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Pathogen–host interactions play an important role in understanding the mechanism by
which a pathogen can infect its host. Some approaches for predicting pathogen–host
association have been developed, but prediction accuracy is still low. In this paper, we
propose a bipartite network module-based approach to improve prediction accuracy.
First, a bipartite network with pathogens and hosts is constructed. Next, pathogens and
hosts are divided into different modules respectively. Then, modular information on the
pathogens and hosts is added into a bipartite network projection model and the
association scores between pathogens and hosts are calculated. Finally, leave-one-out
cross-validation is used to estimate the performance of the proposed method.
Experimental results show that the proposed method performs better in predicting
pathogen–host association than other methods, and some potential pathogen–host
associations with higher prediction scores are also confirmed by the results of
biological experiments in the publically available literature.

Keywords: BNMP, bipartite network project, pathogen, host, pathogen–host association
INTRODUCTION

Pathogen–host interactions (PHIs) play a crucial role in understanding the mechanisms of
infections and identifying potential targets for infection therapeutics. Therefore, various
biological experimental or computing methods have been developed to test and predict the
interactions between pathogens and hosts. However, it is not only time-consuming and laborious
to test PHIs through biological experimentation but also costs a lot of money. Computing methods
such as biological reasoning and machine learning are considered as another important approach
for predicting PHIs. Three main approaches can be used to predict PHIs: biological reasoning
homology-based, structure-based, and domain/motif interaction-based (Nourani et al., 2015). The
basis of homology-based prediction is that the interaction between conserved homologous
organisms would also be conserved. Lee et al. inferred more than 3000 H. sapiens–P. falciparum
protein–protein interactions (PPIs) based on orthologous pairs, revealing that Plasmodium
falciparum can utilize calcium regulatory proteins in host cells to maintain Ca2+ levels (Lee
et al., 2008). Wuchty et al. used the random forest method to evaluate and filter homology-based
prediction results, which further improved prediction accuracy (Stefan, 2011). Structure-based
prediction assumes that a pair of proteins with similar protein structures that are known to interact
may interact in the same manner. Davis et al. proposed an algorithm for predicting possible
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interactions based on the physical structure of the protein by
scanning the genome of the pathogen and host to find
structurally similar proteins (Davis et al., 2010). Aloy and
Russell also proposed a method for inferring the molecular
details of interactions that might occur by evaluating a pair of
potentially interacting proteins on a complex of known 3D
structures (Patrick and Russell, 2002). Doolittle et al. used this
method to predict the interaction between HIV and human
proteins, providing assistance for further trials and therapeutic
intervention targets (Doolittle and Gomez, 2010). Domain/motif
interaction-based prediction combines the known intraspecific
PPI with the protein domain spectrum to predict the PPI
between host and pathogen proteins (Dyer et al., 2007). Evans
et al. used the method to predict the interaction between HIV-1
and human proteins, confirming that the linear binding motif
shared by the virus and the host protein was an important part of
the crosstalk between the virus and the host (Evans et al., 2009).
Machine learning methods are widely used in the prediction of
pathogen–host interaction relationships. Ahmed et al. used a
comparison of a neural network model versus SVM for the
prediction of host-pathogen PPI based on a combination of
features including amino acid quadruplets, pairwise sequence
similarity, and human interactome properties; they found that
the neural network achieved a significant improvement in overall
performance compared to a predictor using the triplets feature
and that it achieved good accuracy in predicting B.anthracis–
human interaction (Ahmed et al., 2018). Mei et al. proposed
the AdaBoost approach to predict proteome-wide interactions
between Salmonella and human proteins based on multi-
instance transfer learning (Mei and Zhu, 2014). Subsequently,
a new negative data sampling method based on single-class SVM
was proposed to predict the protein interaction between HTLV
retrovirus and Homo sapiens. Use of this method provided
valuable cues for the pathogenesis of HTLV retrovirus (Mei
and Zhu, 2015).

Predicting unknown relations between pathogens and hosts
in advance is of great significance for detecting changes in their
relations and preventing the spread of infectious diseases in
hosts. The above methods are used to predict protein–protein
interactions of pathogens and hosts based on protein-related
information. However, in cases where protein information or
other molecular information is unavailable and we only know the
relations between pathogens and hosts, we need to develop a new
method to predict the potential relations between pathogens and
hosts based only on the relations of pathogens and hosts. Zhang
et al. developed a bipartite network project (BNP) (Zhou et al.,
2007) to predict the relations between an X set and Y set (two sets
included in the bipartite network). The experimental results on
personal recommendation shown that BNP performed much
better than the most commonly used global ranking method.
Chen et al. proposed a novel computational model of Bipartite
Network Projection for MiRNA–Disease Association prediction
(BNPMDA) (Chen et al., 2018) based on the known miRNA–
disease associations, integrated miRNA similarity, and integrated
disease similarity. BNPMDA could effectively predict the
potential miRNA–disease associations with a high accuracy
level. Sun et al. developed the NTSMDA method to predict
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miRNA–disease associations by integrating network topological
similarity (Sun et al., 2016). NTSMDA demonstrates excellent
predictive performance. Tad et al. developed an algorithm to
predict missing links based on conditional probability estimation
and associated, node-level features (Dallas et al., 2017). They
validated this algorithm on simulated data and then applied it to
a desert small mammal host-parasite network. The approach
achieved high accuracy on simulated and observed data,
providing a simple method for accurately predicting missing
links in networks without relying on prior knowledge about the
network structure. These methods are based on bipartite network
models and are widely used in different fields. However, these
methods not only ignore the relations of elements in the X set but
also the relations of elements in the Y set, though these relations
are important to predict the relations of the X set and Y set.
Zhang et al. proposed a weight-based model (Zhang et al., 2015)
in a dual-layer network, using the cell line similarity network,
drug similarity network, and drug-cell line response network.
WBSMDA (Chen et al., 2016a) employed the concepts of within-
score and between-score to predict the association score in the
association network. These methods consider the relations of
elements in the X and Y sets from a global perspective, and
collecting the information from a local perspective and then
integrating them from the global perspective can detect the
information in the network more comprehensively. Based on
this idea, we proposed a bipartite network module-based project
(BNMP) to predict pathogen–host associations by adding
modular information into a bipartite network projection.
Firstly, a pathogen–host bipartite network is constructed, and
the distances of pathogens and hosts are computed respectively
on the basis of the topological structure. Pathogens are then
divided into several modules, as are hosts. Finally, the module
information of pathogens and hosts, respectively, is applied to
BNP to calculate the prediction score.
MATERIALS AND METHODS

Data Collection and Pre-Processing
First, the pathogen–host interaction data were downloaded from
PHI-base (Urban et al., 2017) (http://www.PHI-base.org/index.
jsp), HPIDB (Ammari et al., 2016) (https://hpidb.igbb.msstate.
edu/index.html), and IntAct (Sandra et al., 2014) (https://www.
ebi.ac.uk/intact/). These three databases are commonly used
molecular interaction databases that cover most of the
molecular interaction data in open data sources. We
downloaded all of the entire datasets of these three databases
on September 8, 2019. These three databases provide downloads
of previous version data, and researchers can select the related
version for replication. Then, based on the taxonomy ID, we
selected bacteria–host interaction data and deleted duplicate data
from the data sets. The final dataset comprised data on 997
bacteria–host interactions, covering 243 hosts and 388 bacteria.
The number of pathogens and hosts were s and t, respectively.
We used them to generate the pathogen–host association matrix
A. A[ pi ][ hj ]=1 means that there is a pathogen–host protein–
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protein interaction between the ith pathogen and the jth host,
whereas A[ pi ][ hj ]=0 means there is no interaction between the
ith pathogen and the jth host.

Bipartite Network Projection
Here, for a bipartite network G(P,H,E) where P={ p1,p2,…,ps }
and H={ h1,h2,…,ht } are pathogen and host sets respectively,
E⊆P×H is the edge set between pathogens and hosts, and the
association scores between a host and all pathogens can be
calculated using the bipartite network projection (Zhou et al.,
2007) (BNP) method. If we let a host hseed be the seed vertex, the
association scores between hseed and all pathogens are as follows.

BNP P,H, hseedð Þ = scp p1ð Þ, scp p2ð Þ,…, scp psð Þf g
scp pið Þ =ot

j=1A pi½ � hj
� �

sch hj
� �

=d hj
� �

sch hj
� �

=os
i=1A pi½ � hj

� �
A pi½ � hseed½ �=d pið Þ

where d(hj) and d(pi) are the degrees of the jth host and the ith
pathogen, respectively. scp(pi) is the association score between
hseed and the ith pathogen, which requires sch(h1), sch(h2),…, sch
(ht) as the input.

Bipartite Network Module-Based Project
For G(P, H, E) with s pathogens and t hosts, BNMP comprises
the following steps (Figure 1):

1) Let a host hseed be the seed vertex. Calculate the distance
between two pathogens. Dis(pi,pj) is the distance between
pathogen pi and pj in the following formula (Figure 1A), where
A[ pi ] is the binary vector in the ith row in association matrix A.

Dis pi, pj
� �

= 1 − exp −jjA pi½ � − A pj
� �jj2� �

2) Divide pathogen set P={ p1,p2,…,ps } into m modules {M1,
M2,…,Mm} with s1,s2,…, and sm pathogens, respectively (Figure
1B) where m is the degree of hseed, namely the number of
pathogens associated with hseed, as expressed in the following
formula. The intersection between two modules is empty. So s =

om
l=1sl , Ml = fplrjplr ∈ P,   1 ≤ r ≤ slg :

m =o
s

i=1
A pi½ � hseed½ �

The process of generating m modules is as follows: (1) m
pathogens associated with hseed are divided into m modules
respectively and marked as the core vertexes of the
corresponding m modules; (2) pi (i=1,2,…,s) is added to the
module whose core vertex has the shortest distance from it; (3) In
order to keep a balance of resources received by the hseed from
different modules, select sl−⌈s/m⌉ (⌈s/m⌉ means the rounded-up
value of the result of s/m) pathogens with the furthest distance
from the core vertex of Ml if sl is larger than ⌈s/m⌉ and reassign
them to other modules in which the number of pathogens is less
than ⌈s/m⌉. (4) Repeat (3) until the number of pathogens in each
module does not exceed ⌈s/m⌉.

3) Calculate the association score set scoreMl
between hseed and

Ml(l=1, 2,…,m) (Figure 1C).

scoreMl
= o1≤j≤m,j≠lw Ml ,Mj

� �� BMl

o1≤j≤m,j≠lw Ml ,Mj

� �
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where

w Ml ,Mj

� �
= exp −

opu∈Mlopv∈Mj
Dis pu, pvð Þ

Mlj j � Mj

�� ��
 !

BMl ,Mj
= BNP Mlj ,Hlj ,  hseed

� �
BMl ,Mj

= BMl
∪ BMj

Mlj = Ml ∪ Mj

Hlj = hnf jA pk½ � hn½ � = 1, pk ∈ Mlj , 1 ≤ n ≤ t g
w(Ml,Mj) is the weight coefficient of resources that Ml receive

from Mj (j≠l). BMl ,Mj
is the association score set obtained by

running the BNP algorithm on Mlj  ,Hlj,     and   hseed , which
includes two sets: BMl

and BMj
. BMl

and BMj
are the association

score sets of pathogens in BMl
and BMj

, respectively.
Finally, the association score set fscoreM1

, scoreM2
,…, scoreMm

g
between hseed and all pathogens is obtained.

4) Select each host as the seed vertex in turn, and repeat the
process above. Obtain r association score sets, and combine them
to form a pathogen and host association score matrix Spathogen−host
(Figure 1D). Each element of Spathogen−host is an association score of
a pathogen and a host. Similarly, chose a pathogen as the seed
vertex in turn, and obtain another association score matrix, Shost
−pathogen (Figures 1E–H).

5) Finally, take the integrated value of the two matrices,
Spathogen−host and SThost−pathogen, as the association score matrix
between pathogens and hosts, where x is a parameter to balance
Spathogen−host and SThost−pathogen (Figure 1I):

S = x � Spathogen−host + 1 − xð Þ � SThost−pathogen
RESULTS

Performance Evaluation
Leave-one-out cross-validation (Kohavi, 1995) (LOOCV) is used
to evaluate the performance of BNMP relative to previous
evaluation methods (Geeleher et al., 2014; Zhang et al., 2015;
Chen et al., 2016b; Sun et al., 2016 Fei et al., 2018; Le and Pham,
2018). Specifically, each known pathogen–host interaction is
chosen as a test data set in turn, the remaining known
interactions are chosen as the training set, and the pathogen–
host association score in the training set is calculated using
BNMP. After the LOOCV test process is completed, we plot the
receiver operating characteristic (ROC) curve and precision
recall (PR) curve and use the area under the ROC curve
(AUROC) and the area under the PR curve (AUPR) to
evaluate the performance of BNMP.

Performance Analysis of BNMP
We constructed the pathogen–host association network, namely
network 1, which consists of 388 pathogens, 243 hosts, and 997
associations, as shown in Table 1. To clarify the influence of the
balance parameter x, AUROC and AUPR values were calculated
with different values of x, as shown in Figures 2A and B. It can be
found that the prediction performance with x, ∈ (0, 1) is better
than with x = 0 or x = 1, demonstrating the effectiveness of the
January 2020 | Volume 10 | Article 1357
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FIGURE 1 | Process of the bipartite network module-based project. (A) Construct the pathogen–host bipartite network and choose a host as the seed vertex.
(B) Divide the pathogen set into several modules. (C) Calculate the association score between the seed and pathogens in each module. (D) Select each host as the
seed vertex in turn and repeat process (A–C) then obtain the pathogen–host association score matrix Spathogen−host (E) Choose a pathogen as the seed vertex.
(F) Divide the host set into several modules. (G) Calculate the association score between the seed and hosts in each module. (H) Select each pathogen as the seed
vertex in turn and repeat process (E–G) then obtain the host–pathogen association score matrix Shost−pathogen. (I) Integrate matrix Spathogen−host and Shost−pathogen as
the association score matrix between all pathogens and hosts.
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integrated association score matrix. When x = 0.575, BNMP
acquires the highest AUROC and AUPR values. We plotted the
ROC and PR curves when x = 0,0.575, and 1, as shown in Figures
2C and D. It is noteworthy that the ROC curves take the form of
an oblique upward-sloping straight line. We analyzed the results
and found that more than half of the hosts are related to only one
pathogen. As a result, the association scores between these hosts
and pathogens are predicted to be zero in the LOOCV
experiment, which has little worth for our prediction and
results in the oblique upward-sloping straight line rather than
a smooth ROC curve. To evaluate the prediction accuracy of
BNMP on hosts (pathogens) that have more than one association
with pathogens (hosts), the rows or columns with only one “1”
are removed from the pathogen–host association matrix. After
processing, 167 pathogens, 96 hosts, and 653 associations
remained, namely network 2, and this was used to evaluate the
performance of BNMP, as shown in Table 1. The analysis
regarding x is shown in Figures 3A and B. When x = 0.675,
Frontiers in Genetics | www.frontiersin.org 5
BNMP achieves the highest AUROC value of 0.8656. When
x = 0.825, BNMP achieves the highest AUPR value of 0.4318.

Comparison With Existing Methods
In order to further prove the effectiveness of the proposed
method, BNMP is compared with four other methods :
Zhang's method (Zhang et al., 2015), NTSMDA (Sun et al.,
2016), WBSMDA (Chen et al., 2016a), and BNP (Zhou et al.,
2007). BNMP has different prediction performance when x is
different (see Figure 3). To ensure the fairness of the
comparison, we did not select the best prediction performance
of BNMP for comparison with the other four methods. Instead,
we ranked the AUROC values in Figure 3A in descending order
and selected the upper quartile (the corresponding x value is 0.8)
for comparison with other methods. LOOCV experiments were
performed with BNMP, Zhang's method, NTSMDA, WBSMDA,
and BNP, and the resulting ROC and PR curves are shown in
Figure 4. BNMP acquires an AUROC value of 0.8645, exceeding
those of NTSMDA (0.8376), BNP (0.8352), Zhang's method
(0.7807), and WBSMDA (0.7592). Meanwhile, BNMP obtains
an AUPR value of 0.4315, exceeding those of NTSMDA (0.3729),
WBSMDA (0.3254), Zhang's method (0.2644), and BNP (0.201).
We also calculated the AUROC and AUPR values for each
pathogen by these methods, and performed a paired t-test
(Demišar and Schuurmans, 2006) between BNMP and the
other methods (see Figure 5). The result is that all the p-values
FIGURE 2 | Prediction performance of BNMP with network 1. (A) Influence on AUROC values by different balance parameter values. (B) Influence on AUPR values
by different balance parameter values. (C) ROC curves of BNMP with the different balance parameter values. (D) PR curves of BNMP with the different balance
parameter values.
TABLE 1 | The constructed network 1 and network 2.

Network Number of
pathogens

Number of
hosts

Number of
associations

Network 1 388 243 997
Network 2 167 96 653
January 2020 | Volume 10 | Article 1357
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FIGURE 4 | Comparison of five methods. (A) ROC curves. (B) PR curves.
FIGURE 3 | Prediction performance of BNMP with network 2. (A) Influence on AUROC values by different balance parameter values. (B) Influence on AUPR values
by different balance parameter values.
FIGURE 5 | Paired t-test for the AUROC and AUPR values of pathogens between BNMP and other methods. (A) Box-and-whisker plot of AUROC values with
p-values. (B) Box-and-whisker plot of AUPR values with p-values.
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are less than 0.05, indicating that the proposed approach is a
significant advance over the previous approaches and has better
prediction ability.

Validation via Biological Evidence
Most data sources use text mining algorithms to obtain the
original interaction data. Due to the limitation of the
development of pathogen–host interaction text mining
algorithms, the existing open data sources can only cover a
part of pathogen–host interaction data. To further test the ability
of BNMP to predict potential pathogen–host associations, we
rank pathogen–host pairs without relations in existing data sets
according to association scores and search the public literature to
see whether there is evidence that pathogens and hosts with
higher association scores have relations. It is found that among
the top 20 pathogen–host pairs without relations in the existing
data set, biological experiments have verified that 16 pairs have
associations (Table 2); these 16 pairs are ranked lower by the
other four methods. The pair of pathogen Serratia marcescens
and host Mus musculus ranks 1st. Iwaya A et al. studied the
clinical application and evaluation of rapid and quantitative
detection of blood Serratia marcescens by a real-time PCR
assay in a mouse infection model (Iwaya et al., 2005). The pair
of pathogen Cronobacter turicensis and host Mus musculus
ranks 3rd. Tóthová Ľ et al. used Cronobacter turicensis to
infect female mice to prove the effects of isolated Cronobacter-
specific phages on renal colonization in a model of urinary tract
infection in mice (Tóthová et al., 2011). The pair of pathogen
Escherichia coli O157:H7 and host Mus musculus ranks 4th.
Tanji Y et al. found that repeated oral administration of SP15-21-
22 can effectively treat mice infected with Escherichia coli O157:
H7 (Tanji et al., 2005). The pair of pathogen Acinetobacter
nosocomialis and host Homo sapiens ranks 5th. Visca P et al.
discussed the infection mechanism and threats of Acinetobacter
nosocomialis and other Acinetobacter species to humans
(Visca et al., 2011). The pair of pathogen Stenotrophomonas
maltophilia and host Mus musculus ranks 6th. Bacterial
adhesion to mouse tracheal mucus as the role of flagella in the
Frontiers in Genetics | www.frontiersin.org 7
adhesion process were investigated using clinical isolates of
Stenotrophomonas maltophilia (Zgair and Chhibber, 2011).
The pair of pathogen Sclerotinia sclerotiorum and host
Nicotiana tabacum ranks 7th. Researchers carried out a
preliminary evaluation of the potential of polyamine
biosynthesis inhibition a strategy for the control of plant
diseases initiated by S. sclerotiorum ascospores, using tobacco
(Nicotiana tabacum) leaf discs as an experimental system (Garriz
et al., 2010). The 8th-ranking confirmed pair is pathogen
Pseudomonas aeruginosa and host Oryctolagus cuniculus.
Researchers have determined the pharmacokinetics and
adverse effects following SC administration of ceftiofur
crystalline free acid (CCFA) in Oryctolagus cuniculus by using
Pseudomonas aeruginosa and other bacterium (Gardhouse et al.,
2017). The 9th-ranking confirmed pair is pathogen Enterococcus
faecalis and host Homo sapiens. A study showed that an 88-kDa
secreted protein, endoglycosidase (Endo) E, which is most likely
responsible for the activity of the human pathogen Enterococcus
faecalis, degrades the N-linked glycans of human RNase B to
acquire nutrients (Mattias and Fischetti, 2004). The pair of
pathogen Alternaria citri and host Citrus reticulate ranks 10th.
Reasearchers found that the phytopathogenic fungus, Alternaria
citri (Alternaria alternata pathotype citri), produces a complex of
analogous toxins (ACTG-toxin) that selectively damages Dancy
tangerine (Citrus reticulata) and other mandarin cultivars
(Kohmoto et al., 1979). The pair of pathogen Mycobacterium
marinum and host Homo sapiens ranks 12th. Flowers found that
a person was infected with Mycobacterium marinum by being
bitten by a dolphin and thus associated human mycobacterial
infection with an aquatic mammal (Flowers, 1970). The 14th
score is the pair of pathogen Mycobacteroides abscessus and host
Homo sapiens. Mycobacterium abscessus is one of the common
species that causes disseminated infections in patients with cystic
fibrosis. It has been reported that NLRP3 inflammasome
activation contributed to antimicrobial responses against
M. abscessus in human macrophages and that its activation
was dependent on dectin-1/Syk signaling (Hye-Mi et al., 2012).
The pair of pathogen Alternaria alternata and host Solanum
TABLE 2 | Pathogen–host pairs predicted using BNMP and their rank according to five methods.

Pathogen HOST BNMP NTSMDA BNP Zhang's method WBSMDA

Serratia marcescens Mus musculus (Iwaya et al., 2005) 1 43 15 17 13
Cronobacter turicensis Mus musculus (Tóthová et al., 2011) 3 10 26 24 109
Escherichia coli O157:H7 Mus musculus (Tanji et al., 2005) 4 38 172 14 10
Acinetobacter nosocomialis Homo sapiens (Visca et al., 2011) 5 13 251 119 18
Stenotrophomonas maltophilia Mus musculus (Zgair and Chhibber, 2011) 6 44 124 21 13082
Sclerotinia sclerotiorum Nicotiana tabacum (Garriz et al., 2010) 7 61 44 540 169
Pseudomonas aeruginosa Oryctolagus cuniculus (Gardhouse et al., 2017) 8 588 62 960 55
Enterococcus faecalis Homo sapiens (Mattias and Fischetti, 2004) 9 37 33 109 19
Alternaria citri Citrus reticulata (Kohmoto et al., 1979) 10 528 57 9021 41
Mycobacterium marinum Homo sapiens (Flowers, 1970) 12 39 36 115 26
Mycobacteroides abscessus Homo sapiens (Hye-Mi et al., 2012) 14 20 25 102 20
Alternaria alternata Solanum lycopersicum (Hai and Gubler, 2012) 15 261 40 447 3045
Enterococcus faecium Homo sapiens (Lester et al., 2006) 16 40 27 106 121
Fusarium oxysporum Nicotiana tabacum (Jennings et al., 2001) 17 118 43 537 1313
Pectobacterium carotovorum Arabidopsis thaliana (Lee et al., 2012) 19 259 74 199 764
Mycoplasma agalactiae Mus musculus (Smith, 1967) 20 26 201 101 211
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lycopersicum ranks 15th. A study evaluated whether 1-MCP
treatment could affect postharvest decay caused by A. alternata,
B. cinerea, and Fusarium spp. in Solanum lycopersicum (Hai and
Gubler, 2012). The 16th-ranking association is the pair of
pathogen Enterococcus faecium and host Homo sapiens. A
previous study was performed to determine whether resistance
genes from an E. faecium isolate of animal origin could be
transferred to a human E. faecium isolate in the intestines of
human volunteers without any selective antimicrobial pressure
(Lester et al., 2006). The 17th pair of pathogen and host is
Fusarium oxysporum and Nicotiana tabacum. Jennings et al.
found that protein Nep1 from Fusarium oxysporum inducted
defense responses in tobacco (Jennings et al., 2001). The 19th
potential link is Pectobacterium carotovorum and Arabidopsis
thaliana. The study indicated that Arabidopsis thaliana were
infected with Pectobacterium carotovorum (Lee et al., 2012). The
20th potential link is pathogen Mycoplasma agalactiae and host
Mus musculus. Smith G R. et al. used Mycoplasma agalactiae to
infect mice to verify the toxicity of the Mycoplasma agalactiae
(Smith, 1967). Based on the above findings, one can argue that
BNMP is very efficient in predicting associations between
pathogens and hosts.
DISCUSSION

In this study, we focus on the problem of pathogen–host
association prediction. To consider the relations of pathogens
and hosts comprehensively, we adopt the pattern of local before
global, proposing a novel approach, BNMP. The method is based
on bipartite network modules and integrates module
information of pathogens and hosts, respectively, into a
bipartite network projection model to improve prediction
performance. Where the host is the seed, the time complexity
of acquiring the association score vector between the seed and all
pathogens is O(ms3t), where m is the degree of the seed. Hence,
the time complexity of acquiring Spathogen−host is O(es

3t), where e
is the number of associations in the host-pathogen association
network. Similarly, the time complexity of acquiring SThost−pathogen
is O(et3s). BNMP has a time complexity of O(est(s2+t2)), namely
O(es3t) when s>t and O(et3s) when t>s. Experimental results
show that BNMP achieved better prediction performance
compared with other efficient methods.

Although BNMP is used here in pathogen–host association
prediction, it can also be applied to association analysis in other
Frontiers in Genetics | www.frontiersin.org 8
fields, such as miRNA–disease association prediction, drug–
target interaction prediction, and drug–cell line response
prediction. Hence, our study has a wide range of uses. Module-
based information can help improve the score in the bipartite
network because more information related to the nodes in a
network is included in the predictive model, which avoid missing
the information of neighbors. Although BNMP performs well on
the existing data set, the number of associations between
pathogens and hosts in the data set is insufficient, which affects
the performance of the proposed method. As more association
relationships are found or added into databases and more
information about regulatory modules (Chen et al., 2019a;
Chen et al., 2019b) is employed in the future, the prediction
performance of BNMP should further improve.
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