibrarySource” was “TRANSCRIPTOMIC,” “LibraryStrategy”
was “RNAseq,” “LibraryLayout” was “PAIRED,”
“LibrarySelection” was either “cDNA” or “Inverse rRNA.” As
an index of comparable quality and depth of sequencing,
“avgLength” was > 100 (i.e., a minimum average read length of
100 bp) and “spots” was > 10 (i.e., approximating a minimum
depth of 10 million reads).

The associated metadata were obtained using the R/
Bioconductor package SRAdb (Zhu et al., 2013) to cross-
reference each run accession with an SQL database of SRA
metadata, SRAmetadb.sqlite (https://starbuckl.s3.amazonaws.
com/sradb/SRAmetadb.sqlite.gz, accessed 29th April 2019).
Metadata were not consistently recorded between authors, with
naming conventions often loosely applied. Where possible, we
obtained breed, sex, age, and tissue/cell type by parsing metadata
lines to extract the values associated with (a) “breed” or “breed
name” (else “strain”), (b) “sex,” “Sex,” or “gender,” (c) “age,”
“developmental stage,” “developmental_stage,” “stage,” or
“Stage,” and (d) “tissue,” “tissue type,” “tissue_type,” “organism
part,” or “organism_part” (else “cell type” or “cell_type”). Only
those samples with, at minimum, tissue/cell type recorded were
incorporated into the expression atlas. The original metadata lines
for each library, and the breed, sex, age and tissue/cell type
extracted, are detailed in Table S1.

Quantifying Gene Expression for the Atlas

For each library, expression was quantified using Kallisto v0.44.0
(Brayetal., 2016) as described in detail in previous studies on other
species (Clark et al., 2017; Bush et al., 2018; Young et al., 2019).
Kallisto quantifies expression at the transcript level, as transcripts
per million (TPM), by building an index of k-mers from a set of
reference transcripts and then “pseudo-aligning” reads to it,

matching k-mers in the reads to k-mers in the index. Transcript-
level TPM estimates were then summed to give gene-level TPM.
For this purpose, an accurate set of reference transcripts was
essential. To generate an accurate reference transcriptome, the
pipeline runs Kallisto iteratively. The first pass utilises the
largest available set of transcripts from the current reference
transcriptome. Transcripts that are not detected in the first pass
are removed from the reference to generate a modified reference.

To create the initial index, the set of Sscrofall.1 protein-coding
cDNAs, the batch release (ftp://ftp.ensembl.org/pub/release-96/
fasta/sus_scrofa/cdna/Sus_scrofa.Sscrofall.l.cdna.all.fa.gz,
accessed 15th June 2019) from Ensembl v96 was parsed to retain
only those transcripts with the ‘protein-coding’ biotype (n =
45,788 transcripts, representing 22,340 genes). As Ensembl takes
a conservative approach to annotation (Curwen et al., 2004), the set
of 52,417 NCBI mRNA RefSeqs (representing 17,274 genes; ftp://
ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/025/GCF_
000003025.6_Sscrofal1.1/GCF_000003025.6_Sscrofall.l_rna.
fna.gz, accessed 15th June 2019) was parsed to supplement the
index, including transcripts that had not already been assigned
Ensembl transcript IDs and whose sequence was not already
present in the Ensembl release (under any identifier). RefSeq
mRNAs incorporate untranslated regions (UTRs) and so could
encapsulate an Ensembl CDS. The trimmed UTRs from each
mRNA were generated excluding all sequence outside the longest
ORF. The method of integrating transcripts from both Ensembl
and NCBI data sets is as previously described (Bush et al., 2018).

In total, the initial reference transcriptome comprised 98,205
transcripts, representing 28,254 genes. Using this reference,
expression was quantified for 908 publicly archived paired-end
Ilumina RNAseq libraries, automatically obtained from the ENA
(selected as described above) and detailed in Table S1. Prior to
expression quantification, and for the purpose of minimising
variation between samples, we randomly downsampled all
libraries to 10 million reads, five times each, using seqtk v1.2
(https://github.com/lh3/seqtk, downloaded 4th June 2018).
Expression level was then taken to be the median TPM across
the five downsampled replicates.

The initial set of expression data was parsed to exclude genes
for which the median TPM was less than 1 across all 908 samples
(given the scope of the atlas, consistently unexpressed genes are
either highly tissue-specific for a tissue not sampled, or erroneous
models). 1,865 transcripts were removed to create a second
Kallisto index (comprising 96,340 transcripts, representing
26,664 genes), and expression was requantified. For this
purpose, the seqtk seeds used for downsampling were randomly
assigned at run time.

As a final quality control test (described in (Bush et al., 2018))
we considered that in a correctly prepared RNAseq library, a
minority of genes will produce the majority of reads and so the
distribution of gene-level TPM estimates should comply, to a
reasonable approximation, with Zipfs law (i.e., that the
probability of an observation is inversely proportional to its
rank). On this basis, the exponent of a log-log plot of the reverse
cumulative TPM per gene should not substantially deviate from
an optimal value of —1. We identified 31 samples that were clear
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outliers and deviated by > 20% from this optimal value. These
samples were excluded from further consideration. The final
expression atlas details the median downsampled TPM per gene,
BioProject, breed, and sex.

Network Analysis and Functional
Clustering of Atlas Samples

To examine the expression of genes across this wide range of tissues
and cell types, the expression data were analyzed using the network
analysis tool Graphia Professional (https://kajeka.com). The initial
analysis used the values averaged by breed, sex, and BioProject for
each tissue. Subsequent analyses used individual values for samples
of liver and central nervous system. For each analysis, Pearson
correlations (r) were calculated between all pairs of genes to produce
a gene-to-gene correlation matrix and inversely between all sets of
samples to produce a sample-to-sample correlation matrix.

Gene coexpression networks (GCNs) were generated from
the matrices, where nodes represent either samples or genes and
edges represent correlations between nodes above the correlation
threshold indicated in the Results. For the sample-to-sample
analyses (essentially analogous to a principal components
analysis, PCA) an initial screen at the r value which entered all
samples was performed, followed by subsequent analyses with
higher r value which removed outliers and revealed more
substructure in the networks. For each gene-to-gene analysis
the r value was adjusted to retain the maximum number of genes
with the minimum number of edges (Figure S1).

For the gene-to-gene networks, further analysis was
performed to identify groups of highly connected genes within
the overall topology of the network, using the Markov clustering
algorithm (MCL) (van Dongen and Abreu-Goodger, 2012). The
MCL is an algebraic bootstrapping process in which the number
of clusters is not specified. A parameter called inflation effectively
controls granularity. The choice of inflation value is empirical and
is based in some measure on the predicted complexity of the data
set. The chosen inflation value was 2.2 for the main atlas where we
anticipated a large number of tissue-specific clusters, and 1.7 for
the tissue/cell specific atlases to reduce the granularity (van
Dongen and Abreu-Goodger, 2012). For the main atlas, only
genes expressed at > 10 TPM in at least one sample were included;
for the tissue specific analysis genes expressed at > 5 TPM in at
least one sample were included. Gene ontology (GO) terms and
pathways were derived from DAVID (https://david.ncifcrf.gov/;
with Sus scrofa as the background) and GATHER (https://
changlab.uth.tmc.edu/gather/). These approaches utilise
different algorithms, methods of assessing significance and
background data sets. Both were used to generate a consensus
view of the functions of the clusters. Only the most significant
results are reported (for DAVID, a Benjamini-Hochberg
corrected P value of < 10 for GATHER a Bayes factor of > 5).

RESULTS

Samples in the Atlas
908 RNAseq libraries were obtained by the automated pipeline as
described in Methods and used to create a global atlas of gene

expression. For this purpose, expression across libraries was
averaged by BioProject, tissue, breed and sex. This is equivalent
to averaging across multiple biological replicates of the same
tissue, sampled in the same lab, of the same sex and breed. This
reduced the data set to 206 samples. For a separate analysis of liver
and central nervous system to extract tissue-specific coexpression
signatures, individual samples were used (102 samples for liver; 31
samples for central nervous system). Some of these individual
samples were generated from RNAseq of pooled RNA.

Network Analysis of the Pig Transcriptome
We used the network analysis program Graphia Professional
(developed from BioLayout Express3D) (Theocharidis et al.,
2009) to create a network graph of the complete data set.
Initially, we performed a sample-to-sample correlation to
assess whether there were likely to be batch effects resulting in
outlier samples. To include all 206 samples, it was necessary to
use an r > 0.38. In the resulting graph, all nodes (samples) were
interconnected by a total of 14,243 edges, with liver samples in
the same region and heart and muscle samples appropriately
close. One hippocampus sample was separated from the other
(adult) brain samples but this was a sample from foetal brain.
Two samples, of ovary and gastrointestinal tract, had only a small
number of connections. An image of the resulting network graph
is shown in Figure S2A. To further explore the relationship
between samples of the same organ system, we repeated the
analysis at r > 0.85. This produced a network graph which still
retained 188 of the 206 samples, connected by 1,378 edges.
Samples of related tissues analyzed in different Bioprojects
generally clustered together. Liver samples were at the end of
one arm of the network, close to adipose, while heart and muscle
were on another arm.

Based on the sample-to-sample analysis, which did not identify
any clear outliers or Bioproject-specific clusters (batch effects), we
included all samples in the subsequent gene-to-gene analysis. The
threshold correlation coefficient was chosen to maximise the
number of nodes (genes) included while minimising the number
of edges (correlations between them) (Figure S1). At the optimal
correlation coefficient of r > 0.70, the graph contained 19,861 nodes
(genes) connected by 2,364,748 edges.

Table 1 shows the expression patterns and biological
processes associated with clusters of >40 nodes. There were
distinct clusters that reflected the related functions of the genes
contained within them: cell division (cluster 12), protein
synthesis (clusters 2 and 37) and oxidative phosphorylation
(cluster 20). There were also multiple tissue-specific clusters
including transcripts that were expressed almost exclusively in
one of the tissue types collected, including the testis (cluster 3),
central nervous system (cluster 4), ovary (cluster 5), immune
system (clusters 6, 16 and 39 (including macrophages)), lung
(cluster 10), skeletal muscle (clusters 11 and 33), fibroblasts/
mesenchyme (clusters 13 and 63), skin (cluster 15), thymus
(cluster 17), adipose tissue (cluster 18), intestine (cluster 19),
embryo inner cell mass (cluster 21), inner ear (cluster 23),
epididymis (cluster 24), endometrium (cluster 25), peripheral
blood (cluster 26), ileum (cluster 27), stem cells (cluster 28), and
heart (cluster 31). Genes that were highly expressed in kidney
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TABLE 1 | Gene expression clusters from pig tissues and cells. Clusters were generated at r > 0.7 and MCL inflation value 2.2. Clusters of >40 nodes are shown.

Cluster Number of Expression pattern Class Functional annotation
number transcripts

1 1,902 Digestive tract, CNS > immune > others Housekeeping  Regulation of transcription, cell cycle
2 1,555 Ovary (some) > immune, kidney, Protein Protein biosynthesis, primary metabolism, ribosome, retrograde transport,
adipose > liver, muscle, adipose synthesis endosome to Golgi
3 1,505 Testis only; many unannotated genes Male Sexual reproduction, male gamete generation, spermatogenesis, spermatid
reproductive development, sperm motility
4 1,504 CNS Central Transmission of nerve impulse, synaptic transmission, cell communication, axon
nervous guidance, synapse organisation
system
5 787 Ovary (some) only; many unannotated Female Transcription, defence response
genes reproductive
6 651 Spleen > lung, peripheral blood > lymph  Immune Immune response, defence response, response to pest, pathogen or parasite,
nodes, thymus, tonsil, macrophages system inflammatory response, innate immune response
7 560 Oocyte only Female Ubiquitin cycle, female gamete generation, nucleoplasm
reproductive
8 502 Kidney >> liver, ovary (two), mixture of Kidney Excretion, organic acid metabolism, sodium ion transport, cell communication
tissues
9 445 Liver > mixture of tissues Liver Organic acid metabolism
10 321 Lung >>> adipose, mixture of tissues Respiratory Morphogenesis, organ development, regulation of liquid surface tension,
system angiogenesis, patterning of blood vessels, heart development
11 319 Muscle >> heart, mixture of tissues Muscular Muscle contraction, muscle development, myofibril assembly, glucose/hexose/
system carbohydrate metabolism, glycolysis, gluconeogenesis
12 279 Fetal thymus, cell lines > immune, ovary  Cell division Cell cycle, cell proliferation, mitosis, DNA replication, microtubule based movement,
> digestive tract, adipose, kidney G1/S transition of mitotic cell cycle
13 264 Mesenchymal cells > adipose, muscle Connective Development, phosphate transport, cell communication, skeletal development,
(some), ovary, lung tissue extracellular matrix, collagen triple helix repeat
14 262 Stem cells > brain > immune, ovary, Development RNA processing, organelle organisation and biogenesis, mRNA splicing via
adipose, digestive tract spliceosome, nucleosome assembly
15 274 Ear >>> adipose (some) Integumentary  Epidermis development, ectoderm development, catabolism, keratinocyte
system differentiation
16 187 BMDM >> alveolar macrophages, Immune Immune response, defence response, response to pest, pathogen or parasite,
immune system response to wounding, inflammatory response, lysosome, monocyte chemotaxis
17 181 Fetal thymus >>> immune system, Immune Defence response, immune response, T-cell activation, lymphocyte differentiation,
blood system hemopoiesis,
18 170 Adipose only Integumentary  Lipid metabolism, energy derivation by oxidation of organic compounds, cell-matrix
system adhesion, regulation of lipolysis in adipocytes
19 169 Large intestine > small intestine Digestive Mineral absorption, ion transport
system
20 156 Heart > muscle > kidney, mixture of Mitochondria Oxidative phosphorylation, electron transport, ATP synthesis coupled electron
tissues > digestive tract > liver, lung, transport, tricarboxylic acid cycle, respiratory chain, aerobic respiration
immune
21 154 Ovary (three only); many unannotated Female Steroid metabolism, lipid metabolism, cholesterol metabolic process, ovarian
genes reproductive steroidogenesis, reproductive physiological process
22 147 Inner cell mass from day 7-8 embryos Development Cell communication, membrane lipid catabolism,
only
23 151 Inner ear stria vascularis only Integumentary  Sensory perception of mechanical stimulus, perception of sound, ion transport,
system morphogenesis, skeletal development, signal, collagen triple helix repeat
24 131 Epididymis Male Defensin, defence response to bacterium, innate immune response,
reproductive
25 127 Uterine endometrium > chorion Female Protein catabolic process, glycosphingolipid metabolism
reproductive
26 125 Peripheral blood only Immune Response to biotic stimulus, defence response, response to pest, pathogen or
system parasite, immune response, response to wounding, osteoclast differentiation
27 116 lleum >>> other digestive tract Digestive tract ~ Nucleotide transport, digestion, bile secretion
28 157 Stem cells >> iPSC; mainly unannotated Development Pattern specification, axis specification
genes
29 112 Hippocampus (fetal) > oocyte > random  Olfactory Perception of smell, sensory perception, neurophysiological process
samples; mainly unannotated genes receptors
30 107 Fibroblasts > somatic cells Integumentary  Neuromuscular junction, heparin binding, extracellular exosome, morphogenesis,
system development, growth
31 104 Heart >> muscle > mixture of tissues Cardiovascular ~ Cardiac muscle contraction, ventricular cardiac muscle tissue morphogenesis,
system circulation, muscle development, regulation of heart contraction rate
32 85 Duodenum >> ileum, caecum, colon Digestive tract  Digestion, cobalt/metal ion transport, extracellular region

(Continued)
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TABLE 1 | Continued

Cluster Number of Expression pattern Class
number transcripts
33 86 Longissimus dorsi muscle (two only) >>  Muscular
other muscle, heart, chorion system
34 74 Pituitary gland only; many unannotated ~ Endocrine
genes system
35 73 Embryo, inner cell mass > ovary (most), Development
fetal thymus, random others
36 72 Hippocampal formation, amygdala (one) Nervous
>> other CNS system
37 72 Digestive tract, spleen, ovary > adipose, Pathway
lung, blood > muscle, heart, liver,
kidney
38 70 Stomach >>> fibroblasts, somatic cells  Digestive tract
39 69 Alveolar macrophages > BMDMs > lung  Immune
system
40 66 Penis >> tonsil >> alveolar Immune
macrophages system
41 64 Primordia of developing teeth only Development
42 64 Kidney cell line Kidney
43 58 iPSC (one) > other stem cells Development
44 55 Immune, digestive tract Immune
system
45 53 Mixture of multiple tissues (one) >> Mixture
random other samples; many
unannotated genes
46 53 iPSC >> CNS, digestive tract Development
47 51 BMDM after LPS, some spleen, some Immune
lung > blood, some adipose, some system
ovary > digestive tract
48 50 Oocyte > digestive tract, CNS, kidney, Development
lung, spleen, immune, ovary > liver,
heart, muscle, adipose
49 50 Digestive tract, forebrain, tonsil, lymph Digestive tract
nodes, spleen (one) > ovary (two), male
reproductive
50 49 Duodenum > other intestine, spleen, Digestive tract
alveolar macrophages
51 48 Ovary (most), CNS Female
reproductive
52 47 Kidney only, one sample very high Kidney
53 a7 Endometrium of pregnancy >> uterine Female
endometrium reproductive
54 44 Adipose, lung, ovary, spleen > digestive ~Connective
tract, macrophages > heart tissue
55 43 Ovary (one) >> ovary (two); many Female
unannotated genes reproductive
56 42 Testis > CNS, digestive tract > other Male
male reproductive reproductive
57 41 Pituitary gland only; many unannotated ~ Endocrine
genes system
58 41 Inner cell mass >> adipose, kidney, Development
lung, spleen, BMDM, ovary
59 41 Liver (one); mainly unannotated genes Liver

Functional annotation

Muscle development, muscle contraction, myogenesis

Sex differentiation, pregnancy, neuroactive ligand-receptor interaction, hormone,
extracellular region, hormone mediated signalling pathway

RNA metabolism, RNA processing, protein folding, chaperonin-containing T
complex, positive regulation of protein localisation of Cajal body, binding of sperm
to zona pellucida, metabolism, toxin transport

Locomotory behaviour, neuropeptide signalling pathway, adenylate cyclase-
activating dopamine receptor signalling pathway, signalling pathway, cell
communication, synaptic transmission

Protein biosynthesis, translation, ribosomal assembly, metabolism

Smooth muscle contraction, muscle development, cGMP-PKG signalling pathway
Defence response, immune response, response to (external) biotic stimulus,
phagosome

Inflammatory response, response to wounding, immune response, calcium ion
binding

Neurogenesis, organogenesis, morphogenesis, homeodomain

Integrin mediated signalling pathway, cell-matrix adhesion

Regulation of metabolism, regulation of transcription, development, signalling
pathways regulating pluripotency of stem cells, neurogenesis

Defence response, response to biotic stimulus, immune response, external side of
plasma membrane

Cortical cytoskeleton

Cellular metabolism

Response to biotic stimulus, immune response, defence response, defence
response to virus, negative regulation of viral genome replication, ubiquitin cycle,
ISG15 protein conjugation

Ubiquitin cycle

Nucleosome assembly, chromatin assembly or disassembly, DNA packaging

Humoral immune response, response to pest, pathogen or parasite, antimicrobial
humoral response, inerleukin-10 biosynthesis, interleukin-4 biosynthesis, interleukin-
13 biosynthesis

Transport, localisation

Perception of small, sensory perception
Di-, tri-valent inorganic cation transporter

No significant annotation
Hormone biosynthesis
No significant annotation
Secretory granule

No significant annotation

No significant annotation

(cluster 8) and liver (cluster 9) were also detected in the samples
labelled “mixture of tissues” suggesting that these two tissues
were a major component of the mixture and indicating that it is
possible to deconvolute a heterogeneous sample using
this approach.

As observed in other atlas projects (Hume et al., 2010;
Freeman et al., 2012; FANTOM Consortium et al., 2014; Clark
et al,, 2017; Bush et al,, 2018; Young et al., 2019) tissue-specific
coregulated clusters contained the transcription factors that
likely drive coexpression. For example, the thymus/T cell
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cluster (cluster 17) contains the transcription factors LEFI and
TCF7 which are known T lymphocyte regulators and the inner
cell mass cluster (cluster 21) contains NANOG and PRDM]I14
which are involved in cell pluripotency. Table S2 (Cluster
profiles and gene lists sheet) provides lists of the genes in each
cluster and associated histograms show the average expression
profile of all clusters containing 10 or more genes.

The transcriptomic data generated for the Sscrofall.l pig
genome (BioProject PRJEB19386) (Warr et al., 2019) included
males and females for most tissues. In other data sets, the sex is
not always provided with the metadata. This issue can be
addressed for most data sets by examining the expression of
transcripts transcribed from the Y chromosome which are
necessarily expressed only by males. For instance, cluster 143,
with seven genes and 11 transcripts, only contained Y-specific
protein-coding genes (EIFIAY, EIF2S3Y, DDX3Y, KDM5D,

Cluster 143
Average expression

200 EIF1IAY

ENSSSCG00000025253
(uty)

FIGURE 1 | Expression of Y chromosome genes across tissues in the atlas. Top panel shows average expression of cluster 143, which contains genes mapped to
the Y chromosome. Remaining panels show expression of Y chromosome genes from cluster 143. Y axis shows normalized expression levels (TPM) derived from
Kallisto (see Methods). Each bar on the X axis represents a sample in the analysis, averaged for breed, sex and BioProject. The order of samples is as for Table S2.
Red indicates sex unknown, green indicates female, blue indicates male and yellow indicates pooled samples of mixed/unknown sex.

TXLNGY, USPYY, UTY, ZFY) (Figure 1; gene list in Table S2,
Cluster profiles and gene lists sheet). The coordinated expression
of these transcripts can effectively be used to sex each sample.
The fact that this cluster does not contain transcripts from the
autosomes indicates that there are no other transcripts that are
robustly expressed in males and undetectable in females.

Each of the clusters contains multiple transcripts that are
currently represented in Ensembl by placeholder “ENSSSCG” or
“LOC” IDs (Table S2). As noted previously in multiple species
(Hume et al., 2010; Freeman et al., 2012; FANTOM Consortium
et al., 2014; Carpanini et al.,, 2017; Clark et al., 2017; Bush et al,,
2018) poorly annotated transcripts were more prevalent in the
clusters of genes that are most widely expressed, reflecting the
historical emphasis on tissue-specific genes in functional
genomics (Table S2, ENSSSCG and LOC genes sheet). In
many cases, the likely identity is actually evident from
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orthology analysis available in Ensembl but has not yet been
adopted as an official gene name in Sscrofall.l. Table S2
includes provisional annotations from GeneCards or NCBI for
each of these transcripts where available. The clear potential of
the clusters to support prospective annotation and orthology
assignments for those transcripts that lack current informative
annotation is evident from the high levels of GO enrichment
in Table 1.

It was not our intention to annotate all of the transcripts. This
is an activity that requires a community-based effort and manual
annotation (Dawson et al., 2013; Dawson et al., 2017). In the
specific case of the brain/CNS-enriched cluster (cluster 4) LOC
IDs have clearly been assigned to candidate members of
multigene families, notably the large zinc finger family in
which strict orthology relationships are difficult to determine.
We examined each of the novel ENSSSCG genes (that is,
unannotated genes) within cluster 4 individually (Table S2,
ENSSSCG genes cluster 4 sheet). In each case, we used NCBI
BLAST (August, 2019) to identify candidate DNA orthologs in
the human genome. As shown in Table S2 the large majority of
ENSSSCG genes annotated as “no class” have unique identity to
exons (including alternative internal exons, 3' and 5' UTRs) of
known human genes. In each case, we checked whether the
corresponding gene is also expressed and enriched in human
CNS tissue using combined GTEX, FANTOMS5, and HPA data
(https://www.proteinatlas.org). In many cases, the corresponding
annotated pig transcript is also present in cluster 4 (i.e. the novel
ENSSSCG gene is coexpressed with an annotated gene that
corresponds with known human transcript in the expected
genomic location based on conservation of synteny). For
example, LLRC7, which encodes the excitatory synaptic protein
densin-180 (Wang et al.,, 2017) is expressed in a CNS-specific
manner in humans. The pig DNA sequences corresponding to
human LLRC7 were annotated as three separate genes in
Suscrofall.l (Ensembl release 90) all of which are contained
within the same genomic region and with the same
transcriptional orientation. These transcripts are merged in a
single gene, LRRC7 (ENSSSCG00070015233) in the Ensembl
annotation of the assembly of a second pig genome,
USMARCvV1.0, and have also now been merged in revised
annotation of Sscrofall.l (Ensembl release 98) (Warr et al,
2019). We conclude that many current ENSSSCG transcripts will
be recognized as alternative transcripts of known genes with
improved annotation based upon full length cDNA transcripts.

The Transcriptome of Pig Macrophages

Previous studies of the pig transcriptome using microarrays
identified transcripts that were enriched in the macrophages of
the lung and in subsets of blood monocytes as well as transcripts
that were inducible by bacterial lipopolysaccharide (LPS).
(Freeman et al., 2012; Kapetanovic et al., 2012; Schroder et al.,
2012; Fairbairn et al., 2013; Kapetanovic et al., 2013). As discussed
above, macrophages in other species adapt to tissue-specific niches
to perform specific functions. Several clusters within the atlas are
enriched for monocyte-macrophage expressed transcripts. By
inference other transcripts within those clusters form part of the

so-called immunome (Dawson et al., 2013) and are likely to be
involved in innate immunity. Cluster 6 contains macrophage-
specific transcription factors (IRF8, MAFB, SPII), the lineage-
specific growth factor receptor, CSFIR, widely used macrophage
markers including CD68, SIRPA, ITGAM, and SIGLECI, and class
II MHC genes. The average expression is high in the isolated
macrophages and in macrophage-rich tissues, notably spleen and
lung. This large cluster represents a generic monocyte-
macrophage signature for the pig.

Consistent with the earlier findings, there is a cluster of
transcripts (cluster 39) that are highly expressed in alveolar
macrophages (AM) relative to BMDM. Because macrophages
are a major cell population in the lung, high expression of these
genes is also evident in total lung mRNA. The AM-enriched
cluster includes CD163, identified as an essential fusion receptor
for the major pig respiratory pathogen PRRSV (porcine
reproductive and respiratory syndrome virus) (Burkard et al.,
2018) and the receptor for CSF2 (CSF2RA gene), which is
required for lung macrophage homeostasis in humans and
mice (Trapnell et al., 2019). AM are enriched for expression of
lectin-like receptors (MRCI, CLEC7A, CLEC2B) and CYP7AL.
Transcripts encoding other macrophage-expressed surface
markers (ADGREI1, CH3LI) and endocytic receptors
(CLECI4A, CLECIA, HAVCR2, TIMD4, VSIG2, VSIG4) that
are even more lung-restricted are found within the lung-specific
cluster 10. By contrast, as noted previously, the lung
macrophage-enriched transcripts are barely detected in the
wall of the gut which contains an abundant macrophage
population. We conclude that lung macrophages are adapted
specifically to phagocytose inhaled pathogens. A reciprocal
cluster, cluster 16, contains transcripts that are also monocyte-
macrophage-enriched but more highly expressed in BMDM than
in AM. By contrast to cluster 10, these genes are detected in the
intestinal samples. In the overall atlas above (Table S2) there is
an additional small liver-specific signature, cluster 183, that
includes CD5L, CLEC4F, and genes involved in iron recycling
(SLC40A1, HEBP1), each associated with the macrophages of the
liver (Kupfter cells) in mice (Scott et al., 2018).

This cluster analysis, based upon RNAseq data, confirms the
major clusters of LPS-inducible genes previously analyzed in the
pig using microarrays (Freeman et al., 2012; Kapetanovic et al,,
2012; Schroder et al., 2012; Fairbairn et al., 2013; Kapetanovic
et al,, 2013). On average, transcripts in clusters 16 were strongly
induced by LPS in BMDM with lower expression in other sites
such as spleen, lung and AM. The cluster includes the
inflammatory cytokine ILIB and several interferon-inducible
transcripts. Although the primary RNAseq data confirm their
regulation by LPS, cluster 16 does not include transcripts such as
CCL20, CYP27B1, and IDOI which are LPS-inducible in human
and pig macrophages, but not in mice (Schroder et al.,, 2012).
These transcripts are expressed at much higher levels in other
tissues and fall with different clusters. The data also confirm that
pig macrophages do not induce nitric oxide synthase (NOS2) in
response to LPS (Young et al., 2018). In the pig, as in human (see
data on https://www.proteinatlas.org), NOS2 is expressed
specifically in the gut.
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The Transcriptome of the Pig Liver

The downloaded data sets included 102 individual RNAseq
libraries of liver, from various ages, sexes and breeds derived
from multiple BioProjects that met the QC and filtering criteria.
Liver gene expression is regulated in response to numerous
physiological stimuli. Aside from hepatic parenchymal cells, the
liver contains several nonparenchymal populations. To identify
coregulated clusters within the liver transcriptome, we analyzed
the liver samples separately using the same GCN approach used
for the overall atlas. When examining individual samples from the
same tissue, the method exploits variability in gene expression
between samples generated by differences in breed, sex, age,
sampling (biopsy versus necropsy), and other factors, which
among other outcomes, can enable deconvolution of the
expression signals associated with specific cell types. In
principle, if there was significant heterogeneity in metabolic
state or development among the liver samples, a gene-to-gene
clustering might reveal sets of genes associated with portal versus
centrilobular regions of liver lobules. Centrilobular genes were
found to be downregulated in liver of pigs treated with
macrophage colony-stimulating factor (CSF1) (Sauter et al,
2016) as also seen in regenerating liver in other species. Table 2
shows the GO term enrichment for the largest clusters identified
using the liver samples, generated at Pearson correlation threshold
of 0.75 (Figure $2B) and Table S3 contains lists of genes within
these clusters.

In rodents, there is a set of transcripts that is expressed in the
liver in a sex-specific manner in part under the influence of
growth hormone (Conforto et al., 2012; Lau-Corona et al., 2017).
The male and female-specific liver transcriptomes are regulated
by differential expression of specific transcription factors, CUX2
and ONECUT?2 in females and BCL6 in males. A meta-analysis
of human liver transcriptome data (Zhang et al., 2011) revealed
some bias in gene expression between males and females but the
differences were considerably smaller than reported in rodents,
notably associated with the sex chromosomes and
predominantly female-biased. The complete set of liver
samples is shown in Table S3 with the male and female
samples indicated where possible based upon metadata and
expression of Y chromosome-specific transcripts. The majority
of the liver samples available in the pig are male. In a sample-to-
sample analysis, most definitive female samples (identified based
on absence of Y chromosome-specific transcripts) separated
from the male group but in the gene-to-gene analysis there
was no cluster of transcripts that were enriched or depleted in the
female livers, other than those encoded by genes on the Y
chromosome. Given the rigorous genetic selection of
commercial pigs for rapid growth, early puberty and lean
muscle, it may be that the differential gene expression driven
by growth hormone in other species is masked by high levels of
growth hormone in both pig sexes.

The two largest clusters in the liver analysis reflect variation
between the available BioProjects; mainly between a large study
of a model of hemorrhagic shock, which extracted RNA from
liver biopsy material (Determan et al., 2014), and all of the other
liver data sets. The hemorrhagic shock study includes individual

TABLE 2 | Gene expression clusters from pig liver. Clusters were generated at
r > 0.75 and Markov clustering algorithm (MCL) inflation value 1.7. Clusters of
>40 nodes are shown.

Cluster Number GO term enrichment

number of nodes

1 3648 Protein modification, primary metabolism, protein
transport, protein localization, G-protein coupled receptor
protein signalling

Biosynthesis, macromolecule metabolism,
neurophysiological process, response to external stimulus,
extracellular exosome, translation, mitochondrion
Cytoplasm organization and biogenesis, ribosome
biogenesis and assembly, RNA processing and
metabolism, RNA splicing, cellular physiological process,
poly(A) RNA binding, nucleolus

No significant GO term enrichment

Phosphate transport, development, regulation of cellular
process, anion transport, morphogenesis, cell adhesion,
extracellular exosome, extracellular matrix, angiogenesis,
Organic acid metabolism, lipid metabolism, amine
metabolism, steroid metabolism, mitochondrion, fatty acid
beta oxidation using acyl-CoA dehydrogenase, lipid
homeostasis

Immune response, defence response, response to biotic
stimulus, response to wounding, inflammatory response,
positive regulation of T cell proliferation

Signal transduction, cell communication, immune cell
migration, integrin mediated signalling pathway, regulation
of cell shape, leukocyte cell-cell adhesion

Protein transport, establishment of protein localisation,
secretory pathway, Golgi vesicle transport, ER-associated
protein catabolism, protein folding, endoplasmic reticulum
chaperone complex, response to endoplasmic reticulum
stress

No significant GO term enrichment

Electron transport, generation of precursor metabolites and
energy, amine metabolism, regulation of blood coagulation,
extracellular exosome

Response to unfolded protein, protein folding, response to
stress

No significant GO term enrichment

Response to biotic stimulus, immune response, defence
response, ubiquitin cycle, defence response to virus,
negative regulation of viral genome replication, ISG15-
protein conjugation

No significant GO term enrichment

Generation of precursor metabolites and energy, electron
transport, oxidative phosphorylation, ATP coupled electron
transport, metabolism, cytochrome C oxidase activity,
NADH dehydrogenase (ubiquinone) activity

Carboxylic acid metabolism, pigment metabolism, anti-
inflammatory response, extracellular exosome, blood
microparticle, extracellular matrix

Transition metal ion transport, oxidation-reduction process
No significant GO term enrichment

Fatty acid metabolism pathway, mitochondrial inner
membrane

Structural constituent of ribosome, translation, cytosolic
large/small ribosomal subunit, focal adhesion, nucleolus
No significant GO term enrichment

2 1951

3 753

4 599
5 325

6 248

9 157

10 120
1 105
12 100

13 93
14 89

15 89
16 65

17 60

18 60
19 47
20 47

21 43

22 40

time courses of postshock recovery and examines the effect of
starvation versus carbohydrate prefeeding. Cluster 1, comprising
genes which are expressed somewhat lower on average in
samples from this study, contains the hepatocyte-specific
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transcription factors (e.g., HNF4G, HNFIA) and numerous
liver-enriched transcripts (see below). The reciprocal large
clusters (clusters 2 and 6) that are elevated in the shock study
include multiple heat shock proteins and genes encoding
metabolic enzymes (assigned GO terms including lipid
metabolism, amine metabolism, and fatty acid beta oxidation;
Table 2) that may be upregulated either by the trauma or the
dietary interventions.

Smaller clusters are more clearly enriched for function as
evident from GO term enrichment. Cluster 11 contains CYP2EI
and multiple other transcripts encoding xenobiotic-metabolising
enzymes that are normally enriched in centrilobular regions.
Many of these centrilobular-enriched genes were also
downregulated by CSF1 treatment in pig liver (Sauter et al,
2016). Cluster 12 contains further transcripts encoding heat
shock proteins and other stress related genes and is enriched
for the GO terms “response to unfolded proteins” and “response
to stress.” Both of these clusters appear to be coordinately
regulated in the shock model (Determan et al, 2014) (the
profiles show an increase with time in each of the animals in
the study). Cluster 20 contains further genes associated with lipid
metabolism and cluster 21 numerous ribosome-associated
transcripts. Cluster 14 is enriched for the GO terms “immune
response” and “defence response to virus” and contains the
interferon-regulated transcription factors, IRF7, IRF9, and
STATI and many known interferon target genes (MXI, IFIT5,
RSAD2). This cluster presumably reflects some variation in the
health status of the animals in each of the projects.

Other smaller clusters are likely to indicate variable
contributions from the major nonparenchymal cell types to the
total mRNA pool of each liver sample. For example, cluster 5
(enriched for GO terms including “cell adhesion” and
“extracellular matrix”) contains mesenchyme-associated
transcripts encoding multiple collagens (e.g., COLIAI)
extracellular matrix proteins (e.g., BGN, DCN, FBLN2) and
growth factors/receptors (BMP4, FGFRI, PDGFB, PDGFRB)
(Hume et al, 2010; Summers et al, 2010) that likely reflect
variation in the relative abundance of hepatic stellate cells in
different samples.

Cluster 7 (enriched for the GO term “immune response”) is a
generic blood leukocyte cluster that contains the pan-leukocyte
markers PTPRC (CD45). This cluster is driven by one sample
with high expression of the cluster genes, which presumably had
a larger blood contamination than other samples. Cluster 8
(which is also enriched for immune-associated GO terms)
contains monocyte-associated transcripts (e.g., CSFIR, CD68,
IRF5), whereas cluster 56 contains four known markers of
resident liver macrophages (CD32, CDI163, TIMD4, VSIG4)
that were selectively expanded in the pig liver in response to
CSF1 treatment (Sauter et al., 2016). This cluster also contains
ADGREI (which in mouse encodes the widely used macrophage
marker F4/80 antigen) and related EMR4 (ADGRE4). We
recently produced a monoclonal antibody against pig
ADGREI and demonstrated binding to Kupffer cells (Waddell
et al., 2018) although as discussed below, expression was highest
on alveolar macrophages.

The Transcriptome of the Pig Brain
Cluster 4 of the whole atlas (Table S2) contains genes that are
clearly enriched in the CNS. It includes a small subset of the
signatures of specific cell types in brain, including brain
macrophages (microglia; e.g., CX3CRI1, P2RY12) and
oligodendrocytes (OLIGI, OMG) but does not segregate
region-specific function, nor identify transcripts that may have
brain-specific functions. Studies in mice, rats, and humans have
extracted a core microglial signature by network analysis of
multiple brain gene expression profiles, alongside signatures of
multiple cell types and region-specific functions (Carpanini et al.,
2017; Pridans et al., 2018; Patir et al., 2019). To dissect
coexpression profiles in the CNS, we performed a separate
network analysis of all of the available CNS samples
individually. Samples from different regions were generally
separated in the sample-to-sample analysis (Figure S2C).
Table 3 lists the major clusters and associated GO terms
generated at a correlation coefficient of 0.85 and Table S4
shows the genes in the clusters and their expression profiles.
This analysis segregates the CNS-associated transcriptome to
some extent based upon region. The average expression of
transcripts in cluster 1 (the largest cluster) of this CNS analysis
is highest in the cortex and increased with time in a developmental
time course. Transcripts in clusters 2 and 14 are both strongly
enriched in pituitary, although the two clusters differ in relative
expression between the males and females. Cluster 2 includes
transcripts encoding four major pituitary hormones (FSH, GH1,
LHB, TSHB) and the receptors that regulate secretion (e.g. ESRI,
GHR, GNRHR, GSHR, TRHR). Many transcriptional regulators of
pituitary development are also contained with cluster 2, including
ISL1, GATA2, PITX1, PITX2, POUIFI, PROPI, SIX3, and SIX6
(Charles et al., 2006; Castinetti et al., 2015; Xie et al., 2015; Sobrier
et al,, 2016). Cluster 14 contains transcripts encoding the other
major pituitary hormone, POMC, regulatory receptors GHRHR
and CASR (Mamillapalli and Wysolmerski, 2010) and the key
transcriptional regulator of POMC, PAX7 (Drouin, 2016). Cluster
2 was enriched for GO terms associated with extracellular
exosome and oligosaccharyl transferase; cluster 14 was not
significantly enriched for GO terms. Based upon their strong
association, many of the transcripts within these two clusters are
likely to contribute to pituitary development or function.
Pituitary function is regulated by the hypothalamus which,
together with the adrenal gland, forms the HPA axis. Clusters 8
and 15 contain transcripts that are strongly expressed in the
hypothalamus. Cluster 8 is enriched for immune-associated
transcripts (and GO terms pertaining to immunity) and
includes ILIA. Cluster 15 includes transcripts encoding the
hypothalamic hormones OXT and GHRH, the regulator of
stress hormone release SCGN (Romanov et al., 2015) and the
transcription factor LHXI (Bedont et al., 2017). Several other
clusters show idiosyncratic average profiles across brain regions,
including upregulation or downregulation in the developmental
time course of cortex. Some clusters, such as clusters 21 and 22,
contain multiple receptors associated with neuronal responses to
specific neurotransmitters (dopamine, GABA, glutamate) and
may reflect neuronal cell type-specific clusters. Others are clearly
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TABLE 3 | Gene expression clusters from pig central nervous system. Clusters were generated at r > 0.85 and Markov clustering algorithm (MCL) inflation value 1.7.
Clusters of >40 nodes are shown.

Cluster

Number
number of nodes

Expression pattern

GO term enrichment

1

10
1

12

13

14
15

16

17

18

19

20

21

22

23

24

25
26
27
28
29
30

2,175

1,118
1,113

1,064

657

504

483

345
208

231
174

144

102

88
82

74

73

71

71

68

63

62

56

52

47
47
44
44
43
40

PRNJA40675 > developing cortex (decreases with age)

Female pituitary > male pituitary > all others
Pituitary > brain regions > developing cortex,
hypothalamus

Forebrain > cortex (decreasing with age) > others

Hypothalamus > brain regions > frontal and occipital
cortex > developing cortex (decreases with age)
Female pituitary, hypothalamus > male pituitary, brain
regions

Brain regions including hypothalamus > hippocampal
formation, cortex > pituitary, “brain”, developing cortex,
hippocampus

Hypothalamus

Brain regions > pituitary, “brain”, hippocampus

Hippocampus, mainly ENSSSCG and LOC
General, variable

Hypothalamus > “brain” > others

One sample of cortex (SRS1027244) > one sample of
brain (SRS2520758) > all others

Male pituitary > female pituitary, all others very low
Hypothalamus (SRS497445) > > Hypothalamus
(SRS497448) > all others

Developing cortex, forebrain, brainstem >> all others

Developing cortex decreasing with age, “brain” and brain
regions moderate, hypothalamus low

Female pituitary, forebrain > other brain regions >
hypothalamus

Brain, brain regions > hypothalamus, forebrain,
hippocampal formation, hippocampus

Cortex (SRS1027246) >> other cortex, “brain” > other
brain regions

Brain, some cortex, corpus callosum, brain stem
(SRS1027238) > others

Amygdala, hippocampal formation > cortex
(SRS1027243) > others

Low in pituitary, hippocampus, forebrain

Hypothalamus, “brain” > pituitary, amygdala > other
brain regions

Forebrain, pituitary

Hypothalamus, “brain”, pituitary > other brain regions
Brainstem, cortex > “brain” > other regions
Forebrain, hypothalamus, pituitary > other regions
Cortex (one sample) > pituitary > other regions
Pituitary (one sample) > all other samples

Nucleobase, nucleoside, nucleotide and nucleic acid metabolism, organismal
physiological process, transcription, primary metabolism, response to external stimulus,
defence response, immune response, perception of smell, biopolymer metabolism,
poly(A) RNA binding, metal ion binding

Extracellular exosome, oligosaccharyl transferase complex

Immune response, defence response, response to biotic stimulus, T-cell activation,
organismal physiological process, lymphocyte activation, response to wounding

Cell cycle, cell proliferation, DNA metabolism, M phase of mitotic cell cycle, nuclear
division, mitosis, signal transduction, primary metabolism, kinetochore, nuclear
chromatin, translation, DNA replication-dependent nucleosome assembly
Nucleobase, nucleoside, nucleotide and nucleic acid metabolism, glycolysis,
intracellular signalling cascade, catabolism,

G-protein coupled receptor protein signalling metabolism, cell surface receptor linked
signal transduction

Cell communication, nucleobase, nucleoside, nucleotide and nucleic acid metabolism,
signal transduction, response to wounding, myelin sheath

Regulation of cellular process, immunity

Transport, localisation, monovalent cation transport, synaptic transmission,
transmission of nerve impulse, cell-cell signalling, vesicle mediated transport, myelin
sheath, synapse, SNARE complex

Defence response, immune response, response to biotic stimulus

Electron transport, generation of precursor metabolites and energy, mitochondrial
electron transport, NADH to ubiquinone, ATP synthesis coupled electron transport,
mitochondrial respiratory chain complex |

No significant GO term enrichment

Sexual reproduction, male gamete generation, spermatogenesis, anion transport

No significant GO term enrichment
Cell-cell signalling, synaptic transmission, neuropeptide signalling pathway

Coenzyme/cofactor biosynthesis, energy coupled proton transport, down
electrochemical gradient, ATP biosynthesis, mitochondrion
Protein modification

Histidine family amino acid catabolism, histidine metabolism
No significant GO term enrichment
Development, regulation of biological process

Cell-cell signalling, ion transport, synaptic transmission, transmission of nerve impulse,
postsynaptic membrane

G-protein coupled receptor protein signalling, cell communication, signal transduction,
synaptic transmission, transmission of nerve impulse, dopaminergic synaptic
transmission

Transport, localisation, chloride transport, secretory pathway, small GTPase mediated
signal transduction

No significant GO term enrichment

No significant GO term enrichment
No significant GO term enrichment
No significant GO term enrichment
No significant GO term enrichment
No significant GO term enrichment
No significant GO term enrichment

associated with general biological functions that vary between By contrast to studies in other species, the network analysis
brain regions or during development, for example the cell cycle  did not segregate a clear signature of the major glial cell types,
(cluster 4), oxidative (cluster 11) and glycolytic (cluster 5)  microglia, oligodendrocytes and astrocytes. Microglia-associated
metabolism, and intracellular transport processes (cluster 9).  transcriptional markers (Carpanini et al., 2017; Pridans et al.,
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2018; Patir et al., 2019) are found within clusters 5 (AIFI, CIQA,
CD68, LAPTM5, TMEM119 (=ENSCG00000027124)) and 7 (e.g.,
C5AR1, CSFIR, CX3CR1, GPR34, IRF8). Cluster 7 also contains
numerous oligodendrocyte-associated genes (MBP, OLIGI),
perhaps reflecting the association between microglia and
myelination during development [see (Pridans et al, 2018)].
Interestingly, the two key microglial growth regulators, IL34 and
CSF1, which show region-specific expression in mice and
humans (Chitu and Stanley, 2017) are within separate clusters
5 and 7 respectively. IL34 was not brain-specific in the main
atlas. It controls the differentiation of microglia and of
Langerhans cells of the skin and does not cluster because it is
expressed from different promoters in the two locations in mice
and humans (FANTOM Consortium et al., 2014).

DISCUSSION

Metadata Parsing Limits the Automatic
Generation of Expression Atlases

For this study, we sought to reuse as much public RNAseq data
for pigs as possible. By sampling a large transcriptional space,
we considered that a more robust all-against-all correlation
matrix would be created, allowing greater insight into gene
coexpression patterns.

While the development of alignment-free methods of expression
quantification greatly facilitates this aim, they have also repositioned
the rate-limiting step of an RNAseq analysis pipeline. For example,
decompressing NCBLsra files (a binary representation of fastq)
can be far slower than analysing the associated fastq data with
Kallisto, referencing an index transcriptome.

The most time-consuming step in this study was selecting
samples for inclusion in the expression atlas, as this requires
manual review. Metadata were not always available for each
sample or, if available, the metadata were not always complete.
Common problems included typographical errors (for example,
the samples in BioProject PRJNA340232 are “longissimus
muslce”), missing units (the age of run SRR5110497 is “17),
and misplaced entries (the developmental stage of sample
SRS986719 is “lean-type pig breeds”): products of human error
that hinder an automated parser.

One major problem with the automated pipeline relates to the
paucity of metadata for many samples. Often, the information on
breed, sex, or age was available by accessing the BioProject or the
publications cited therein directly, but this could not be captured
by the pipeline. Some manual annotation was performed, to
extract sex or age where these were not included in the data set
metadata but were clear from the description of the project. For
example, BioProject PRINA451072 involves an analysis of boar
taint and by definition must have used males. Testis samples are
available for the same BioProject but the metadata do not state
that the samples were male. It is neither practical nor desirable to
manually review the metadata for all available RNAseq data sets.
Other libraries could have been incorporated had adequate
metadata been available to the selection pipeline. We urge
submitters to make the metadata as comprehensive as possible

so that the maximum value can be extracted from their studies
and the excessive use of experimental animals and unnecessary
duplication can be avoided. The Functional Annotation of
Animal Genomes (FAANG) community (Andersson et al,
2015; https://www.faang.org/) have published guidelines for
metadata and developed tools to assist with validating
metadata and data for submission to public data repositories
(Harrison et al.,, 2018). The FAANG Data Portal (https://data.
faang.org/home) seeks to catalogue functional genomic data sets
for pigs and other domesticated animals and capture both high
quality metadata and protocols followed in the generation of the
FAANG data sets.

A Resource and a Guide to
Functional Annotation
Curation of individual unannotated novel ENSSSCG transcripts
in the CNS cluster (cluster 4) of the main atlas revealed that the
large majority of these gene models are likely to be artefactual
due to incomplete coverage of alternative 5', 3' and internal
variable exons with RNA expression data. No doubt continued
generation and analysis of full length RNAseq data in humans
(Anvar et al., 2018) and pigs (Beiki et al., 2019) and comparative
analysis across other livestock species (Giuffra et al., 2019) will
lead to both functional annotation of such variation and
compression of transcriptional units (Dawson et al., 2017).
Some of this will be achieved by merging annotations on the
two pig genomes currently available on Ensembl and revising the
index used by Kallisto accordingly. Coexpression between
unannotated “novel genes” and neighbouring genes in the
same orientation can also provide a preliminary indication that
both may be products of the same transcriptional unit. For
example, one stringently microglia-associated transcript in
mouse, rat and human (Carpanini et al., 2017; Pridans et al,
2018; Patir et al., 2019) that we did not detect at all in pig CNS or
other data sets is SELPLG. There was no annotated SELPLG gene,
or even an ambiguous ENSSSCG ID in Sscrofall.l whereas
SELPLG was annotated with several alternative transcripts
orthologous to the human gene on USMARCv1.0. OLFML3,
another important marker of microglia in the mouse and human
brain (Neidert et al., 2018) was not annotated on Sscrofall.l
because it had been merged with the adjacent HIPKI transcript,
whereas it was correctly assigned on USMARCv1.0. Since
downloading the data sets used in this analysis, further releases
of Ensembl (Ensembl 97/98) have been made. Table S5 provides
a list of unannotated genes that currently (November 2019)
appear to have distinct descriptions and/or symbols in Ensembl
and NCBI. The orthology criteria are described in the table.
One of the main applications for an expression atlas is in the
transition from phenotype and genotype data to likely causation;
the prioritization of candidate genes in genomic intervals
identified by genome-wide association studies. To take just one
example, candidate intervals associated with susceptibility to
boar taint (Rowe et al, 2014) might contain genes that are
coexpressed in the liver with the strong functional candidate
CYP2E]. This prediction was explored and confirmed by Drag
et al. (2017), who generated one of the datasets integrated here.
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Our atlas differs from the current pig expression atlas (https://
www.ebi.ac.uk/gxa) in that automated selection makes use,
where possible, of all available data rather than a curated
subset of chosen libraries. By contrast, the EBI Expression
Atlas for pig currently contains only one “baseline” data set,
from FAANG (BioProject PRJEB19386). The atlas created for
our study includes those data supplemented with many more
samples and additional tissues which adds considerable power to
detect correlated expression. We have created a data viewer on
BioGPS (http://biogps.org/pigatlas) which also hosts the
previous microarray-based expression atlas (Freeman et al,
2012) allowing some cross-over validation, as well as human
and mouse baseline sets. For comparative analysis, BioGPS also
displays our previous atlas projects for sheep (http://biogps.org/
sheepatlas) and chicken (http://biogps.org/chickenatlas). The
averaged processed primary expression data output from
Kallisto used in the generation of the atlas is provided in Table
§6. These data can be uploaded into Graphia to regenerate
clusters using different threshholds. The data set can also be
supplemented with additional data sets from new projects down-
sized using the same pipeline and reclustered using Graphia.

The analysis of the clusters generated using our pipeline
strongly supports the principle of guilt-by-association and the
validity of the data sampling approach. The same approach was
applied in the generation of a chicken atlas (Bush et al., 2018) and
can be applied to any species for which there are substantial data
sets in the public domain. The analysis we have presented for the
pig transcriptome and the atlas that has been generated is
comprehensive but it is also ephemeral. The stringency of
coexpression depends upon the number and diversity of
samples available and thresholds can be varied to identify more
stringent associations. It will be relatively straightforward in the
future to add more samples from diverse tissues, developmental
stages or physiological states to provide an additional resource for
the study of pig genetics and functional genomics.
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