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Alzheimer’s disease (AD) is a neurodegenerative disease that affects millions of individuals
worldwide and can occur relatively early or later in life. It is well known that genetic
components, such as the amyloid precursor protein gene on chromosome 21, are
fundamental in early-onset AD (EOAD). To date, however, only the apolipoprotein E4
(ApoE4) gene has been proved to be a genetic risk factor for late-onset AD (LOAD). In
recent years, despite the hypothesis that many additional unidentified genes are likely to
play a role in AD development, it is surprising that additional gene polymorphisms
associated with LOAD have failed to come to light. In this review, we examine the role
of X chromosome epigenetics and, based upon GWAS studies, the PCDHX11 gene.
Furthermore, we explore other genetic risk factors of AD that involve X-
chromosome epigenetics.

Keywords: X chromosome, Alzheimer ’s disease, sex chromosome dosage, protocadherin 11,
centromere instability
INTRODUCTION

In the first two decades of the 21st century, the proportion of individuals living with Alzheimer’s
disease (AD) [AD (MIM: 104300)] has been on the rise with an increasingly aging population.
Today, two basic forms of AD exist, early-onset AD (EOAD) and late-onset AD (LOAD). EOAD
correlates with the occurrence of mutations on specific genes that have given rise to inherited forms
of the disease, whilst LOAD - which occurs later in life - has no specified etiology (Smith, 1998;
Selkoe, 2001). Familial studies have identified a point mutation associated with EOAD on
chromosome 21. This mutation is located in a gene called amyloid precursor protein (APP), and
all members of these families show signs of the Alzheimer’s phenotype at a relatively early stage of
Abbreviations: AD, Alzheimer's disease; EOAD, Early onset AD; GWAS, genome-wide association studies; LOAD, Late onset
AD; NRC/MASC, N-methyl-D-aspartate receptor complex/membrane-associated guanylate kinase-associated signaling
complex; PCDH11X, protocadherin 11; PSD, postsynaptic density; SCD, Sex Chromosome Dosage; Xist, X-inactive-specific
transcript gene; Xi, inactive X chromosome.
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life (Wiseman et al., 2018). Novel mutations located on
chromosomes 14 and 1 in genes encoding presenilin-1 and
presenilin-2 have also been identified in EOAD (Guven et al.,
2019). Unfortunately, specific genetic determinants that can
explain the high prevalence of LOAD have yet to be identified.

Today we are aware that EOAD comprises only 1-3% of all
AD cases (Smith, 1998; Selkoe, 2001; Bekris et al., 2010). In
LOAD subjects, disease prevalence changes with age; 5% after 65
years of age, 20% after 75 years of age, 30% after 80 years of age
(Bekris et al., 2010). Also women are twice as likely to suffer from
AD than men (Pike, 2017). This prevalence is suggested to be due
to differences in the life expectancy between males and females
and to hormonal status (Vest and Pike, 2013; Pike, 2017). Studies
with twins clearly signal that a strong genetic component is
present in LOAD cases (Gatz et al., 2006; Seripa et al., 2009).
Various genes have been implicated in AD and identified by
using genetic approaches, such as Genome-Wide Association
Studies (GWAS). However, the only “single gene” risk factor for
LOAD without opposition in the research community concerns
the gene encoding apolipoprotein E4 (Giri et al., 2017). In
LOAD, the percentage of individuals carrying the at-risk allele
of the ApoE4 gene was found to be between 20% and 70%,
suggesting that there are additional genetic, and perhaps also
epigenetic, factors that underlie the development of LOAD
(Slooter et al., 1998; Giri et al., 2017). Carrasquillo et al.
(Carrasquillo et al., 2009) found that an alteration of a single-
nucleotide polymorphism (SNP; rs5984894) on the Xq21.3 in a
gene called protocadherin 11 (PCDH11X) in a cohort of women,
was significantly associated with LOAD (Figure 1). Other
GWAS, however, have been unable to confirm the existence of
these connections (Beecham et al., 2010; Wu et al., 2010; Miar
et al., 2011; Chung et al., 2013). We hypothesize that one of the
possible answers to these observed genetic discrepancies is based
on the epigenetics of the X chromosome.

We have previously identified centromere impairment or
premature centromere separation (PCS) of the X chromosome
in neuronal nuclei of the cerebral cortex in AD women (Spremo-
Potparevic et al., 2008). In addition, Yurov et al. discovered X
chromosome aneuploidy in AD-affected neurons (Yurov et al.,
2014), which suggests that premature centromere separation is a
Frontiers in Genetics | www.frontiersin.org 2
mechanism of X chromosome instability (Spremo-Potparevic
et al., 2008). Epigenetically, chromosome X can be affected by
skewed X chromosome inactivation, asynchronous replication
patterns of the inactive X chromosome (Xi), X-inactivation
escape, aneuploidy, and premature centromere separation. All
these epigenetic X chromosome changes could potentially affect
X chromosome genes through changes in sex chromosome
dosage (SCD), and consequently promote AD pathogenesis
(Amiel et al., 1998; Gribnau et al., 2005; Ahn and Lee, 2008;
Spremo-Potparevic et al., 2008; Hong and Reiss, 2014; Mugford
et al., 2014; Yurov et al., 2014; Bajic et al., 2015a; Balaton and
Brown, 2016; Le Gall et al., 2017; Graham et al., 2019). Raznahan
et al. found recently that sex chromosome dosage not only
influenced the adjacent sex chromosomes X and Y, but also
autosomal gene expression (Raznahan et al., 2018).

The X Chromosome Is Unique
In women, there is a systematic demand to compensate for SCD
by silencing one of the copies of the X chromosome. With two X-
chromosomes, women are more prone to inheriting potentially
deleterious mutations in X-encoded genes, which, because of Xi,
may all be expressed in different cells. The first finding of
inactivation of the X chromosome was reported by Lyon,
(1961). It was found that one of the X chromosomes, paternal
or maternal, was always inactivated, suggesting that an
inactivation mechanism only allows active transcription at one
X chromosome (Splinter et al., 2011). This process of X-
chromosome inactivation (XCI) evolved as a mechanism to
regulate gene dosage. As a compensation mechanism, it does
not affect all genes equally, and those genes that are not affected
are known to escape XCI [termed escapees; (Pessia et al., 2012)].

Human embryos initially have non-random imprinted XCI,
where the X-chromosome from the mother remains active, and
XCI applies only to the X-chromosome inherited from the father.
The imprint is not constant; XCI resets at the embryonic
implantation stage. At this point the XCI reset leaves the
maternal and paternal X open to random inactivation (Sun
and Lee, 2006). Because XCI at this stage is random it causes
most women to be mosaic for two cell lines, one harboring the
active chromosome, the paternal X, and the other the maternal X.
The randomness of this process causes an XCI ratio of
approximately 50%:50% to be associated with the two cell lines
in the female population. However, on rare occasions, in
approximately 9% of the female population, a bias towards one
of the two X chromosomes produces a skewed ratio (> 80%:20%;
(Amos-Landgraf et al., 2006). In this regard, Renault et al.,
analyzed the distribution of X-inactivation patterns (the
relative abundance of the two cell populations) in a large
cohort study of normal females, and reported that human XCI
distribution pattern is more genetically influenced in comparison
to the Xi model, which suggests a completely random selection of
XCI (Renault et al., 2013).

The genetically influenced selection of XCI may be indicative
of mutations in genes (Orstavik, 2009; Shvetsova et al., 2019),
suggesting the inactive X chromosome often harbors the mutated
allele of an X-linked gene. This would mean that with a 50%:50%
XCI ratio, wild type cells generally ameliorate disease
FIGURE 1 | The genetic position of the PCDH11X on the X chromosome.
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phenotypes. Changes in the XCI ratio towards an increased
expression of mutated genes can increase disease phenotype
severity, as it is in the case of female hemophilia A (Renault
et al., 2007), and sideroblastic anemia (Cazzola et al., 2000),
where the majority of cells express the mutated allele. Changes in
the XCI ratio where expression of the mutated allele is increased
to exhibit the disease phenotype can also occur, as in Rett
syndrome. In this case, the hemizygous mutation of the
methyl-CpG–binding protein 2 (MeCP2) gene in males causes
lethality, while the MeCP2 heterozygous mutation in females
weakens such phenotypic consequences. It seems that the loss of
MeCP2 function contributes to Rett syndrome, while the gain in
MeCP2 dosage does not necessarily ameliorate the disease
phenotype but may manifest as a less aggressive form in other
neurological diseases. Increased expression of MeCP2 was found
to be associated with other neurological diseases, such as AD and
Huntington’s disease (Amir et al., 1999; Ausio et al., 2014;
McFarland et al., 2014; Maphis et al., 2017).

Xi acquires several features of heterochromatin, such as
hypermethylation, hypercondensation, altered replication
patterns (late vs. early), and depletion of acetylated histones
(Chow and Brown, 2003; Ng et al., 2007). Methylation patterns
have been extensively used to determine the inactive
chromosome (Shvetsova et al., 2019), enabling an analysis of
non-random inactivation processes in diseases that are X
chromosome-linked (Yuan et al., 2015). In our published study
we suggest that changes in the inactivation patterns of the X-
chromosome could have an impact on AD pathogenesis (Bajic
et al., 2015a).
BRAIN AND THE X CHROMOSOME

The X chromosome harbors 3-5% of all the genes in a genome
(Skuse, 2005). There has been a debate on howmany genes reside
on the X chromosome and how many genes are expressed in the
brain alone, compared to genes that are X-linked and expressed
in the placenta, testes, muscles, and ovary. It is estimated that
between 1,100 and 1,500 genes are present on the X chromosome
(Skuse, 2005; Laumonnier et al., 2007). By using the Mart View
software it was found that 1,500 X-linked genes are expressed in
the brain, which represent numerous candidate genes that could
be responsible for X-linked brain diseases (Laumonnier et al.,
2007). Many of the proteins expressed from the genes linked to
the X chromosome represent channels, receptors, repair,
transcription factors, and DNA/RNA binding proteins. Most of
these proteins are located in the postsynaptic cleft and
postsynaptic density (PSD) and are regulated through signaling
complexes (Nguyen and Disteche, 2006; Laumonnier et al.,
2007). It is intriguing that even if the X chromosome harbors
3-5% of all the genes, it is responsible for 10% of all diseases with
Mendelian inheritance (Germain, 2006).

Another aspect that makes the X chromosome unique is that
it harbors a higher proportion of brain-expressed miRNAs than
would be expected (Goncalves et al., 2019), with 20% of these
related to autoimmune diseases such as rheumatoid arthritis and
Frontiers in Genetics | www.frontiersin.org 3
systemic lupus erythematosus (Khalifa et al., 2016). Most of these
miRNA are clustered, for example, miR532/188, miR-221/222,
miR-98/Let7f, and miR-363/106a/20b/92a (DeMarco et al., 2019;
Goncalves et al., 2019). Many of these are also intronic and it is
believed that they are co-transcribed and co-expressed with other
genes linked to chromosome X (deleted X-linked genes) and may
be susceptible to SCD, skewing, and Xi escape processes. It is
important to point out that inflammation and altered immunity
are features of AD (Forloni et al., 1992; Hauss-Wegrzyniak et al.,
1998; Eikelenboom et al., 2000; McGeer and McGeer, 2002;
Castellani et al., 2008; Krstic et al., 2012; Bajic et al., 2015c;
Regen et al., 2017).

How these X-linked genes interact with genes controlling the
immune system in AD is still unknown. For individual genes
involved in diseases of the brain, a more complex hypothesis is
that interplay occurs in disease genes embedded in multiprotein
neuronal complexes. Many of the most important components of
neuronal complexes are encoded on the X chromosome
(Laumonnier et al., 2007). Such complexes, which are essential
for neuronal plasticity, cognitive processes, and cell signaling, are
thought to be in the PSD cleft (Muddashetty et al., 2011;
Yudowski et al., 2013). Taking N-methyl-D-aspartate receptor/
membrane-associated guanylate kinase-associated signaling
complex/(NRC/MASC) as an example; combining its 185
proteins and with the other proteins in PSD gives a total of
1100 proteins. The X chromosome plays an essential role, and
the percentage of genes related to synaptic plasticity, some 86%
of all the genes in NRC/MASC are genes linked to chromosome
X (Grant et al., 2005; Laumonnier et al., 2007). It is interesting
that these genes are also presented or expressed in human
cognitive disorders (Grant et al., 2005; Pocklington et al., 2006;
Fernandez et al., 2009; Tam et al., 2009). An analysis of the
number of altered proteins in X-linked mental retardation
disorders shows that from 69 genes currently known, 19 (or
28%) of these genes belong to postsynaptic proteins
(Laumonnier et al., 2007). The same pattern is conserved in
the mouse X chromosome, and this suggests a network of
multiprotein complexes functioning as integrated entities or
complex molecular machines. If one component of this
complex machinery is disrupted, the whole complex/network
fails thus impairing the overall role of the multiprotein complex
in processes of cognition (Grant et al., 2005; Nguyen and
Disteche, 2006; Pocklington et al., 2006; Laumonnier et al.,
2007; Fernandez et al., 2009; Tam et al., 2009).

X-Linked miRNA and the Brain
The X chromosome is enriched in ncRNAs and harbors several
miRNAs essential to brain function (Goncalves et al., 2019). It is
important to note that miRNAs not only affect mRNA through
translation repression but also work through other ncRNAs,
such as lncRNAs and circRNAs, affecting downstream genes
(Khalifa et al., 2016; DeMarco et al., 2019; Goncalves et al., 2019).
Bian et al. revealed that a miRNA located on the X chromosome,
a miR-374 family member, plays a role in cell growth and
differentiation not only in various cancers, but also in AD.
This miR-374 member is located at the X chromosome
January 2020 | Volume 10 | Article 1368
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inactivation center and targets the VEGF, PTEN, Wnt, and Fas
signaling pathways (Bian et al., 2019). Importantly, the PTEN
pathway is of importance to the progression of AD through a
mechanism that includes altered autophagy (Wani et al., 2019),
mitophagy (Fang et al., 2019), and apoptosis (Cui et al., 2017). A
report by Manzine et al. suggested that miR-374 directly targets
the beta-secretase 1 to regulate the progress of AD, as the levels of
miR-374 were significantly decreased in comparison to controls
(Manzine et al., 2018). In addition to miR-374, several miRNAs
have also been found to correlate to X chromosome-linked
intellectual disability syndrome, and among them are miR-223-
3p, miR-362-5p, miR-504-5p.1, miR-361-5p, miR-505-3p.1 and
miR-505-3p.2. All these miRNAs act as key regulators of genes
linked to chromosome X but also of many autosomal intellectual
disability genes that are connected in a complex network
(Goncalves et al., 2019).

In the future, it is hoped that further work will reveal the
extent to which genes on the X chromosome and miRNAs
expressed in the brain, that together regulate processes
including nervous system development, cell proliferation and
transcription regulation, are altered by X chromosome skewing
and asynchronous replication, which lead to aneuploidy and
deregulation of cohesion dynamics in AD. Also, RNA genes that
are linked to the X chromosome are prone to escape inactivation
of the X chromosome (Peeters et al., 2019). These epigenetic
processes may prove to be gender-associated as research shows
that expression of an X-linked miRNA in rheumatoid arthritis is
more prevalent in women than in men (Khalifa et al., 2016).
PCDH11X

Carrasquillo et al. previously identified an SNP (rs 5984894) on
the X chromosome (Xq21,3) in a gene called PCDH11X
(Carrasquillo et al., 2009). This locus is associated with LOAD
in women of European origin from the USA. The PCDH11X
gene encodes the protein, protocadherin 11. Women who are
homozygous for this SNP have a greater risk of developing AD,
not only when compared to women without the SNP, but also
when compared to women that are heterozygotes, and male
hemizygotes (Carrasquillo et al., 2009). Zubenko et al. reported
that the DXS1047 genotype is correlated with AD (Zubenko
et al., 1999) and that this genotype is associated with the
PCDH11X gene (Zubenko et al., 1998). The results from
the same authors indicate an association between the variation
in the PCDH11X gene and the risk of acquiring AD, but these
results have not been confirmed in other GWAS (Beecham et al.,
2010; Wu et al., 2010; Miar et al., 2011). Our suggestion is that
these discrepancies in GWAS results may well be due to the
changes in the epigenetics of the X chromosome.

Does PCDH11X Escape X Inactivation?
Pseudoautosomal genes and functional Y chromosome
orthologues (X-linked genes with Y homology) tend to escape
X inactivation (Disteche et al., 2002; Brown and Greally, 2003).
Sudbrak et al. reported that PCDH11X expression might also
Frontiers in Genetics | www.frontiersin.org 4
escape X inactivation, and this assumption was verified by using
an X chromosome-specific cDNA microarray where elevated
expression of PCDH11X was identified in cells expressing
multiple X chromosomes (Sudbrak et al., 2001). Lopes et al.
indirectly found that PCDH11X expression was higher in women
than in men by looking at CpG islands and their methylation
patterns. By using bisulfite sequencing analysis, the same authors
found the absence of CpG island methylation on both the active
and the Xi chromosomes and that these processes coincide with
possible PCDH11X escape from X inactivation (Lopes et al.,
2006). Another study found that PCDH11X can undergo
asynchronous replication, and that PCDHX11 is also prone to
escape the inactivation process (Wilson et al., 2007). Replication
asynchrony of the X pseudoautosomal locus has been identified
(Vorsanova et al., 2001), and suggests that other genes that
replicate asynchronously are also prone to escape inactivation
(Anderson and Brown, 2005; Carrel andWillard, 2005; Escamilla-
Del-Arenal et al., 2011).

PCDH11X Asynchronous Replication
Xi is associated with a sequence of epigenetic modifications
(Chow and Brown, 2003), and goes through a phase of
changes involving DNA methylation and histone modification
resulting in Xi condensation in a body called the Barr body. This
results in changes in DNA replication – more specifically, the Xi
in the S phase replicates later than its active counterpart.
Imperfect chromosome replication can be a consequence of
“escapees” (genes that escape the inactivation process). Such
genes include hypoxanthine-guanine phosphoribosyltransferase
and Fragile X-chromosome genes that display asynchronicity.
The X-inactive-specific transcript (Xist) gene (important for
inactivation) that is expressed from the Xi also replicates
asynchronously (Boggs and Chinault, 1994; Aladjem and Fu,
2014). Wilson et al. reported that PCDH11X displays replication
asynchrony in both female and male cells (Wilson et al., 2007).
The data from these authors, together with those from others
(Orstavik, 2009), show that a complex relationship exists
between X-inactivation, replication asynchrony, and the status
of expression of individual genes on chromosome X (Bajic et al.,
2008; Bajic et al., 2009).

It thus appears that synchronous replication occurs more
frequently than previously thought, and is found not only
through imprinting, but also through randomized monoallelic
expression, pathologies, and tandem duplications (Wilson et al.,
2007). Clinically, an increase in asynchronous replication
increases the risk in women for aneuploidy (Amiel et al.,
2000). The relationship between centromere instability, control
of replication, and nondisjunction are best exemplified by the
fact that young women that have children with Down’s
syndrome have twice the risk of developing AD (Hardy et al.,
1989; Goate et al., 1990; Fidani et al., 1992; Schellenberg et al.,
1992; Schupf et al., 1994; Petersen et al., 2000; Schupf et al., 2001;
Migliore et al., 2006; Migliore et al., 2009; Iourov et al., 2010;
Goate and Hardy, 2012).

Chromosomes 21, X, and 18 were primarily affected, showing
repeated non-disjunction and centromere impairment (Potter
and Geller, 1996; Geller and Potter, 1999; Petersen et al., 2000;
January 2020 | Volume 10 | Article 1368
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Migliore et al., 2006; Migliore et al., 2009; Iourov et al., 2010;
Potter, 2016). We suggest that X chromosome replication
asynchrony is likely to lead to accelerated instability of
chromosome X in AD (Bajic et al., 2009).
SEX CHROMOSOME DOSAGE (SCD): AN
ENGINE OF STABILITY

The crosstalk that exists between X chromosomes and autologous
genes is a relatively new paradigm that has emerged as a result of
the biology of sex differences, and gives rise to the question of how
SCD shapes the genome function. To explore this, human sex
aneuploidies were analyzed from a genome-wide expression
dataset by Raznahan et al. where they found a dosage sensitivity
of the X-Y chromosome pair resulting in increased expression of
genes that decrease X/Y chromosomal dosage (Raznahan et al.,
2018). The most interesting finding was that X-linked genes were
found to regulate co-expression of networks of autosomal genes
that are SCD-sensitive and, in addition to these findings, suggest
that the autosomal genes and their corresponding networks are
crucial for cellular functions. This highlights the potential of SCD
to affect the occurrence of disease.

The most common aneuploidy in AD is XO mosaicism
(Spremo-Potparevic et al., 2004; Spremo-Potparevic et al.,
2008; Yurov et al., 2014; Spremo-Potparevic et al., 2015). In
respect to SCD and the XO status, Raznahan et al. have
demonstrated up-regulation of the protein networks,
noncoding RNA metabolism, suppression of the cell
cycle, changes in regulation of DNA/chromatin organization,
glycolysis, and response to stress (Raznahan et al., 2018).
Changes in these collective networks through XO and
supernumerary XXY, and XXYY syndromes may enhance the
risk of AD (Raznahan et al., 2018; Graham et al., 2019).

There is a small but constant number of neuronal cells that
express a different number of chromosomes, such as aneuploidy
(Iourov et al., 2006; Yurov et al., 2007; Iourov et al., 2008; Iourov
et al., 2009; Yurov et al., 2014), but also copy number variation
on chromosome 21, which is crucial in AD (Cai et al., 2014),
DNA content variation (Madrigal et al., 2007; Westra et al.,
2010), and LINE elements (Evrony et al., 2012).

Mosaic aneuploidy in the brain revealed that not only was
chromosome 21 affected in AD, but also that the X chromosome
was found to be supernumerary and presumed to be affected
through a mechanism that involves altered cohesion/cohesin
dynamics (Spremo-Potparevic et al., 2004; Spremo-Potparevic
et al., 2008; Bajic et al., 2009; Zivković et al., 2010; Zivkovic et al.,
2013; Yurov et al., 2014; Bajic et al., 2015b; Spremo-Potparevic
et al., 2015; Yurov et al., 2019).

Yurov et al. (2014) suggested that chromosome 21might not be
the only chromosome to influence changes in genome stability of a
neuron, which leads to a cascade of processes that result in
neuronal loss. The finding that affected brains show a two-fold
increase in X chromosome aneuploidy in the hippocampus and
Frontiers in Genetics | www.frontiersin.org 5
cerebrum - areas of the brainmost affected byAD - suggesting that
altered sex chromosome dosage plays a role in the large scale
genomic variation in neuronal cells in AD compared to controls.
These results have been recently corroborated by the finding that
the sex chromosomes were distinct from autosomes in
the dorsolateral prefrontal cortex and that X chromosome
aneuploidy was associated with a faster rate of cognitive
decline which is a hallmark of AD (Graham et al., 2019).
Therefore, X chromosome aneuploidy may contribute to aging,
but also to processes leading to pathological changes in brains
affected by AD.

Previously we proposed the “post-mitotic state-maintained
protein hypothesis”where we distinguished aneuploization in the
brain as constitutional aneuploidy with non-pathological
diversification of the neurons (Bajic et al., 2015b). These
aneuploidogenic processes are balanced with cohesin and
cohesion-related proteins. Alteration of this balance develops as
a link between neuronal development and chromosomal
instability, intracellular diversity and human brain diseases
including AD (Hong and Reiss, 2014). Looking closely at the
overall somatic mosaicism found in the brain, we, together with
others, suggest thatmicro aneuploidy or segmental aneuploidy is a
more proper measure of changes in gene dosage leading to AD
(Dierssen et al., 2009). These processes are heavily realized when
looking at SCD effects on gene expression in humans (Raznahan
et al., 2018).

An additional complexity of genome mosaicism in the brain
relates to findings concerning DNA and gene copy number
variations. Regional variations of DNA content has been
identified with higher DNA content found in the frontal cortex
and cerebellum compared with other brain regions (Westra et al.,
2010). Copy number variations may be considered as an
independent genetic factor not related to other genomic
changes, suggesting its plays a role in neurodevelopmental
disorders in patients with sex chromosome aneuploidies (Haack
et al., 2013; Le Gall et al., 2017). It has been reported that 11% of
neurons in the brain cortex exhibit a DNA content that is above
the diploid level (Fischer et al., 2012), and similar findings have
also been reported in the AD brain (Ueberham and Arendt, 2005;
Arendt et al., 2010; Yurov, 2017; Barrio-Alonso et al., 2018). These
somatic gene variations in neurons appear to be generated by
chromosome segregation defects. Some of these cells are expelled
by apoptosis, but several cells are introduced as a pool of
variability of the neuronal genome. These cell populations are
thus vulnerable in the sense that they are more prone to genome
instability and thus may contribute to age-related mental
disorders, such as AD. Gómez-Ramos et al. presented distinct
X-chromosome single nucleotide variants from some sporadic AD
samples (Gómez-Ramos et al., 2015). In samples from LOAD
patients, a higher number of single nucleotide variants in genes
present at the X chromosome were identified using exome
sequencing compared to age-matched controls. Two genes that
were not previously described as risk factors, UBE2NL and
ATXN3L, were found to have variants important for the
ubiquitin pathway in LOAD (Gómez-Ramos et al., 2015).
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Maintenance of the interphase state in neurons is an active
process. The 3D organization of the genome is correlated to gene
expression in the interphase. In the 3D domain, chromosomes
occupy preferential positions by self-organizing into
topologically-associated domains, which may change due to
the cell lineage or stage of the organism (Laskowski et al.,
2019). There is a possible exchange between the inactive and
active chromosome in gene regulatory information. Cohesin is
indirectly associated with the Xi 3D position in the genome.
Minajigil et al. reported that a reaction between Xist and cohesins
results in the repulsion of the latter from Xi, thus changing its 3D
shape (Minajigi et al., 2015). The Xi is much more complex, and
it also represents a reservoir of genes that could replace mutated
genes from the active X chromosome. At present, this untapped
potential known as the X interactome requires further
investigation (Minajigi et al., 2015). Progress in understanding
the Xist interactome requires more understanding of how it is
used and how epigenetically-regulated long ncRNAs potentially
influence disease. By utilizing a specific technique named iDRiP,
some 200 proteins in the Xist interactome were identified
Frontiers in Genetics | www.frontiersin.org 6
(Minajigi et al., 2015). Most of the proteins are from several
categories, such as cohesins, condesins, topoisomerases, RNA
helicase, histone modifiers, methyltransferases, nuclear matrix
proteins, and nucleoskeletal factors. Cohesin may play a more
important role in the complex relationship between the Xi and
active X chromosome (Minajigi et al., 2015). Even though these
processes are an important mechanism of diversity, alterations
may lead to an increased structural and topological variation of
the genome in the brain, enhancing the susceptibility of affected
neurons to genome instability that may lead to AD (Bajic et al.,
2015b; Graham et al., 2019; Yurov et al., 2019).

A number of publications have reported mislocalization of
some critical proteins responsible for chromatin organization
and epigenetic modifications in brain diseases including AD (Gill
et al., 2007; Lu et al., 2014; Luperchio et al., 2014; Quinodoz and
Guttman, 2014; Guo et al., 2015; Mastroeni et al., 2015; Pombo
and Dillon, 2015; Sen et al., 2015; Winick-Ng and Rylett, 2018).

All these data suggest, that in AD chromatin, organizers are
deregulated and chromatin topology is changed in a manner that
alters gene expression leading to synaptic dysfunction, a major
FIGURE 2 | X chromosome instability, Sex Chromosome Dosage, Topological changes of Chromosomes, and its possible role in AD.
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pathological change in AD, and consequently neurodegeneration
(Gill et al., 2007; Lu et al., 2014; Luperchio et al., 2014; Quinodoz
andGuttman, 2014; Guo et al., 2015;Mastroeni et al., 2015; Pombo
and Dillon, 2015; Sen et al., 2015; Winick-Ng and Rylett, 2018).

Xist RNA can act as a scaffold for proteins required tomaintain
the inactive state of neurons. It has been shown that it can act as a
repulsion mechanism that expels architectural factors such as
cohesins in order to avoid unwanted chromatin conformation
that could increase unfavorable transcription (Raznahan et al.,
2018). Minajigi et al. suggest that Xi RNA plays an important
role in the organization of how chromosomes are regulated into
chromosome territories and that Xi inactivation is fundamentally
important in these processes (Minajigi et al., 2015). It could be
suggested that X chromosome instability found in ADmay result
in changes in the Xi pattern, Xi escapees, SCD, and consequently
changes in the topological organization, thus altering chromatin
organization that may affect already other genes related to AD
(Figure 2).

The cohesin-associated protein, shugoshin-1, seems to
be fundamental in repressing the accumulation of amyloid-b
and Tau phosphorylation in shugoshin-1 gene (Sgo1)
haploinsufficient mice (Rao et al., 2018).
SUMMARY

Conflicting results from studies of the PCDH11X gene in AD
could be explained by cohort size, ethnicity, and environmental
factors per se but also by the influence of X chromosome
epigenetics. Thus, GWAS of sex chromosomes should take into
account any alterations of the epigenetic processes in the X
chromosome (Schurz et al., 2019).
Frontiers in Genetics | www.frontiersin.org 7
The findings that chromosome X expresses all of the somatic
genomic neuronal variability properties and can de novo express
several epigenetic mechanisms suggest that the X chromosome
instability phenotype may be viewed as an important risk factor
in AD pathogenesis.
AUTHOR CONTRIBUTIONS

All authors (VPB, ME, LZ, AS, SZ, VBB, TG, EI, and BS-P)
contributed to the design and writing of the manuscript. VPB
and SZ designed the figures.
FUNDING

This work is part of the collaboration between the Laboratory of
Radiobiology and Molecular Genetics, Vinca Institute of
Nuclear Sciences, University of Belgrade, Belgrade, Serbia and
King Abdullah University of Science and Technology (KAUST),
Computational Bioscience Research Center (CBRC), Thuwal,
Saudi Arabia. This work has been supported by grants No.
173033 (EI) and No. 173034 (VPB) from the Ministry of
Education, Science and Technological Development, Republic
of Serbia and by the KAUST grant OSR#4129 (to EI and VBB),
which also supported SZ and VPB. VBB has been supported by
the KAUST Base Research Fund (BAS/1/1606-01-01), while
VBB and ME have been supported by KAUST Office of
Sponsored Research (OSR) grant no. FCC/1/1976-17-01. TG
has been supported by the King Abdullah University of Science
and Technology (KAUST) Base Research Fund (BAS/1/1059-
01-01).
REFERENCES

Ahn, J., and Lee, J. (2008). X chromosome: X inactivation. Nature Education 1, 24.
Aladjem, M. I., and Fu, H. (2014). A new light on DNA replication from the

inactive X chromosome. Bioessays 36, 591–597. doi: 10.1002/bies.201400021
Amiel, A., Avivi, L., Gaber, E., and Fejgin, M. D. (1998). Asynchronous replication

of allelic loci in down syndrome. Eur. J. Hum. Genet. 6, 359–364. doi: 10.1038/
sj.ejhg.5200199

Amiel, A., Reish, O., Gaber, E., Kedar, I., Diukman, R., and Fejgin, M. (2000).
Replication asynchrony increases in women at risk for aneuploid offspring.
Chromosome Res. 8, 141–150. doi: 10.1023/a:1009246603868

Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., and Zoghbi,
H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2,
encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188. doi:
10.1038/13810

Amos-Landgraf, J. M., Cottle, A., Plenge, R. M., Friez, M., Schwartz, C. E.,
Longshore, J., et al. (2006). X chromosome-inactivation patterns of 1,005
phenotypically unaffected females. Am. J. Hum. Genet. 79, 493–499. doi:
10.1086/507565

Anderson, C. L., and Brown, C. J. (2005). Epigenetic predisposition to expression
of TIMP1 from the human inactive X chromosome. BMC Genet. 6, 48. doi:
10.1186/1471-2156-6-48

Arendt, T., Bruckner, M. K., Mosch, B., and Losche, A. (2010). Selective cell death
of hyperploid neurons in Alzheimer’s disease. Am. J. Pathol. 177, 15–20. doi:
10.2353/ajpath.2010.090955
Ausio, J., Martinez de Paz, A., and Esteller, M. (2014). MeCP2: the long trip from a
chromatin protein to neurological disorders. Trends Mol. Med. 20, 487–498.
doi: 10.1016/j.molmed.2014.03.004

Bajic, V. P., Spremo-Potparevic, B., Zivkovic, L., Djelic, N., and Smith, M. A.
(2008). Is the time dimension of the cell cycle re-entry in AD regulated by
centromere cohesion dynamics? Biosci. Hypotheses 1, 156–161. doi: 10.1016/
j.bihy.2008.03.006

Bajic, V. P., Spremo-Potparevic, B., Zivkovic, L., Bonda, D. J., Siedlak, S. L.,
Casadesus, G., et al. (2009). The X-chromosome instability phenotype in
Alzheimer’s disease: a clinical sign of accelerating aging? Med. Hypotheses
73, 917–920. doi: 10.1016/j.mehy.2009.06.046

Bajic, V., Mandusic, V., Stefanova, E., Bozovic, A., Davidovic, R., Zivkovic, L., et al.
(2015a). Skewed X-chromosome inactivation in women affected by Alzheimer’s
disease. J. Alzheimers Dis. 43, 1251–1259. doi: 10.3233/JAD-141674

Bajic, V., Spremo-Potparevic, B., Zivkovic, L., Isenovic, E. R., and Arendt, T.
(2015b). Cohesion and the aneuploid phenotype in Alzheimer’s disease: A tale
of genome instability. Neurosci. Biobehav. Rev. 55, 365–374. doi: 10.1016/
j.neubiorev.2015.05.010

Bajic, V., Stanojevic, B., Zivkovic, L., Cabarkapa, A., Perry, G., Arendt, T., et al.
(2015c). Cyclin dependent kinase 11, neuroinflammation and alzheimer’s
disease: a review. J. Clin. Cell Immunol. 6, 305. doi: 10.4172/2155-9899.1000305

Balaton, B. P., and Brown, C. J. (2016). Escape Artists of the X Chromosome.
Trends Genet. 32, 348–359. doi: 10.1016/j.tig.2016.03.007

Barrio-Alonso, E., Hernández-Vivanco, A., Walton, C. C., Perea, G., and Frade, J.
M. (2018). Cell cycle reentry triggers hyperploidization and synaptic
January 2020 | Volume 10 | Article 1368

https://doi.org/10.1002/bies.201400021
https://doi.org/10.1038/sj.ejhg.5200199
https://doi.org/10.1038/sj.ejhg.5200199
https://doi.org/10.1023/a:1009246603868
https://doi.org/10.1038/13810
https://doi.org/10.1086/507565
https://doi.org/10.1186/1471-2156-6-48
https://doi.org/10.2353/ajpath.2010.090955
https://doi.org/10.1016/j.molmed.2014.03.004
https://doi.org/10.1016/j.bihy.2008.03.006
https://doi.org/10.1016/j.bihy.2008.03.006
https://doi.org/10.1016/j.mehy.2009.06.046
https://doi.org/10.3233/JAD-141674
https://doi.org/10.1016/j.neubiorev.2015.05.010
https://doi.org/10.1016/j.neubiorev.2015.05.010
https://doi.org/10.4172/2155-9899.1000305
https://doi.org/10.1016/j.tig.2016.03.007
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Bajic et al. X Chromosome in Alzheimer’s Disease
dysfunction followed by delayed cell death in differentiated cortical neurons.
Sci. Rep. 8, 14316–14316. doi: 10.1038/s41598-018-32708-4

Beecham, G. W., Naj, A. C., Gilbert, J. R., Haines, J. L., Buxbaum, J. D., and
Pericak-Vance, M. A. (2010). PCDH11X variation is not associated with late-
onset Alzheimer disease susceptibility. Psychiatr. Genet. 20, 321–324. doi:
10.1097/YPG.0b013e32833b635d

Bekris, L. M., Yu, C. E., Bird, T. D., and Tsuang, D. W. (2010). Genetics of
Alzheimer disease. J. Geriatr. Psychiatry Neurol. 23, 213–227. doi: 10.1177/
0891988710383571

Bian, H., Zhou, Y., Zhou, D., Zhang, Y., Shang, D., and Qi, J. (2019). The latest
progress on miR-374 and its functional implications in physiological and
pathological processes. J. Cell Mol. Med. 23, 3063–3076. doi: 10.1111/
jcmm.14219

Boggs, B. A., and Chinault, A. C. (1994). Analysis of replication timing properties
of human X-chromosomal loci by fluorescence in situ hybridization. Proc.
Natl. Acad. Sci. U.S.A. 91, 6083–6087. doi: 10.1073/pnas.91.13.6083

Brown, C. J., and Greally, J. M. (2003). A stain upon the silence: genes escaping X
inactivation. Trends Genet. 19, 432–438. doi: 10.1016/S0168-9525(03)00177-X

Cai, X., Evrony, G. D., Lehmann, H. S., Elhosary, P. C., Mehta, B. K., Poduri, A.,
et al. (2014). Single-cell, genome-wide sequencing identifies clonal somatic
copy-number variation in the human brain. Cell Rep. 8, 1280–1289. doi:
10.1016/j.celrep.2014.07.043

Carrasquillo, M. M., Zou, F., Pankratz, V. S., Wilcox, S. L., Ma, L., Walker, L. P.,
et al. (2009). Genetic variation in PCDH11X is associated with susceptibility to
late-onset Alzheimer’s disease. Nat. Genet. 41, 192–198. doi: 10.1038/ng.305

Carrel, L., and Willard, H. F. (2005). X-inactivation profile reveals extensive
variability in X-linked gene expression in females. Nature 434, 400–404. doi:
10.1038/nature03479

Castellani, R. J., Lee, H. G., Zhu, X., Perry, G., and Smith, M. A. (2008). Alzheimer
disease pathology as a host response. J. Neuropathol. Exp. Neurol. 67, 523–531.
doi: 10.1097/NEN.0b013e318177eaf4

Cazzola, M., May, A., Bergamaschi, G., Cerani, P., Rosti, V., and Bishop, D. F.
(2000). Familial-skewed X-chromosome inactivation as a predisposing factor
for late-onset X-linked sideroblastic anemia in carrier females. Blood 96, 4363–
4365. doi: 10.1182/blood.V96.13.4363

Chow, J. C., and Brown, C. J. (2003). Forming facultative heterochromatin:
silencing of an X chromosome in mammalian females. Cell Mol. Life Sci. 60,
2586–2603. doi: 10.1007/s00018-003-3121-9

Chung, S. J., Lee, J. H., Kim, S. Y., You, S., Kim, M. J., Lee, J. Y., et al. (2013).
Association of GWAS top hits with late-onset Alzheimer disease in Korean
population. Alzheimer Dis. Assoc. Disord. 27, 250–257. doi: 10.1097/
WAD.0b013e31826d7281

Cui, W., Wang, S., Wang, Z., Wang, Z., Sun, C., and Zhang, Y. (2017). Inhibition
of PTEN attenuates endoplasmic reticulum stress and apoptosis via activation
of PI3K/AKT pathway in Alzheimer's disease. Neurochem. Res. 42, 3052–3060.
doi: 10.1007/s11064-017-2338-1

DeMarco, B., Stefanovic, S., Williams, A., Moss, K. R., Anderson, B. R., Bassell, G.
J., et al. (2019). FMRP - G-quadruplex mRNA - miR-125a interactions:
implications for miR-125a mediated translation regulation of PSD-95
mRNA. PLoS One 14, e0217275. doi: 10.1371/journal.pone.0217275

Dierssen, M., Herault, Y., and Estivill, X. (2009). Aneuploidy: from a physiological
mechanism of variance to Down syndrome. Physiol. Rev. 89, 887–920. doi:
10.1152/physrev.00032.2007

Disteche, C. M., Filippova, G. N., and Tsuchiya, K. D. (2002). Escape from X
inactivation. Cytogenet. Genome Res. 99, 36–43. doi: 10.1159/000071572

Eikelenboom, P., Rozemuller, A. J., Hoozemans, J. J., Veerhuis, R., and van Gool,
W. A. (2000). Neuroinflammation and Alzheimer disease: clinical and
therapeutic implications. Alzheimer Dis. Assoc. Disord. 14 Suppl 1, S54–S61.
doi: 10.1097/00002093-200000001-00009

Escamilla-Del-Arenal, M., da Rocha, S. T., and Heard, E. (2011). Evolutionary
diversity and developmental regulation of X-chromosome inactivation. Hum.
Genet. 130, 307–327. doi: 10.1007/s00439-011-1029-2

Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., et al.
(2012). Single-neuron sequencing analysis of L1 retrotransposition and
somatic mutation in the human brain. Cell 151, 483–496. doi: 10.1016/
j.cell.2012.09.035

Fang, E. F., Hou, Y., Palikaras, K., Adriaanse, B. A., Kerr, J. S., Yang, B., et al.
(2019). Mitophagy inhibits amyloid-b and tau pathology and reverses cognitive
Frontiers in Genetics | www.frontiersin.org 8
deficits in models of Alzheimer's disease. Nat. Neurosci. 22, 401–412. doi:
10.1038/s41593-018-0332-9

Fernandez, E., Collins, M. O., Uren, R. T., Kopanitsa, M. V., Komiyama, N. H.,
Croning, M. D., et al. (2009). Targeted tandem affinity purification of PSD-95
recovers core postsynaptic complexes and schizophrenia susceptibility
proteins. Mol. Syst. Biol. 5, 269. doi: 10.1038/msb.2009.27

Fidani, L., Rooke, K., Chartier-Harlin, M. C., Hughes, D., Tanzi, R., Mullan, M.,
et al. (1992). Screening for mutations in the open reading frame and promoter
of the beta-amyloid precursor protein gene in familial Alzheimer's disease:
identification of a further family with APP717 Val–> Ile. Hum. Mol. Genet. 1,
165–168. doi: 10.1093/hmg/1.3.165

Fischer, H. G., Morawski, M., Bruckner, M. K., Mittag, A., Tarnok, A., and Arendt,
T. (2012). Changes in neuronal DNA content variation in the human brain
during aging. Aging Cell 11, 628–633. doi: 10.1111/j.1474-9726.2012.00826.x

Forloni, G., Demicheli, F., Giorgi, S., Bendotti, C., and Angeretti, N. (1992).
Expression of amyloid precursor protein mRNAs in endothelial, neuronal and
glial cells: modulation by interleukin-1. Brain Res. Mol. Brain Res. 16, 128–134.
doi: 10.1016/0169-328x(92)90202-m

Gómez-Ramos, A., Podlesniy, P., Soriano, E., and Avila, J. (2015). Distinct X-
chromosome SNVs from some sporadic AD samples. Sci. Rep. 5, 18012. doi:
10.1038/srep18012

Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S.,
et al. (2006). Role of genes and environments for explaining Alzheimer disease.
Arch. Gen. Psychiatry 63, 168–174. doi: 10.1001/archpsyc.63.2.168

Geller, L. N., and Potter, H. (1999). Chromosome missegregation and trisomy 21
mosaicism in Alzheimer's disease. Neurobiol. Dis. 6, 167–179. doi: 10.1006/
nbdi.1999.0236

Germain, D. P. (2006). “General aspects of X-linked diseases,” in Fabry Disease:
Perspectives from 5 Years of FOS. Eds. A. Mehta, M. Beck and G. Sunder-
Plassmann (Oxford: Oxford PharmaGenesis).

Gill, S. K., Ishak, M., Dobransky, T., Haroutunian, V., Davis, K. L., and Rylett, R. J.
(2007). 82-kDa choline acetyltransferase is in nuclei of cholinergic neurons in
human CNS and altered in aging and Alzheimer disease. Neurobiol. Aging 28,
1028–1040. doi: 10.1016/j.neurobiolaging.2006.05.011

Giri, M., Shah, A., Upreti, B., and Rai, J. C. (2017). Unraveling the genes implicated
in Alzheimer's disease. Biomed. Rep. 7, 105–114. doi: 10.3892/br.2017.927

Goate, A., and Hardy, J. (2012). Twenty years of Alzheimer's disease-causing
mutations. J. Neurochem. 120 Suppl 1, 3–8. doi: 10.1111/j.1471-4159.2011.07575.x

Goate, A. M., Hardy, J. A., Owen, M. J., Haynes, A., James, L., Farrall, M., et al.
(1990). Genetics of Alzheimer's disease. Adv. Neurol. 51, 197–198.

Goncalves, T. F., Piergiorge, R. M., Dos Santos, J. M., Gusmao, J., Pimentel, M. M.
G., and Santos-Reboucas, C. B. (2019). Network profiling of brain-expressed X-
chromosomal microRNA genes implicates shared key microRNAs in
intellectual disability. J. Mol. Neurosci. 67, 295–304. doi: 10.1007/s12031-
018-1235-7

Graham, E. J., Vermeulen, M., Vardarajan, B., Bennett, D., De Jager, P., Pearse, R.
V., 2nd, et al. (2019). Somatic mosaicism of sex chromosomes in the blood and
brain. Brain. Res. 1721, 146345. doi: 10.1016/j.brainres.2019.146345

Grant, S. G. N., Marshall, M. C., Page, K.-L., Cumiskey, M. A., and Armstrong, J.
D. (2005). Synapse proteomics of multiprotein complexes: en route from genes
to nervous system diseases. Hum. Mol. Genet. 14, R225–R234. doi: 10.1093/
hmg/ddi330

Gribnau, J., Luikenhuis, S., Hochedlinger, K., Monkhorst, K., and Jaenisch, R.
(2005). X chromosome choice occurs independently of asynchronous
replication timing. J. Cell Biol. 168, 365–373. doi: 10.1083/jcb.200405117

Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., et al. (2015). CRISPR
Inversion of CTCF sites alters genome topology and enhancer/promoter
function. Cell 162, 900–910. doi: 10.1016/j.cell.2015.07.038

Guven, G., Erginel-Unaltuna, N., Samanci, B., Gulec, C., Hanagasi, H., and Bilgic,
B. (2019). A patient with early-onset Alzheimer's disease with a novel PSEN1
p.Leu424Pro mutation. Neurobiol. Aging. 84, 238.e1–238.e4. doi: 10.1016/
j.neurobiolaging.2019.05.014

Haack, T. B., Hogarth, P., Gregory, A., Prokisch, H., and Hayflick, S. J. (2013).
BPAN: the only X-linked dominant NBIA disorder. Int. Rev. Neurobiol. 110,
85–90. doi: 10.1016/b978-0-12-410502-7.00005-3

Hardy, J., Goate, A., Owen, M., and Rossor, M. (1989). Presenile dementia
associated with mosaic trisomy 21 in a patient with a Down syndrome child.
Lancet 2, 743. doi: 10.1016/s0140-6736(89)90805-2
January 2020 | Volume 10 | Article 1368

https://doi.org/10.1038/s41598-018-32708-4
https://doi.org/10.1097/YPG.0b013e32833b635d
https://doi.org/10.1177/0891988710383571
https://doi.org/10.1177/0891988710383571
https://doi.org/10.1111/jcmm.14219
https://doi.org/10.1111/jcmm.14219
https://doi.org/10.1073/pnas.91.13.6083
https://doi.org/10.1016/S0168-9525(03)00177-X
https://doi.org/10.1016/j.celrep.2014.07.043
https://doi.org/10.1038/ng.305
https://doi.org/10.1038/nature03479
https://doi.org/10.1097/NEN.0b013e318177eaf4
https://doi.org/10.1182/blood.V96.13.4363
https://doi.org/10.1007/s00018-003-3121-9
https://doi.org/10.1097/WAD.0b013e31826d7281
https://doi.org/10.1097/WAD.0b013e31826d7281
https://doi.org/10.1007/s11064-017-2338-1
https://doi.org/10.1371/journal.pone.0217275
https://doi.org/10.1152/physrev.00032.2007
https://doi.org/10.1159/000071572
https://doi.org/10.1097/00002093-200000001-00009
https://doi.org/10.1007/s00439-011-1029-2
https://doi.org/10.1016/j.cell.2012.09.035
https://doi.org/10.1016/j.cell.2012.09.035
https://doi.org/10.1038/s41593-018-0332-9
https://doi.org/10.1038/msb.2009.27
https://doi.org/10.1093/hmg/1.3.165
https://doi.org/10.1111/j.1474-9726.2012.00826.x
https://doi.org/10.1016/0169-328x(92)90202-m
https://doi.org/10.1038/srep18012
https://doi.org/10.1001/archpsyc.63.2.168
https://doi.org/10.1006/nbdi.1999.0236
https://doi.org/10.1006/nbdi.1999.0236
https://doi.org/10.1016/j.neurobiolaging.2006.05.011
https://doi.org/10.3892/br.2017.927
https://doi.org/10.1111/j.1471-4159.2011.07575.x
https://doi.org/10.1007/s12031-018-1235-7
https://doi.org/10.1007/s12031-018-1235-7
https://doi.org/10.1016/j.brainres.2019.146345
https://doi.org/10.1093/hmg/ddi330
https://doi.org/10.1093/hmg/ddi330
https://doi.org/10.1083/jcb.200405117
https://doi.org/10.1016/j.cell.2015.07.038
https://doi.org/10.1016/j.neurobiolaging.2019.05.014
https://doi.org/10.1016/j.neurobiolaging.2019.05.014
https://doi.org/10.1016/b978-0-12-410502-7.00005-3
https://doi.org/10.1016/s0140-6736(89)90805-2
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Bajic et al. X Chromosome in Alzheimer’s Disease
Hauss-Wegrzyniak, B., Dobrzanski, P., Stoehr, J. D., and Wenk, G. L. (1998).
Chronic neuroinflammation in rats reproduces components of the
neurobiology of Alzheimer's disease. Brain Res. 780, 294–303. doi: 10.1016/
s0006-8993(97)01215-8

Hong, D. S., and Reiss, A. L. (2014). Cognitive and neurological aspects of sex
chromosome aneuploidies. Lancet Neurol. 13, 306–318. doi: 10.1016/s1474-
4422(13)70302-8

Iourov, I. Y., Vorsanova, S. G., and Yurov, Y. B. (2006). Chromosomal variation in
mammalian neuronal cells: known facts and attractive hypotheses. Int. Rev.
Cytol. 249, 143–191. doi: 10.1016/s0074-7696(06)49003-3

Iourov, I. Y., Vorsanova, S. G., and Yurov, Y. B. (2008). Molecular cytogenetics
and cytogenomics of brain diseases. Curr. Genomics 9, 452–465. doi: 10.2174/
138920208786241216

Iourov, I. Y., Vorsanova, S. G., Liehr, T., and Yurov, Y. B. (2009). Aneuploidy in
the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential
expression and pathological meaning. Neurobiol. Dis. 34, 212–220. doi:
10.1016/j.nbd.2009.01.003

Iourov, I. Y., Vorsanova, S. G., and Yurov, Y. B. (2010). Somatic genome variations
in health and disease. Curr. Genomics 11, 387–396. doi: 10.2174/
138920210793176065

Khalifa, O., Pers, Y. M., Ferreira, R., Senechal, A., Jorgensen, C., Apparailly, F.,
et al. (2016). X-Linked miRNAs associated with gender differences in
rheumatoid arthritis. Int. J. Mol. Sci. 17, 1852–1863. doi: 10.3390/ijms17111852

Krstic, D., Madhusudan, A., Doehner, J., Vogel, P., Notter, T., Imhof, C., et al.
(2012). Systemic immune challenges trigger and drive Alzheimer-like
neuropathology in mice. J. Neuroinflammation 9, 151. doi: 10.1186/1742-
2094-9-151

Laskowski, A. I., Neems, D. S., Laster, K., Strojny-Okyere, C., Rice, E. L.,
Konieczna, I. M., et al. (2019). Varying levels of X chromosome coalescence
in female somatic cells alters the balance of X-linked dosage compensation and
is implicated in female-dominant systemic lupus erythematosus. Sci. Rep. 9,
8011. doi: 10.1038/s41598-019-44229-9

Laumonnier, F., Cuthbert, P. C., and Grant, S. G. (2007). The role of neuronal
complexes in human X-linked brain diseases. Am. J. Hum. Genet. 80, 205–220.
doi: 10.1086/511441

Le Gall, J., Nizon, M., Pichon, O., Andrieux, J., Audebert-Bellanger, S., Baron, S.,
et al. (2017). Sex chromosome aneuploidies and copy-number variants: a
further explanation for neurodevelopmental prognosis variability? Eur. J. Hum.
Genet. 25, 930–934. doi: 10.1038/ejhg.2017.93

Lopes, A. M., Ross, N., Close, J., Dagnall, A., Amorim, A., and Crow, T. J.
(2006). Inactivation status of PCDH11X: sexual dimorphisms in gene
expression levels in brain. Hum. Genet. 119, 267–275. doi: 10.1007/s00439-
006-0134-0

Lu, T., Aron, L., Zullo, J., Pan, Y., Kim, H., Chen, Y., et al. (2014). REST and stress
resistance in ageing and Alzheimer's disease. Nature 507, 448–454. doi:
10.1038/nature13163

Luperchio, T. R., Wong, X., and Reddy, K. L. (2014). Genome regulation at the
peripheral zone: lamina associated domains in development and disease. Curr.
Opin. Genet. Dev. 25, 50–61. doi: 10.1016/j.gde.2013.11.021

Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus
musculus L.). Nature 190, 372–373. doi: 10.1038/190372a0

Madrigal, I., Rodríguez-Revenga, L., Armengol, L., González, E., Rodriguez, B.,
Badenas, C., et al. (2007). X-chromosome tiling path array detection of copy
number variants in patients with chromosome X-linked mental retardation.
BMC Genomics 8, 443. doi: 10.1186/1471-2164-8-443

Manzine, P. R., Pelucchi, S., Horst, M. A., Vale, F. A. C., Pavarini, S. C. I., Audano,
M., et al. (2018). microRNA 221 targets ADAM10 mRNA and is
downregulated in Alzheimer's disease. J. Alzheimers Dis. 61, 113–123. doi:
10.3233/jad-170592

Maphis, N. M., Jiang, S., Binder, J., Wright, C., Gopalan, B., Lamb, B. T., et al.
(2017). Whole Genome Expression Analysis in a Mouse Model of Tauopathy
Identifies MECP2 as a Possible Regulator of Tau Pathology. Front. Mol.
Neurosci. 10, 69. doi: 10.3389/fnmol.2017.00069

Mastroeni, D., Delvaux, E., Nolz, J., Tan, Y., Grover, A., Oddo, S., et al. (2015).
Aberrant intracellular localization of H3k4me3 demonstrates an early
epigenetic phenomenon in Alzheimer's disease. Neurobiol. Aging 36, 3121–
3129. doi: 10.1016/j.neurobiolaging.2015.08.017
Frontiers in Genetics | www.frontiersin.org 9
McFarland, K. N., Huizenga, M. N., Darnell, S. B., Sangrey, G. R., Berezovska, O.,
Cha, J. H., et al. (2014). MeCP2: a novel Huntingtin interactor. Hum. Mol.
Genet. 23, 1036–1044. doi: 10.1093/hmg/ddt499

McGeer, P. L., and McGeer, E. G. (2002). Local neuroinflammation and the
progression of Alzheimer's disease. J. Neurovirol. 8, 529–538. doi: 10.1080/
13550280290100969

Miar, A., Alvarez, V., Corao, A. I., Alonso, B., Diaz, M., Menendez, M., et al.
(2011). Lack of association between protocadherin 11-X/Y (PCDH11X and
PCDH11Y) polymorphisms and late onset Alzheimer's disease. Brain Res.
1383, 252–256. doi: 10.1016/j.brainres.2011.01.054

Migliore, L., Boni, G., Bernardini, R., Trippi, F., Colognato, R., Fontana, I., et al.
(2006). Susceptibility to chromosome malsegregation in lymphocytes of
women who had a down syndrome child in young age. Neurobiol. Aging 27,
710–716. doi: 10.1016/j.neurobiolaging.2005.03.025

Migliore, L., Migheli, F., and Coppede, F. (2009). Susceptibility to aneuploidy in
young mothers of down syndrome children. Sci. World J. 9, 1052–1060. doi:
10.1100/tsw.2009.122

Minajigi, A., Froberg, J. E., Wei, C., Sunwoo, H., Kesner, B., Colognori, D., et al.
(2015). A comprehensive Xist interactome reveals cohesin repulsion and an
RNA-directed chromosome conformation. Science 349, aab2276. doi: 10.1126/
science.aab2276

Muddashetty, R. S., Nalavadi, V. C., Gross, C., Yao, X., Xing, L., Laur, O., et al.
(2011). Reversible inhibition of PSD-95 mRNA translation by miR-125a,
FMRP phosphorylation, and mGluR signaling. Mol. Cell 42, 673–688. doi:
10.1016/j.molcel.2011.05.006

Mugford, J. W., Starmer, J., Williams, R. L., Jr., Calabrese, J. M., Mieczkowski, P.,
Yee, D., et al. (2014). Evidence for local regulatory control of escape from
imprinted X chromosome inactivation. Genetics 197, 715–723. doi: 10.1534/
genetics.114.162800

Ng, K., Pullirsch, D., Leeb, M., andWutz, A. (2007). Xist and the order of silencing.
EMBO Rep. 8, 34–39. doi: 10.1038/sj.embor.7400871

Nguyen, D. K., and Disteche, C. M. (2006). Dosage compensation of the active X
chromosome in mammals. Nat. Genet. 38, 47–53. doi: 10.1038/ng1705

Orstavik, K. H. (2009). X chromosome inactivation in clinical practice. Hum.
Genet. 126, 363–373. doi: 10.1007/s00439-009-0670-5

Peeters, S. B., Korecki, A. J., Baldry, S. E. L., Yang, C., Tosefsky, K., Balaton, B. P.,
et al. (2019). How do genes that escape from X-chromosome inactivation
contribute to Turner syndrome? Am. J. Med. Genet. 181, 28–35. doi: 10.1002/
ajmg.c.31672

Pessia, E., Makino, T., Bailly-Bechet, M., McLysaght, A., and Marais, G. A. B.
(2012). Mammalian X chromosome inactivation evolved as a dosage-
compensation mechanism for dosage-sensitive genes on the X chromosome.
Proc. Natl. Acad. Sci. 109, 5346. doi: 10.1073/pnas.1116763109

Petersen, M. B., Karadima, G., Samaritaki, M., Avramopoulos, D., Vassilopoulos,
D., and Mikkelsen, M. (2000). Association between presenilin-1 polymorphism
and maternal meiosis II errors in down syndrome. Am. J. Med. Genet. 93, 366–
372. doi: 10.1002/1096-8628(20000828)93:5<366::AID-AJMG5>3.0.CO;2-G

Pike, C. J. (2017). Sex and the development of Alzheimer's disease. J. Neurosci. Res.
95, 671–680. doi: 10.1002/jnr.23827

Pocklington, A. J., Cumiskey, M., Armstrong, J. D., and Grant, S. G. (2006). The
proteomes of neurotransmitter receptor complexes form modular networks
with distributed functionality underlying plasticity and behaviour. Mol. Syst.
Biol. 2, 2006 0023. doi: 10.1038/msb4100041

Pombo, A., and Dillon, N. (2015). Three-dimensional genome architecture:
players and mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245. doi: 10.1038/
nrm3965

Potter, H., and Geller, L. N. (1996). Alzheimer's disease, Down's syndrome, and
chromosome segregation. Lancet 348. doi: 10.1016/s0140-6736(05)64399-1

Potter, H. (2016). Beyond trisomy 21: phenotypic variability in people with down
syndrome explained by further chromosome mis-segregation and mosaic
aneuploidy. J. Down Syndr. Chromosom. Abnorm. 2, 1–6. doi: 10.4172/2472-
1115.1000109

Quinodoz, S., and Guttman, M. (2014). Long noncoding RNAs: an emerging link
between gene regulation and nuclear organization. Trends Cell Biol. 24, 651–
663. doi: 10.1016/j.tcb.2014.08.009

Rao, C. V., Farooqui, M., Zhang, Y., Asch, A. S., and Yamada, H. Y. (2018).
Spontaneous development of Alzheimer's disease-associated brain pathology in
January 2020 | Volume 10 | Article 1368

https://doi.org/10.1016/s0006-8993(97)01215-8
https://doi.org/10.1016/s0006-8993(97)01215-8
https://doi.org/10.1016/s1474-4422(13)70302-8
https://doi.org/10.1016/s1474-4422(13)70302-8
https://doi.org/10.1016/s0074-7696(06)49003-3
https://doi.org/10.2174/138920208786241216
https://doi.org/10.2174/138920208786241216
https://doi.org/10.1016/j.nbd.2009.01.003
https://doi.org/10.2174/138920210793176065
https://doi.org/10.2174/138920210793176065
https://doi.org/10.3390/ijms17111852
https://doi.org/10.1186/1742-2094-9-151
https://doi.org/10.1186/1742-2094-9-151
https://doi.org/10.1038/s41598-019-44229-9
https://doi.org/10.1086/511441
https://doi.org/10.1038/ejhg.2017.93
https://doi.org/10.1007/s00439-006-0134-0
https://doi.org/10.1007/s00439-006-0134-0
https://doi.org/10.1038/nature13163
https://doi.org/10.1016/j.gde.2013.11.021
https://doi.org/10.1038/190372a0
https://doi.org/10.1186/1471-2164-8-443
https://doi.org/10.3233/jad-170592
https://doi.org/10.3389/fnmol.2017.00069
https://doi.org/10.1016/j.neurobiolaging.2015.08.017
https://doi.org/10.1093/hmg/ddt499
https://doi.org/10.1080/13550280290100969
https://doi.org/10.1080/13550280290100969
https://doi.org/10.1016/j.brainres.2011.01.054
https://doi.org/10.1016/j.neurobiolaging.2005.03.025
https://doi.org/10.1100/tsw.2009.122
https://doi.org/10.1126/science.aab2276
https://doi.org/10.1126/science.aab2276
https://doi.org/10.1016/j.molcel.2011.05.006
https://doi.org/10.1534/genetics.114.162800
https://doi.org/10.1534/genetics.114.162800
https://doi.org/10.1038/sj.embor.7400871
https://doi.org/10.1038/ng1705
https://doi.org/10.1007/s00439-009-0670-5
https://doi.org/10.1002/ajmg.c.31672
https://doi.org/10.1002/ajmg.c.31672
https://doi.org/10.1073/pnas.1116763109
https://doi.org/10.1002/1096-8628(20000828)93:5%3C366::AID-AJMG5%3E3.0.CO;2-G
https://doi.org/10.1002/jnr.23827
https://doi.org/10.1038/msb4100041
https://doi.org/10.1038/nrm3965
https://doi.org/10.1038/nrm3965
https://doi.org/10.1016/s0140-6736(05)64399-1
https://doi.org/10.4172/2472-1115.1000109
https://doi.org/10.4172/2472-1115.1000109
https://doi.org/10.1016/j.tcb.2014.08.009
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Bajic et al. X Chromosome in Alzheimer’s Disease
a Shugoshin-1 mouse cohesinopathy model. Aging Cell 17, e12797. doi:
10.1111/acel.12797

Raznahan, A., Parikshak, N. N., Chandran, V., Blumenthal, J. D., Clasen, L. S.,
Alexander-Bloch, A. F., et al. (2018). Sex-chromosome dosage effects on gene
expression in humans. Proc. Natl. Acad. Sci. U.S.A. 115, 7398–7403. doi:
10.1073/pnas.1802889115

Regen, F., Hellmann-Regen, J., Costantini, E., and Reale, M. (2017).
Neuroinflammation and Alzheimer's disease: implications for microglial
activation. Curr. Alzheimer Res. 14, 1140–1148. doi: 10.2174/1567205014
666170203141717

Renault, N. K., Dyack, S., Dobson, M. J., Costa, T., Lam, W. L., and Greer, W. L.
(2007). Heritable skewed X-chromosome inactivation leads to haemophilia a
expression in heterozygous females. Eur. J. Hum. Genet. 15, 628–637. doi:
10.1038/sj.ejhg.5201799

Renault, N. K., Pritchett, S. M., Howell, R. E., Greer, W. L., Sapienza, C.,
Orstavik, K. H., et al. (2013). Human X-chromosome inactivation pattern
distributions fit a model of genetically influenced choice better than models of
completely random choice. Eur. J. Hum. Genet. 21, 1396–1402. doi: 10.1038/
ejhg.2013.84

Schellenberg, G. D., Bird, T. D., Wijsman, E. M., Orr, H. T., Anderson, L., Nemens,
E., et al. (1992). Genetic linkage evidence for a familial Alzheimer's disease
locus on chromosome 14. Science 258, 668–671. doi: 10.1126/science.1411576

Schupf, N., Kapell, D., Lee, J. H., Ottman, R., andMayeux, R. (1994). Increased risk
of Alzheimer's disease in mothers of adults with down's syndrome. Lancet 344,
353–356. doi: 10.1016/s0140-6736(94)91398-6

Schupf, N., Kapell, D., Nightingale, B., Lee, J. H., Mohlenhoff, J., Bewley, S., et al.
(2001). Specificity of the fivefold increase in AD in mothers of adults with
down syndrome. Neurology 57, 979–984. doi: 10.1212/wnl.57.6.979

Schurz, H., Salie, M., Tromp, G., Hoal, E. G., Kinnear, C. J., and Möller, M. (2019).
The X chromosome and sex-specific effects in infectious disease susceptibility.
Hum. Genomics 13, 2. doi: 10.1186/s40246-018-0185-z

Selkoe, D. J. (2001). Alzheimer's disease results from the cerebral accumulation
and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis. 3, 75–80. doi:
10.3233/jad-2001-3111

Sen, A., Nelson, T. J., and Alkon, D. L. (2015). ApoE4 and abeta oligomers reduce
BDNF expression viaHDAC nuclear translocation. J. Neurosci. 35, 7538–7551.
doi: 10.1523/jneurosci.0260-15.2015

Seripa, D., Panza, F., Franceschi, M., D'Onofrio, G., Solfrizzi, V., Dallapiccola, B.,
et al. (2009). Non-apolipoprotein E and apolipoprotein E genetics of sporadic
Alzheimer's disease. Ageing Res. Rev. 8, 214–236. doi: 10.1016/j.arr.2008.12.003

Shvetsova, E., Sofronova, A., Monajemi, R., Gagalova, K., Draisma, H. H. M.,
White, S. J., et al. (2019). Skewed X-inactivation is common in the general
female population. Eur. J. Hum. Genet. 27, 455–465. doi: 10.1038/s41431-018-
0291-3

Skuse, D. H. (2005). X-linked genes and mental functioning. Hum. Mol. Genet. 14
Spec No 1, R27–R32. doi: 10.1093/hmg/ddi112

Slooter, A. J., de Knijff, P., Hofman, A., Cruts, M., Breteler, M. M., Van
Broeckhoven, C., et al. (1998). Serum apolipoprotein E level is not increased
in Alzheimer's disease: the rotterdam study. Neurosci. Lett. 248, 21–24. doi:
10.1016/s0304-3940(98)00339-5

Smith, M. A. (1998). Alzheimer disease. Int. Rev. Neurobiol. 42, 1–54. doi: 10.1016/
s0074-7742(08)60607-8

Splinter, E., de Wit, E., Nora, E. P., Klous, P., van de Werken, H. J., Zhu, Y., et al.
(2011). The inactive X chromosome adopts a unique three-dimensional
conformation that is dependent on Xist RNA. Genes Dev. 25, 1371–1383.
doi: 10.1101/gad.633311

Spremo-Potparevic, B., Zivkovic, L., Djelic, N., and Bajic, V. (2004). Analysis of
premature centromere division (PCD) of the X chromosome in Alzheimer
patients through the cell cycle. Exp. Gerontol. 39, 849–854. doi: 10.1016/
j.exger.2004.01.012

Spremo-Potparevic, B., Zivkovic, L., Djelic, N., Plecas-Solarovic, B., Smith, M. A.,
and Bajic, V. (2008). Premature centromere division of the X chromosome in
neurons in Alzheimer's disease. J. Neurochem. 106, 2218–2223. doi: 10.1111/
j.1471-4159.2008.05555.x

Spremo-Potparevic, B., Bajic, V., Perry, G., and Zivkovic, L. (2015). Alterations of
the X chromosome in lymphocytes of alzheimer's disease patients. Curr.
Alzheimer Res. 12, 990–996. doi: 10.2174/1567205012666151027124154
Frontiers in Genetics | www.frontiersin.org 10
Sudbrak, R., Wieczorek, G., Nuber, U. A., Mann, W., Kirchner, R., Erdogan, F.,
et al. (2001). X chromosome-specific cDNA arrays: identification of genes that
escape from X-inactivation and other applications. Hum. Mol. Genet. 10, 77–
83. doi: 10.1093/hmg/10.1.77

Sun, B. K., and Lee, J. T. (2006). “X-Chromosome Inactivation,” in Encyclopedic
Reference of Genomics and Proteomics in Molecular Medicine (Berlin,
Heidelberg: Springer Berlin Heidelberg), 2013–2019.

Tam, G. W., Redon, R., Carter, N. P., and Grant, S. G. (2009). The role of DNA
copy number variation in schizophrenia. Biol. Psychiatry 66, 1005–1012. doi:
10.1016/j.biopsych.2009.07.027

Ueberham, U., and Arendt, T. (2005). The expression of cell cycle proteins in
neurons and its relevance for Alzheimer's disease. Curr. Drug Targets CNS
Neurol. Disord. 4, 293–306. doi: 10.2174/1568007054038175

Vest, R. S., and Pike, C. J. (2013). Gender, sex steroid hormones, and Alzheimer's
disease. Horm. Behav. 63, 301–307. doi: 10.1016/j.yhbeh.2012.04.006

Vorsanova, S. G., Yurov, Y. B., Kolotii, A. D., and Soloviev, I. V. (2001). FISH
analysis of replication and transcription of chromosome X loci: new approach
for genetic analysis of Rett syndrome. Brain Dev. 23 Suppl 1, S191–S195. doi:
10.1016/s0387-7604(01)00364-3

Wani, A., Gupta, M., Ahmad, M., Shah, A. M., Ahsan, A. U., Qazi, P. H., et al.
(2019). Alborixin clears amyloid-b by inducing autophagy through PTEN-
mediated inhibition of the AKT pathway. Autophagy 15, 1810–1828. doi:
10.1080/15548627.2019.1596476

Westra, J. W., Rivera, R. R., Bushman, D. M., Yung, Y. C., Peterson, S. E., Barral, S.,
et al. (2010). Neuronal DNA content variation (DCV) with regional and
individual differences in the human brain. J. Comp. Neurol. 518, 3981–4000.
doi: 10.1002/cne.22436

Wilson, N. D., Ross, L. J. N., Close, J., Mott, R., Crow, T. J., and Volpi, E. V. (2007).
Replication profile of PCDH11X and PCDH11Y, a gene pair located in the
non-pseudoautosomal homologous region Xq21.3/Yp11.2. Chromosome Res.
Int. J. Mol. Supramol. Evol. Aspects Chromosome Biol. 15, 485–498. doi:
10.1007/s10577-007-1153-y

Winick-Ng, W., and Rylett, R. J. (2018). Into the fourth dimension: dysregulation
of genome architecture in aging and Alzheimer's disease. Front. Mol. Neurosci.
11, 60. doi: 10.3389/fnmol.2018.00060

Wiseman, F. K., Pulford, L. J., Barkus, C., Liao, F., Portelius, E., Webb, R., et al.
(2018). Trisomy of human chromosome 21 enhances amyloid-beta deposition
independently of an extra copy of APP. Brain 141, 2457–2474. doi: 10.1093/
brain/awy159

Wu, Z. C., Yu, J. T., Wang, N. D., Yu, N. N., Zhang, Q., Chen, W., et al. (2010).
Lack of association between PCDH11X genetic variation and late-onset
Alzheimer's disease in a Han Chinese population. Brain Res. 1357, 152–156.
doi: 10.1016/j.brainres.2010.08.008

Yuan, D., XiuJuan, W., Yan, Z., JunQin, L., Fang, X., Shirong, Y., et al. (2015). Use
of X-chromosome inactivation pattern to analyze the clonality of 14 female
cases of kaposi sarcoma. Med. Sci. Monitor Basic Res. 21, 116–122. doi:
10.12659/MSMBR.894089

Yudowski, G. A., Olsen, O., Adesnik, H., Marek, K. W., and Bredt, D. S. (2013).
Acute inactivation of PSD-95 destabilizes AMPA receptors at hippocampal
synapses. PLoS One 8, e53965. doi: 10.1371/journal.pone.0053965

Yurov, Y. B., Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D., Kutsev, S. I.,
et al. (2007). Aneuploidy and confined chromosomal mosaicism in the
developing human brain. PLoS One 2, e558. doi: 10.1371/journal.pone.0000558

Yurov, Y. B., Vorsanova, S. G., Liehr, T., Kolotii, A. D., and Iourov, I. Y. (2014). X
chromosome aneuploidy in the Alzheimer's disease brain. Mol. Cytogenet. 7,
20. doi: 10.1186/1755-8166-7-20

Yurov, Y. B., Vorsanova, S. G., and Iourov, I. Y. (2019). Chromosome instability in
the neurodegenerating brain. Front. Genet. 10, 892. doi: 10.3389/
fgene.2019.00892

Yurov, Y. B. (2017). “FISH-Based Assays for Detecting Genomic (Chromosomal)
Mosaicism in Human Brain Cells,” in Genomic Mosaicism in Neurons and
Other Cell Types. Eds. J. M. Frade and F. Gage (London, UK: Springer Nature).

Zivković, L., Spremo-Potparević, B., Plecas-Solarović, B., Djelić, N., Ocić, G.,
Smiljković, P., et al. (2010). Premature centromere division of metaphase
chromosomes in peripheral blood lymphocytes of Alzheimer's disease patients:
relation to gender and age. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 65, 1269–1274.
doi: 10.1093/gerona/glq148
January 2020 | Volume 10 | Article 1368

https://doi.org/10.1111/acel.12797
https://doi.org/10.1073/pnas.1802889115
https://doi.org/10.2174/1567205014666170203141717
https://doi.org/10.2174/1567205014666170203141717
https://doi.org/10.1038/sj.ejhg.5201799
https://doi.org/10.1038/ejhg.2013.84
https://doi.org/10.1038/ejhg.2013.84
https://doi.org/10.1126/science.1411576
https://doi.org/10.1016/s0140-6736(94)91398-6
https://doi.org/10.1212/wnl.57.6.979
https://doi.org/10.1186/s40246-018-0185-z
https://doi.org/10.3233/jad-2001-3111
https://doi.org/10.1523/jneurosci.0260-15.2015
https://doi.org/10.1016/j.arr.2008.12.003
https://doi.org/10.1038/s41431-018-0291-3
https://doi.org/10.1038/s41431-018-0291-3
https://doi.org/10.1093/hmg/ddi112
https://doi.org/10.1016/s0304-3940(98)00339-5
https://doi.org/10.1016/s0074-7742(08)60607-8
https://doi.org/10.1016/s0074-7742(08)60607-8
https://doi.org/10.1101/gad.633311
https://doi.org/10.1016/j.exger.2004.01.012
https://doi.org/10.1016/j.exger.2004.01.012
https://doi.org/10.1111/j.1471-4159.2008.05555.x
https://doi.org/10.1111/j.1471-4159.2008.05555.x
https://doi.org/10.2174/1567205012666151027124154
https://doi.org/10.1093/hmg/10.1.77
https://doi.org/10.1016/j.biopsych.2009.07.027
https://doi.org/10.2174/1568007054038175
https://doi.org/10.1016/j.yhbeh.2012.04.006
https://doi.org/10.1016/s0387-7604(01)00364-3
https://doi.org/10.1080/15548627.2019.1596476
https://doi.org/10.1002/cne.22436
https://doi.org/10.1007/s10577-007-1153-y
https://doi.org/10.3389/fnmol.2018.00060
https://doi.org/10.1093/brain/awy159
https://doi.org/10.1093/brain/awy159
https://doi.org/10.1016/j.brainres.2010.08.008
https://doi.org/10.12659/MSMBR.894089
https://doi.org/10.1371/journal.pone.0053965
https://doi.org/10.1371/journal.pone.0000558
https://doi.org/10.1186/1755-8166-7-20
https://doi.org/10.3389/fgene.2019.00892
https://doi.org/10.3389/fgene.2019.00892
https://doi.org/10.1093/gerona/glq148
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Bajic et al. X Chromosome in Alzheimer’s Disease
Zivkovic, L., Spremo-Potparevic, B., Siedlak, S. L., Perry, G., Plecas-Solarovic, B.,
Milicevic, Z., et al. (2013). DNA damage in Alzheimer disease lymphocytes and
its relation to premature centromere division. Neurodegener. Dis. 12, 156–163.
doi: 10.1159/000346114

Zubenko, G. S., Stiffler, J. S., Hughes, H. B., Hurtt, M. R., and Kaplan, B. B. (1998).
Initial results of a genome survey for novel Alzheimer's disease risk genes:
association with a locus on the X chromosome. Am. J. Med. Genet. 81, 196–205.
doi: 10.1002/(sici)1096-8628(19980207)81:1<98::aid-ajmg17>3.0.co;2-r

Zubenko, G. S., Hughes, H. B., and Stiffler, J. S. (1999). Clinical and
neurobiological correlates of DXS1047 genotype in Alzheimer's disease. Biol.
Psychiatry 46, 173–181. doi: 10.1016/s0006-3223(99)00035-9
Frontiers in Genetics | www.frontiersin.org 11
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Bajic, Essack, Zivkovic, Stewart, Zafirovic, Bajic, Gojobori, Isenovic
and Spremo-Potparevic. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or repro-
duction is permitted which does not comply with these terms.
January 2020 | Volume 10 | Article 1368

https://doi.org/10.1159/000346114
https://doi.org/10.1002/(sici)1096-8628(19980207)81:1%3C98::aid-ajmg17%3E3.0.co;2-r
https://doi.org/10.1016/s0006-3223(99)00035-9
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	The X Files: “The Mystery of X Chromosome Instability in Alzheimer’s Disease”
	Introduction
	The X Chromosome Is Unique

	Brain and the X Chromosome
	X-Linked miRNA and the Brain

	PCDH11X
	Does PCDH11X Escape X Inactivation?
	PCDH11X Asynchronous Replication

	Sex Chromosome Dosage (SCD): an Engine of Stability
	Summary
	Author Contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


