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Red meat is an important dietary source that provides part of the nutritional requirements.
Intramuscular fat, known as marbling, is located throughout skeletal muscle. Marbling is a
trait of major economic relevance that positively influences sensory quality aspects. The
aim of the present study was to identify and better understand biological pathways defining
marbling in beef cattle. Pathway analysis was performed in PathVisio with publicly available
transcriptomic data from semitendinosus muscle of well-marbled and lean-marbled beef.
Moreover, for Bos taurus we created a gene identifier mapping database with bridgeDb
and a pathway collection in WikiPathways. The regulation of marbling is possibly the result
of the interplay between signaling pathways in muscle, fat, and intramuscular connective
tissue. Pathway analysis revealed 17 pathways that were significantly different between
well-marbled and lean-marbled beef. The MAPK signaling pathway was enriched, and the
signaling pathways that play a role in tissue development were also affected. Interestingly,
pathways related to immune response and insulin signaling were enriched.

Keywords: marbling, curation pathway for cow, signaling pathway, improve breeding selection,
transcriptomics profiling
INTRODUCTION

Red meat is as an important dietary source that provides part of the nutritional requirements such as
proteins, minerals, B-complex vitamins, and essential fatty acids (McAfee et al., 2010). Control of
meat quality is very important for meat producers and meat sellers to satisfy customer’s preferences
(Bernard et al., 2007). Marbling, a trait that describes the presence intramuscular fat, is of major
economic relevance for beef producing cattle that has a positive impact on sensory quality traits, such
as flavor, juiciness, and tenderness of meat. Studies have shown that marbling depends on factors
such as breed, genotype, age, diet, husbandry, and growth stages. Although in marbling the
environmental factors play an important role, the genetic background of the animals is the major
factor defining the marbling status (Yamada et al., 2006). O’Connor et al. studied the effect of breed-
type on marbling, their results demonstrated that increase in meat marbling from Bos taurus cattle
(Hereford, Red Angus, Angus, and Tarentaise breeds) can increase the tenderness, more than the Bos
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indicus cattle (Braford, Red Brangus, and Simbrah breeds)
(O’Connor et al., 1997). Although, Shackelford et al., found
that, the lower tenderness of meat from Bos indicus cattle is
mainly because of decreased postmortem proteolysis which result
from elevated calpastatin activity that the possibility existed for an
interaction between breed and the influences of marbling score
on tenderness (Shackelford et al., 1991). Also, Wulf et al.,
reported that, in Charolais and Limousin breeds, marbling
correlated with calpastatin activity and shear force. He
suggested that selection for increased marbling based on these
genetic effects, in those two breeds, might be effective for
enhancing beef tenderness (Wulf et al., 1996). There is
substantial evidence from transcriptomics studies that gene
expression profiles affect phenotypic variation for marbling
(Cesar et al., 2015). Understanding the signaling pathways that
make up the regulatory network in the marbling process can help
steer the breeding process (Thaller et al., 2003). Therefore, animal
breeding specialists have attempted system-oriented approaches
to investigate major economic traits (Lee et al., 2010). It has been
shown that marbling differences may be a function of a number of
complex interactions among biological pathways. Therefore, a
pathway analysis with differential gene expression patterns can
result in a better understanding of muscle physiological states and
their influence on beef quality and animal welfare (Hocquette
et al., 2012). The public availability of transcriptomics data from
beef producing cattle, provides new opportunities to explore the
global gene expression in muscle to investigate physiological
processes and their influence on meat sensory quality traits
(Lee et al., 2010; Hocquette et al., 2012).

Within the genomic region of marbling there are several
genes considered as parts of QTLs such as EDGPR1, Titin,
Akirin 2, and RPL27 (Takasuga et al., 2007) which were
mapped in a half-sib family of Japanese Black cattle (Yamada
et al., 2006). Thus, these genes were considered as positional
functional candidates for the genes responsible for marbling.
This study aims at identifying genes and biological pathways
regulating marbling of muscle tissue in beef cattle based on
publicly available transcriptomics data obtained from a study by
Sadkowski and coworkers (2014). We updated and extended the
pathway collection for B. taurus at WikiPathways (Slenter et al.,
2017) an online pathway repository, and a B. taurus gene product
identifier mapping BridgeDb database was created to allow
mapping of expression data to the gene databases identifiers
used in the pathways (van Iersel et al., 2010). Sadkowski et al.,
2014 measured global gene expression in skeletal muscle of three
cattle breeds, i.e., Limousin, Holstein-Friesian, and Hereford,
using Agilent microarray chips. Pathway and network analysis
were performed to select the important biological pathways
involved in marbling and their interactions.
MATERIALS AND METHODS

Transcriptomics Data Set
The study by Sadkowski et al., 2014 compared gene expression in
semitendinosus skeletal muscle of well-marbled beef (Holstein-
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Friesian and Hereford) versus lean-marbled beef (Limousin).
Their publicly available microarray data set was used in the
present study (NCBI GEO GSE46411). The Holstein-Friesian,
Hereford, and Limousin groups consisted of four animals each.
Samples for total RNA isolation were taken instantaneously after
slaughter from semitendinosus muscle and were kept in liquid
nitrogen for transportation and then at −80°C until analyzed.
Quality of RNA samples was evaluated using Bioanalyzer 2100
(Agilent Technologies, USA). Only samples with RIN ≥ 8 were
further analyzed (Sadkowski et al., 2014).

Agilent Microarray Data Analysis
Global gene expression was measured with Agilent Two-Color
Mi Bovine (V2) 4 x 44K Gene Expression Microarray
oligonucleotide slides (Agilent, USA). Sadkowski and
coworkers checked the quality of the data and performed
LOWESS normalization. The normalized transcriptomic data
compared well-marbled beef Holstein-Friesian (n = 4) or
Hereford (n = 4) to lean-marbled beef (n = 4). The four log10
fold change (log10FC) values for each group comparison were
averaged to obtain an estimate of the 10logFC between the entire
groups. Furthermore, a one-sample t-test was performed on both
sets of four values, comparing those to 0 (giving a p-value
indicating the significance of these values being different from
0 = no change). Bovine genes were considered to be significantly,
differentially expressed with p ≤ 0.05 and an absolute FC ≥ 1.3
(Sadkowski et al., 2014).

B. taurus Pathway Collection
The online biological pathway repository, WikiPathways (Slenter
et al., 2017), contains pathways of different species, however a B.
taurus collection was missing. We updated and extended the
pathway collection for B. taurus.We also created a B. taurus gene
identifier (ID) mapping database based on mappings present in
the Ensembl-based BridgeDb framework (van Iersel et al., 2010).
The newly created B. taurus ID mapping database was used to
annotate genes and proteins in pathways from WikiPathways
and to perform pathways analysis. A online and freely available
version of the database for the Ensembl build 85 is accessible at
(http://bridgedb.org/data/gene_database/archive/r85/Bt_Derby_
Ensembl_85.bridge.zip). Second, the WikiPathways homology
based the homology mapper which is available at GitHub
(https://github.com/PathVisio/homology.mapper) was updated
to improve homology coverage for gene products that were
annotated with different data sources. The pathways were
converted from human pathways, with a required minimum
successful conversion of at least 50% of the original human
genes. Third, we manually curated all converted pathways to
check whether the genes were correctly annotated and pathways
are relevant in B. taurus. Finally, new pathways directly derived
from cow breeding literature and not present in the
WikiPathways collection were designed in PathVisio (v3.2.0)
(Kutmon et al., 2015), the pathway creation, visualization, and
analysis tool. All pathways were uploaded in gpml format to
WikiPathways using the WikiPathways plugin (https://www.
pathvisio.org/plugin/wikipathways-plugin/) for PathVisio.
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Pathway-Based Over-representation
Analysis
To analyze and visualize the molecular changes in marbling at
biological process level a pathway-based over-representation
analysis was performed in PathVisio (v3.2.0) (Kutmon et al.,
2015). The B. taurus WikiPathways pathway collection,
containing 286 pathways (6/30/2015), and the B. taurus ID
mapping database, was used in the analysis. The pathways are
ranked based on a standardized difference score (Z-score) based
on the expected value and standard deviation of the number of
significantly (p ≤ 0.05) and differentially (absolute FC ≥ 1.3)
expressed genes in a pathway. Biological pathways significantly
changed when (i) Z-score > 1.96, (ii) permuted p-value < 0.05
and (iii) minimum number of changed genes is 3. Additionally,
alterations in gene expression (log10FC and p value) when
comparing Hereford to Limousin were visualized on the B.
taurus pathways with PathVisio.

Gene Ontology Overrepresentation Analysis
To find the biological processes in which differentially expressed
genes were over represented while no pathways for these processes
were present in the B. taurus collection at WikiPathways we
performed Gene Ontology (GO) analysis via the GO-Elite web-
interface (Zambon et al., 2012). GO-Elite is a flexible tool for GO-
based over-representation analysis. To identify GO processes the
following settings in GO-Elite were used: (i) 2000 permutations, (ii)
Z-score GO pruning algorithm, (iii) Z-score threshold >1.96, (iv)
p-value threshold <0.05 and (v) minimum number of changed
genes is 3 (apart from the method specific permutations those are
the same criteria as used for the pathway analysis). This approach
not only helps to unify the characteristics and functions of the
genes but also to attain a broader perspective of the muscle
physiological processes and their influence on meat quality.

Integrated Network Analysis
To visualize the pathway and GO analysis results and their
interactions the network analysis and visualization tool,
Cytoscape (version 3.2.0), was used (Shannon et al., 2003).
First, all enriched pathways and the differentially expressed
genes present in these pathways were selected. Second, all
changed GO processes and the Differentially Expressed genes
present in these GO classes were selected. Third, both results
were combined into one network showing the interaction
between pathways and GO classes based on corresponding
differentially expressed genes. Finally, differences in gene
expression between well-marbled and lean-marbled skeletal
muscle were visualized in the network.
RESULTS

Identification of Differentially Expressed
Genes Between Well-Marbled and
Lean-Marbled Skeletal Muscle
In the selected transcriptomic data set of beef marbling 42,990
microarray reporters were measured in both lean marbling beef
Frontiers in Genetics | www.frontiersin.org 3
(Limousin) and well marbling beef (Hereford and Holstein-
Friesian) animals. Statistical analysis was performed on 29,677
reported genes that remained from the 42,990 reporters after
quality control and annotation with Ensembl gene IDs. In the
Hereford breed compared to the Limousin breed, 1,513 were
higher expressed and 1,556 lower expressed (absolute
log10FC >0.11 and p-value <0.05). When comparing the
Holstein-Friesian breed to the Limousin breed, 1,772 genes
were higher expressed and 2,458 lower expressed in the
Holstein Friesian breed. The genes that met these criteria were
used for further analysis.

Creating of B. taurus Pathway Collection
and Pathway Design
In total, 282 human pathways were converted from human
pathways to cattle pathways. All these pathways were manually
checked and are available at (https://www.pathvisio.org/
downloads/download-pathways/). Moreover, 4 pathways were
newly created based on the bovine breeding literature: Growth
hormone signaling (WP2890) (Roudbari Z and Kutmon M:
Growth Hormone (GH) Signaling (B. taurus); (https://www.
wikipathways.org/instance/WP2890), Growth hormone
receptor signaling (WP2891) (Roudbari Z, Hanspers K, Evelo
C, Kutmon M: Growth Hormone Receptor (GHR) Signaling (B.
taurus) (https://www.wikipathways.org/instance/WP2891),
IGF1-signaling (WP2892) (Roudbari Z, Evelo C, Willighagen
E, Mélius J, Hanspers K, Kutmon M: IGF1-signaling (B. taurus)
(https://www.wikipathways.org/instance/WP2892), and
Gonadotropin- releasing hormone signaling (WP2901)
(Roudbari Z, Kutmon M, Pico A, Willighagen E, Mélius J:
Gonadotropin-releasing hormone (GNRH) signaling (B.
taurus) (https://www.wikipathways.org/instance/WP2901). As
an example, the newly designed GNRH signaling pathway is
shown in Figure 1. The elements of this process are the key
factors stimulating gonadotropin release from the pituitary,
which controls the release of luteinizing hormone and follicle-
stimulating hormone, and reproductive development
in mammals.

Pathway Analysis
When comparing Hereford with Limousin breed ten biological
pathways that were formerly known to be involved in
marbling (Cui et al., 2012; Lim et al., 2013; Silva-Vignato
et al., 2017) were found to be significantly enriched in
differentially expressed genes (z-score > 1.96) (Table 1).
Four biological processes such as: The Hypertrophy Model,
P38 MAPK signaling, IL-1 signaling, and insulin signaling
pathways, which are known to be important in marbling
development are described in more detail, and the pathways
are shown in Results section. Interestingly, some pathways not
yet known to play a role in marbling were also found to be
enriched in differentially expressed genes when comparing
Hereford with Limousin breed. These included histone
modifications and vitamin D metabolism pathways, in
addition to Hereford breed that is used for meat production,
the Holstein-Friesian breed that is a dairy cattle, was also
February 2020 | Volume 10 | Article 1370
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compared with the Limousin breed. Pathway analysis revealed
that some but not all of the marbling related pathways found
for the comparison between Hereford breed and Limousin
breed were also found when comparing Holstein-Friesian
breed with Limousin. Examples of consistently affected
pathways are the P38 MAPK signaling and the Hypertrophy
Model pathways (Table 2).

Hypertrophy Model Pathway
Muscle hypertrophy is known to increase the muscle mass,
and is determined by increased protein mass per fiber which
results from an increase of protein synthesis (Glass, 2005). In
the B. taurus Hypertrophy model (http://www.wikipathways.
org/instance/WP982) the overall gene expression was higher
in skeletal muscle of Hereford and Holstein-Friesian
compared to Limousin (Figure 2). The expression of the
I l1a , I frd1, Cyr61, ATF3, and Ankrd1 genes were
significantly higher in Hereford in this pathway and the
Il18, Eif4ebp1, and Il1r1 genes were significantly lower in
the model (p-value < 0.05). Among them was IL-1 which
plays a significant role in lipid metabolism by regulating
insulin levels under physiological conditions (Matsuki et al.,
2003); Atf3 which works together with p38c in a common
pathway in the intestine to regulate lipid metabolism and
immune homeostasis (Chakrabarti et al., 2014); and Frd1,
Cyr61, and Ankrd1 genes. Two of the seven genes were
significantly lower expressed including Ef4ebp1 contributing
to the development of obesity through increased adipogenesis
and fat metabolism alterations (Le Bacquer et al., 2007) and
Frontiers in Genetics | www.frontiersin.org 4
Il18 gene. TNF and interleukin (IL)-1 may cause negative
inotropic effects indirectly through activation or release of IL-
18 (Mann, 2015).

p38 MAPK Signaling Pathway
The p38 Mitogen-activated protein kinase (p38 MAPK)
signaling pathway has found to be responsible for transduction
of extracellular signals to their intracellular targets in different
types of cells, including skeletal muscle cells and which leads to
several biological effects for example proliferation,
differentiation, migration, growth, apoptosis, and more
specifically to muscle cells, hypertrophy (Yu et al., 2010; Silva-
Vignato et al., 2017). The p38 MAPK is one intracellular
signaling pathway activated during the differentiation of
myogenic cell lines and this pathway is a chief regulator of
skeletal muscle development (Keren et al., 2006). The p38MAPK
signaling pathway is a well-known pathway that affects lipid
metabolism (Zhang and Liu, 2002). In the B. taurus p38 MAPK
signal pathway five of the seven genes present were significantly
higher expressed in Hereford and Holstein-Friesian compared to
Limousin (Figure 3).

IL-1 Signaling Pathway
The IL-1 signal pathway is a major mediator of innate immune
reactions.This pathway regulates extracellular and intracellular
signaling of IL-1a or IL-1b including positive and negative-
feedback mechanisms which strengthen or terminate the IL-1
response. In reply to ligand binding of the receptor, a
complicated sequence of combinatorial phosphorylation and
FIGURE 1 | Gonadotropin-releasing hormone (GnRH) signaling (B. taurus) (based on Widmann et al., 2013) and available at https://www.wikipathways.org/instance/
WP2901.
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ubiquitination events lead to activation of nuclear factor kB
signaling and the JNK and p38 mitogen-activated protein kinase
pathways (Weber et al., 2010). The members of the B. taurus IL-1
signaling pathway (http://www.wikipathways.org/instance/
WP3271), such as IL-1a, IL-1b, MAP3K1, UBE2N, MAPK14,
REL, ATF2, and JUN were significantly up-regulated in Hereford
breed versus Limousin breed (Figure 4). Among them IL-1a
which was found to play a role as an inhibitor of the expression
of peroxisome proliferator-activated receptor gamma (PPARG),
a key transcriptional factor for adipocytes differentiation, (Um
et al., 2011). IL-1b has been reported to inhibit adipocyte
differentiation from preadipocytes and to reduce the lipid
content in mature adipocytes (Simons et al., 2005). Some of
aforementioned genes: MAP3K1, UBE2N, MAPK14, REL, ATF2
can directly bind to the peroxisome proliferator-activated
receptor promoter and activate transcription to regulate
adipocyte differentiation (Maekawa et al., 2010). The
significantly down-regulated genes are: RELA, MAPK1,
IKBKG, MAP2K4, SQSTM1, and IL1R1 (Figure 4). Some of
them are known to participate in lipid metabolism processes;
activation of p62/SQSTM1 and peroxisome proliferator-
activated receptor gamma is induced by palmitate
Frontiers in Genetics | www.frontiersin.org 5
internalization, which triggers lipid metabolism and limits
inflammation (Krausgruber et al., 2011).

Insulin Signaling Pathway
Genes engaged in the insulin signaling pathway regulate several
aspects of cellular function, including most notably the regulation
of cellular growth and maintaining glucose homeostasis (DeBosch
and Muslin, 2008). For Hereford vs. Limousine comparison,
twenty six genes present in the B. taurus Insulin signaling
pathway (http://www.wikipathways.org/instance/WP966) showed
significant expression differences. Fourteen genes were identified
as up-regulated in Hereford breed (SOS2, PIK3R3, PIK3CA,
PIK3C2A, CBLB, CBLC, SNAP25, JUN, EGR1, MAP3K1,
MAPK14. ENPP1, and XBP1), and twelve were down-regulated
in Hereford breed (PFKM, PFKL, ARF1, STXBP2, EIF4EBP1,
PIK3CD, GAB1, IGF1R,MAPK1, MAPK13, MAP2K4, and ELK1)
when compared to Limousin breed (Figure 5). The involvement of
some of upregulated and downregulated genes in lipid
accumulation processes were earlier confirmed, including;
PIK3CA (Foukas et al., 2013), JUN (Guo et al., 2016), EGR1
(Singh et al., 2015), p38 MAPK lipid accumulation (Sun et al.,
2012), NPP1 (Pan et al., 2011), XBP-1 (Zhao et al., 2012), 4E-
BP1/2 (Singh et al., 2015), and IGF-1R (Freude et al., 2012).
TABLE 1 | The highest ranked pathways in skeletal muscle of Hereford
compared to Limousin breed.

Pathway Positive Measured Total Z
Score

P-
value

Marbling

Hypertrophy Model 8 15 19 3.94 0.000 *
MAPK signaling
pathway

34 124 167 3.51 0.002 *

Histone Modifications 13 35 43 3.41 0.000 -
IL-1 signaling
pathway

15 41 54 3.17 0.003 *

P38 MAPK signaling
pathway

10 27 36 2.98 0.006 *

Cardiac progenitor
differentiation

11 33 54 2.72 0.006 -

T- Cell antigen
Receptor signaling
pathway

19 68 89 2.70 0.011 *

MicroRNAs in
cardiomyocyte
hypertrophy

20 73 102 2.67 0.006 *

Mitochondrial gene
expression

5 11 23 2.66 0.006 *

Physiological and
pathological
hypertrophy of the
heart

7 19 26 2.47 0.012 *

Insulin Signaling 27 111 157 2.41 0.012 *
Extracellular vesicle-
mediated signaling in
recipient cells

6 17 30 2.16 0.023 -

Toll-like receptor
signaling pathway

18 71 92 2.15 0.032 *

Vitamin D metabolism 4 10 20 2.06 0.029 -
Alpha 6 Beta 4
signaling pathway

7 22 33 2.01 0.024 -
*Pathways previously known to be related to marbling.
The pathways are ranked based on Z score. Per pathway the following is listed; Positive =
amount of genes differentially expressed, Measured = the amount of genes measured in
the study, Total = the amount of genes in the pathway and P-value = the significance level.
TABLE 2 | The highest ranked pathways in skeletal muscle of Holstein-Friesian
compared to Limousin breed.

Pathway Positive
(r)

Measured
(n)

Total Z
Score

P-
value

Marbling

P38 MAPK signaling
pathway

14 27 36 3.95 0.000 *

Quercetin and Nf-kB/
AP-1 Induced Cell
Apoptosis

7 10 26 3.77 0.000 -

Glycolysis and
Gluconeogenesis

18 40 67 3.68 0.000 -

Hypertrophy Model 9 15 19 3.67 0.001 *
MAPK Signaling
Pathway

42 124 167 3.48 0.000 *

Insulin Signaling 37 111 157 3.15 0.001 *
Eicosanoid Synthesis 8 15 38 3.04 0.000 -
Selenium Metabolism
and Selenoproteins

11 26 48 2.63 0.009 -

IL1 and
megakaryocytes in
obesity

9 20 25 2.6 0.008 *

EGF/EGFR Signaling
Pathway

34 110 156 2.5 0.019 -

Interferon type I
signaling pathways

14 37 54 2.47 0.015 -

Cori Cycle 6 12 30 2.43 0.006 -
Integrated Cancer
pathway

12 31 45 2.38 0.016 -

Myometrial Relaxation
and Contraction
Pathways

36 120 156 2.37 0.014 -

Pathogenic
Escherichia coli
infection

14 39 54 2.24 0.031 -
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amount of genes differentially expressed, measured = the amount of genes measured in
the study, Total = the amount of genes in the pathway and P-value = the significance level.
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FIGURE 2 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on the Hypertrophy model. In the hypertrophy model from
WikiPathways (WP982) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The logFC (Hereford
and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed in Hereford and
Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e. p-value < = 0.05
(= significant) is shown in green and p-value > 0.05 in white.
FIGURE 3 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on the p38 MAPK signaling. In the p38 MAPK signaling
pathway from WikiPathways (WP1037) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The
logFC (Hereford and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed
in Hereford and Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e., p-value
< = 0.05 (= significant) is shown in green and p-value > 0.05 in white.
Frontiers in Genetics | www.frontiersin.org February 2020 | Volume 10 | Article 13706
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Gene Ontology Analysis
Pathway analysis gave an insight in the biological processes
involved in marbling. However, only 69% of all measured
genes are present in the investigated pathways from the B.
taurus WikiPathways collection. In order to obtain a better
insight in the biological role of the differentially expressed
genes not present in WikiPathways a GO analysis was
performed. (Table 3). This approach not only helps to unify
Frontiers in Genetics | www.frontiersin.org 7
the characteristics and functions of the genes but also to attain a
broader perspective of the muscle physiological processes and
their influence on meat quality related to marbling.

Integrated Network of Altered Pathways
With GO-Terms
The significant pathways andGO termsweremerged together and
shown in Figure 6. Some of the highly connected nodes are IL1a,
FIGURE 4 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on IL-1 signaling. In the IL-1 signaling pathway from
WikiPathways (WP3271) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The logFC
(Hereford and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed in
Hereford and Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e.,
p-value < = 0.05 (= significant) is shown in green and p-value > 0.05 in white.
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TGFB2, PAK1, (as Pak1 deficiency led to upregulation of reverse
cholesterol transporters in ApoE−/−mice in response toWestern
diet feeding, it might be suggested that Pak1 exerts a negative
modulatory influence on these transporters and thereby might
promote lipid retention in inflamed arteries which cause
atherogenesis (Singh et al., 2015), TGFB2 (that TGF-b2 might
control adipocyte differentiation in bone marrow stromal cells in
vivo by inducing PPARg phosphorylation. Whether Smad
Frontiers in Genetics | www.frontiersin.org 8
activation induced by TGFb2 might play a role with MAPK in
the inhibition of adipocyte differentiation induced by TGFb2 in
vivo requires more investigation (Ahdjoudj et al., 2005), IL1b,
UBE2N, IRAK2, RCAN1, LRP6 (Treatment of LRP6 knockdown-
Humanmesenchymal stem cells with adipogenic supplements led
to the accumulation of fat vacuoles, which was demonstrated by
Oil RedO staining (Peröbner et al., 2012), IKBKG, TGFB3, RELA,
BCL10, FGF2 (FGF-2 treatment of human preadipocytes also
FIGURE 5 | Skeletal muscle gene expression in Hereford and Holstein-Friesian vs Limousin visualized on the Insulin signal pathway. In the Insulin signaling pathway
from WikiPathways (WP966) the changes in gene expression between Hereford and Holstein-Friesian with Limousin in skeletal muscle are visualized. The logFC
(Hereford and Holstein-Friesian vs Limousin) is indicated with a color gradient (blue to red over white), i.e., blue represents a negative value (= lower expressed in
Hereford and Holstein-Friesian) and red a positive value (= higher expressed in Hereford and Holstein-Friesian). The p-value is colored based on a rule, i.e.
p-value < = 0.05 (= significant) is shown in green and p-value > 0.05 in white.
TABLE 3 | The enriched processes found by GO-Analysis. A description of the process together with the positive gene number, Z Score, and P-value are given.

GOID GO Name GO Type Gene Number Z Score P-value

GO:0051092 positive regulation of NF-kappa B transcription factor activity Biological process 14 4.89 0.000
GO:0009826 unidimensional cell growth Biological process 3 4.2 0.003
GO:0090257 regulation of muscle system process Biological process 11 3.3 0.001
GO:0051059 NF-kappa B binding Molecular function 5 3.3 0.002
GO:0051781 positive regulation of cell division Biological process 8 3.28 0.001
GO:0003009 skeletal muscle contraction Biological process 3 3.18 0.004
GO:0045444 fat cell differentiation Biological process 13 3.01 0.000
GO:0048009 insulin-like growth factor receptor signaling pathway Biological process 4 2.83 0.006
GO:0050431 transforming growth factor beta binding Molecular function 3 2.82 0.008
GO:0048741 skeletal muscle fiber development Biological process 3 2.26 0.020
GO:0045598 regulation of fat cell differentiation Biological process 8 2.25 0.005
GO:0007528 neuromuscular junction development Biological process 5 2.15 0.009
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resulted in increased adipocyte differentiation, suggesting that this
feature might be common to members of the fibroblast growth
factor family, although FGF-1 was consistently the more potent
adipogenic agent, particularly in cells from subcutaneous depots
(Hutley et al., 2004), IGF1R, and TLR4 (TLR4 knockdown in
H9C2 cardio myocytes decreases fatty acid-induced lipid
accumulation (Dong et al., 2012) which are present in at least
two different pathways and GO terms.
DISCUSSION

The aim of this study was to determine transcriptional profiles
of high and low marbled beef with a focus on pathways of
muscle cell origin that might play a role in the regulation of
marbling development. The regulation of marbling is suggested
to be the result of interaction of signaling pathways in muscle,
fat, and intramuscular connective tissue (Hocquette, 2010).
Identifying these processes with pathway analysis can help to
decipher the key processes involved in marbling development.
Pathway analysis revealed 17 pathways that were significantly
different (z-score > 1.96) between well-marbled and lean
marbled breeds. P38 MAPK signaling pathway well known to
affects lipid metabolism and muscle development, was enriched
Frontiers in Genetics | www.frontiersin.org 9
when we compared gene expression in well and low marbling
breeds. In addition, the signaling pathways “Hypertrophy
Model”, “MicroRNAs in cardiomyocyte hypertrophy” and
“Physiological and pathological hypertrophy of the heart” that
play a role in tissue development were affected. Interestingly, the
analyses also demonstrated that pathways related to immune
response (IL signaling, TCR signaling, and Toll-like receptor
signaling pathways) and insulin signaling, mitochondrial gene
expression and vitamin D metabolism were enriched and might
act together with pathways related to lipid metabolism. We
explored regulatory pathways that control gene expression in
bovine muscle and the relationships between gene expression
and the marbling trait to identify markers that effect on
marbling. A similar study done by (Hong et al., 2014)
investigated the biological characteristics of differentially
expressed genes in high marbled muscle in pig compared to a
low marbled muscle. They indicated that the differentially
expressed genes were clustered to three group related to
energy metabolism, protein synthesis, and immune response
in high marbling pigs. These finding suggested that the genes
related to energy metabolism, protein synthesis, and immune
response contribute to growth performance and meat quality.
Our results also showed differentially expressed genes take part
in these processes. The hypertrophy model pathway was found
FIGURE 6 | Altered pathways and GO terms in skeletal muscle of Hereford vs Limousin. In the network, pathways are shown in orange rectangles and GO Terms
are shown in green rectangles. Differentially expressed genes are shown in red (= higher expressed in Hereford) and blue (= lower expressed in Hereford). Linked
genes common between two process pathway and GO terms (green diamonds) are depicted with a hexagon shape.
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to be enriched with the highest Z score in the present study and
during muscle hypertrophy there is an equilibrium between
protein synthesis and degradation that might bring about
protein deposition, and hence muscle growth. Together, these
processes will lead to differences in muscle and fat deposition,
and for this reason animals have different proportions of ribeye
area and back fat thickness (Silva-Vignato et al.,2017). Mitogen-
activated protein kinase (MAPK) signals have been shown to
play a significant role in intracellular signaling associated with a
variety of cellular activities including cell proliferation,
differentiation, survival, and death (Yu et al., 2010). In
mammalian cel ls , three MAPK famil ies have been
characterized: classical MAPK (also known as ERK), C-Jun N-
terminal kinase/stress activated protein kinase and p38 kinase
pathways (Zhang and Liu, 2002). Each mammalian MAPK
signaling route comprises at least three components: a MAPK
kinase kinase (MAP3K), a MAPK kinase (MAP2K), and a
MAPK. Activated MAPKs phosphorylate various substrate
proteins including transcription factors such as ATF2 and Jun
(Kim & Choi, 2010). Philip and coworkers (Philip et al., 2005)
discovered that the p38 MAPK played a key role in GDF-8-
induced inhibition of proliferation and upregulation of the
cyclin kinase inhibitor p21. In addition, their results showed a
functional link between the p38 MAPK and GDF-8-activated
Smad pathways, and identify an important role for the p38
MAPK in GDF-8’s function as a negative regulator of muscle
growth (Philip et al., 2005). In comparative muscle
transcriptome associated with carcass traits of Nellore cattle,
Silva-Vignato and colleagues indicated that MAPK signaling
pathway involved in muscle and fat deposition, which are
economically important carcass traits for beef production
(Silva-Vignato et al., 2017). The third pathway found in the
present study was IL-1, the IL-1 family of cytokines includes 11
proteins encoded by 11 different genes and gene regulation of
IL-1 signal is activation of MKK4, MKK3, and MKK6 gene that
activate NF-kB and p38 MAPK pathways (Weber et al., 2010).
These two signaling pathway are needed to upregulate the
expression of the key E3 ligases, MuRF1, which mediate the
inhibition of protein synthesis (Clarke et al., 2007). Moreover,
the insulin-signal transduction pathway, which was another
pathway identified in the present study, is a highly conserved
pathway that regulates cellular growth and when insulin binding
to its cell-surface receptor, insulin receptor, activates a complex
intracellular signaling network through insulin substrate
proteins and the canonical PI3K and ERK cascades
(Hocquette et al., 2010). Interestingly, insulin signaling is one
of important factors involved in muscle development since
stimulation of glucose utilization in fat and muscle cells in
calves is occurring by enhancing insulin intracellular signaling
(Jovanović et al., 2017).

Currently, systems biology approaches have become one of
the most effective manners to accelerate the genetic
improvement of beef and dairy cattle herds (Kadarmideen,
2014). It allows the selection of desired characteristics through
the use of transcriptome profiles. The development of high
throughput data and bioinformatics tools allow the selection of
Frontiers in Genetics | www.frontiersin.org 10
superior breeds without wasting time and money, contributing to
the widespread use of transcriptome analysis in beef cattle
operations. Our study shows in cattle that integration of
pathway expression profiles in a systems biology approach will
contribute to a better understanding of the genes and regulatory
processes involved in marbling. These novel insights can be used
in the future to take into account when improving the meat
quality in beef cattle. The molecular mechanisms which underlie
fat content in muscle can provide vital information for the
production of healthier beef for human consumption.
CONCLUSIONS

The outcome of our research is the identification of biological
pathways where we highlighted changed genes which are related
with marbling in beef cattle. These results give a better
understanding of mechanisms involving marbling in beef
cattle, which is economically important carcasses trait for meat
quality. Moreover, the genes involved in the highlighted pathways
can potentially be utilized as an early biological marker for
marbling fat content in breed-specific differences in growth
performance and meat quality.
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