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Advances in next-generation sequencing and high-throughput techniques have enabled
the generation of vast amounts of diverse omics data. These big data provide an
unprecedented opportunity in biology, but impose great challenges in data integration,
data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics,
uncertainty, and high-dimensionality inherited in the omics data. Network has been widely
used to represent relations between entities in biological system, such as protein-protein
interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to
infer novel relations given a reconstructed network (aka link prediction). Particularly,
heterogeneous multi-layered network (HMLN) has proven successful in integrating
diverse biological data for the representation of the hierarchy of biological system. The
HMLN provides unparalleled opportunities but imposes new computational challenges on
establishing causal genotype-phenotype associations and understanding environmental
impact on organisms. In this review, we focus on the recent advances in developing novel
computational methods for the inference of novel biological relations from the HMLN. We
first discuss the properties of biological HMLN. Then we survey four categories of state-of-
the-art methods (matrix factorization, random walk, knowledge graph, and deep learning).
Thirdly, we demonstrate their applications to omics data integration and analysis. Finally,
we outline strategies for future directions in the development of new HMLN models.

Keywords: data mining and knowledge discovery, machine learning, biological data analysis, biological network,
link prediction, relation inference, deep learning
INTRODUCTION

A fundamental task in biological studies is to identify relations, more specifically dynamic
functional associations or physical interactions between various chemical and biological entities.
Network has been widely used to represent relations between entities in biology such as gene
regulation, signaling transduction, metabolism, brain connectivity, and species interaction. In the
network, a node represents an entity such as chemical compound, gene, protein, etc. A link between
nodes represents their relations. There are basically two types of relations (or links), intra-domain
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relations and cross-domain relations. An intra-domain link
denotes a relation between the same type of entities, e.g. a
protein-protein interaction. A cross-domain link represents a
relation between two entities that belong to different types, e.g.
protein-chemical interactions. Given a network of nodes and
links (observed relations), a computational challenge is how to
predict missing relations.

Depending on the underlying algorithms, relation inference
(or link prediction) can be formulated as a problem in a
homogenous network, a multiplex network, or a heterogeneous
multi-layered network (HMLN), as shown in Figure 1. In a
homogenous network (Figure 1A), all nodes from different
domains, as well as intra-domain and cross-domain relations,
are treated equally. In contrast, multiplex and multi-layered
networks separate different types of nodes and relations. A
multiplex network is often used to represent homogeneous
nodes that have different types of characterizations (a.k.a.
views). For example, a gene can be characterized by multiple
measurements of gene expression, essentiality, literature citation,
phylogenetic profile, neighborhood in the interaction network,
biological pathway involved, Gene Ontology annotation, protein
domain profile etc. (Hwang et al., 2019). Each type of
measurement can form a unique type of link between genes
(Figure 1B). In a HMLN (Figure 1C), multiple types of
heterogeneous nodes are involved. The nodes from each type
are grouped into a single layer and treated separately. In the same
vein, different types of intra-domain and cross-domain relations
are marked differently in a multi-layered network. We note that
more complex network representations, such as multiplex multi-
layered network, may be needed in real applications. In this
review, we focus on the cross-domain relation inference (or link
prediction) problem for the HMLN. Readers can refer other
excellent reviews of the multiplex networks (Chauvel
et al., 2019).
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Recently, multi-layered networks have been proposed to
connect multiple inter-dependent heterogeneous domains in
biology (Himmelstein and Baranzini, 2015; Chen et al., 2016;
Kringelum et al., 2016; Li et al., 2017; Pinero et al., 2017) and
ecology (Silk et al., 2018). A typical example of a multi-layered
network is HetioNet (Himmelstein and Baranzini, 2015) (Figure
1D). HetioNet contains nine domains, namely compound,
pharmacologic class, gene, pathway, biological process, disease,
side effect, symptom, and anatomy. Another example of a multi-
layered network is a multi-scale model that represents metabolic
phenotypic response to vaccination (Li et al., 2017). It consists of
four layers: blood transcriptomics, plasma metabolomics, plasma
cytokines, and cell populations. The multi-layered network
provides a natural way to represent the hierarchy of a
biological system and its environmental context: from genetic
markup to gene to biological pathway to cellular function to
organismal phenotype to population dynamics. It allows us to
uncover novel relations between biological entities (e.g.
genotype-phenotype associations) on a multi-scale.
Furthermore, the cross-layer relations may represent casual
effects (e.g. loss-of-function mutation) rather than statistical
correlations, e.g. Genome-Wide Association Studies (GWAS).
Compared to a homogeneous single-layered network, a unique
topological characteristic of a multi-layered network lies in its
cross-layer relation or dependency structure in addition to intra-
layer connectivity. For example, in HetioNet (Himmelstein and
Baranzini, 2015), a compound can inhibit or activate a gene. This
cross-layer dependency often plays a central role in a multi-
layered network. The prediction of new cross-layer relations is
often the key to new discoveries, such as a treatment of a new
disease by an existing drug, i.e. drug repurposing.

Substantial efforts have been devoted to reconstructing a
multi-layered network [e.g. HetioNet (Himmelstein and
Baranzini, 2015)] from the experimentally observed or
FIGURE 1 | Illustration of three types of network models, (A) homogeneous network, where all nodes and edges are treated equally, even though they may belong
to different types (dashed red and green circles). (B) multiplex network, (C) multi-layered network, (D) an example of heterogeneous multi-layered network HetioNet
(Himmelstein and Baranzini, 2015).
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computationally inferred heterogeneous data sets. Even though
the recent technology advances have enabled the generation of a
vast amount of biological, physiological, and epidemiological
data, the cross-layer relations observed by experiments are rarely
complete, unbiased, and certain (Xie et al., 2017). Many
important cross-layer relations are even completely missing.
For example, there are no connections between genes and side
effects in HetioNet, although such linkages are critical in
understanding the molecular and genetic basis of adverse drug
reactions. An unsolved computational problem is how to
efficiently, accurately, and robustly infer the missing cross-
layer relations in a HMLN.

In this review, we summarize the recent advances in the
development of cross-layer relation inference algorithms for the
HMLN, and their applications to biological discovery. The paper
will be organized as follows. First, we will discuss the properties
of biological HMLN. Second, we will introduce four major
computational strategies for the cross-layer relation prediction,
namely, matrix factorization, random walk, meta-path, and deep
learning. Then, we will demonstrate the applications of these
methods in biomedicine. Finally, we will discuss the unsolved
issues and future directions.
CHARACTERISTICS OF BIOLOGICAL
HMLN

Biological HMLN has several unique characteristics that impose
great challenges for cross-layer relation inference.

Biasness
Due to limitation of experimental techniques and biases of
researchers' interests, the observed data is highly skewed to
certain gene families, species, diseases, etc. (Xie and Bourne,
2005) Rapid accumulation of large omics data could alleviate this
problem to a certain degree. In addition, the reported positive
results often greatly exceed the reported negative results, as the
latter ones are seldom reported in the literature. Unless this
reporting bias is taken into account, the models trained using the
observed data by machine learning are unrealistic and hence
unreliable when applied to unseen data.

Noisiness
Many observed cross-layer links are noisy. The source of
noisiness is mainly due to the inconsistency in the experimental
and clinical observations. Given the same relation, the
inconsistency might result from different experimental
protocols, computational pipelines, and batch effects.

Uncertainty
The relations in HMLN often come from calculated values or
predictions made by heuristic algorithms. For example, many
algorithms exist for computing intra-layer relations, such as
chemical-chemical similarity. These methods differ in the
choice of chemical representation and similarity metric
employed. Similarly, no method is perfect for constructing
Frontiers in Genetics | www.frontiersin.org 3
cross-layer relations. While text mining is a popular technique,
it is known to introduce a large number of false positives.

Conditionality
Biological observations could be from different cell lines, culture
conditions, disease conditions, and environmental conditions.
Under different circumstances, the biological relations are
changed dynamically. For example, the physical strength and
functional consequence of protein-ligand binding are strongly
dependent on that mutation and post-modification state of
protein, gene expression profile, and other factors.

Ambiguity
Many relations in HMLN are ambiguous and require proper
classification. In one scenario, a relation can have opposite
biological consequence. For example, the “association” relation
between diseases and genes in HetioNet (Figure 1D) can be
either “upregulate” or “downregulate”. Another example is the
binding of bioactivity compounds on a protein. The bioactivity of
compound is often ambiguous. It could be an agonist or
an antagonist.

Sparsity and Imbalance
The observed cross-layer links are highly sparse. In the real
world, the number of relations of existence could be far less than
the number of relations of non-existence. For example, a highly
selective drug only binds to several protein isoforms among
hundreds of thousands of protein isoforms in human. In
addition, the observed relations are rare compared with the
unobserved relations. For example, among hundreds of
millions of sequenced genes, only tens of thousands of genes
have the bioactivity data associated with chemical compounds.
Because the negative cases often and greatly outnumber the
positive ones, this imbalance imposes a great challenge in model
training and evaluation.

Open World Assumption
Missing links cannot be treated as false relations, but instead as
“unknown”. In reality, these links could represent either a true or
false relation (of different kinds, if the relation is not binary), or
the lack of a relation.
ALGORITHMS FOR RELATION
INFERENCE IN HMLN

Overview
The premise of relation inference or link prediction is that the
missing relations can be inferred from the existing observed
relations. Although such direct linkages are sparse, they can be
recovered through intermediate intra-domain and cross-domain
relations. For example, if a rare SNP Sx is a gain-of-function
mutation of the gene G3 and if G3 is associated with the tall
height P1, then Sx is likely to be associated with P1, even if the Sx-
P1 association is not statistically significant in the GWAS
(Figure 2). However, such a simplistic inference method, based
January 2020 | Volume 10 | Article 1381
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on the existing highly sparse and highly biased observations, is
prone to type I errors. In the above setting, multiple genes (e.g.
G3 and G4) may be collectively responsible for P1 and thus the
likelihood of the inference “Sx causes P1” has to be adjusted
accordingly. To factor in the network multi-connectivity, an
algorithm needs to jointly predict whether Sx is associated with
other genes and whether these genes are associated with P1, by
simultaneously taking all observed cross-layer and intra-layer
relations into account. In Figure 2 example, the linkages of Sx-
S2-> G2- G4 and Sx- S3-> G2- G4 will significantly strengthen the
inferred Sx-P1 association.

A number of algorithms have been developed to solve the
relation inference problem in HMLN. All of these algorithms
follow a common framework, consisting of two steps, as shown
in Figure 3. The first step is to infer low dimension (i.e. rank)
latent features for each entity and/or relation (aka node
embedding and edge embedding). In the second step, the
latent features from different layers are used to restore all
missing cross-layer relations through a simple inner product or
other more sophisticated machine learning techniques. In
Figure 3, a chemical-gene-disease network is used to illustrate
the concept. The input is a matrix representation of multi-
layered network including both intra-layer relations (disease-
disease similarity, gene-gene similarity, and chemical-chemical
similarity) or their attributes (e.g. fingerprint representation for
nodes in chemical layer, sequence representation for nodes in
Frontiers in Genetics | www.frontiersin.org 4
gene layer, and word2vec representation for nodes in disease
layer), as well as a set of cross-layer relations (observed gene-
disease association and chemical-gene interaction). In principle,
even if we do not know any drug-disease associations, we can
infer them through observed drug-gene, and gene-disease
associations. The difference between the algorithms lies in the
objective function for shallow or deep representations in the first
step and machine learning methods for classification, regression,
or ranking used in the second step.

In the next section, we review the major embedding
algorithms in more details. These algorithms can be roughly
classified into matrix factorization, random walk, meta-path,
graph convolutional network (GCN), and their combinations.

Matrix Factorization
The cross-layer relation inference problem is conceptually
related to collaborative filtering (Goldberg et al., 1992).
Commonly used collaborative filtering methods can be
classified into two groups: neighborhood methods (Breese et
al., 1998) and latent factor methods (Koren et al., 2009). As the
latent factor approach is generally more effective in capturing the
implicit cross-layer relations, many variants of this methodology,
such as recommended systems (Portugal et al., 2018), have been
proposed to address relation inference problems in a two-layered
network (Gao et al., 2019; Xuan et al., 2019). However, few
methods have been developed for the multi-layered network.
FIGURE 2 | An illustration of relation inference in the HMLN. The line thickness is proportional to the degree of relation. Arrowed and headed lines denote positive
and negative relations, respectively.
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Zitnik et al. developed a penalized matrix tri-factorization
(PMTF) approach for data fusion (Zitnik and Zupan, 2015).
Singh et al. proposed a collective matrix factorization (CMF)
model to learn the dependencies across any two inter-dependent
domains (Singh and Gordon, 2008). However, neither PMTF
nor CMF takes the side information (i.e. intra-relations) into
account. Moreover, both methods suffer the “cold-start”
problem, which occurs when a new node arrives in the network.

Recently, Chen et al. developed the FASCINATE (Chen et al.,
2016) algorithm to solve the multi-layered network inference
problem, formulated as a weighted neighborhood-regularized
collective one-class collaborative fi l tering problem.
Mathematically, let G denotes a g × g layer-layer association
matrix, where G(i, j) = 1 if layer-j associates with layer-i, and G(i,
j) = 0 otherwise. Furthermore, let A = {A1,…,Ag} represents a set
of g within-layer connectivity matrices that describe the
connectivity/similarity between nodes within the same layer.
Finally, denote by D = {Di,j i, j = 1,…, g} the set of cross-layer
relation matrices, where Di,j specifies the relations between the
nodes from layer i and the nodes from layer-j. (each relation is
labeled 1, in case of an observed association; otherwise 0). The
problem of inferring missing relations between layers is
formulated as the following minimization problem:

min
Fi≥0 i=1,…,gð Þ

J = o
i,j :G i,jð Þ=1

‖Wi,j ⊙ Di,j − FiF
0
j

� �
‖2F|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Matching observed cross-layer relations

+ ao
g

i=1
tr F0

i Ti − Aið ÞFi
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Node homophily

+ bo
g

i=1
‖ Fi ‖2F|fflfflfflfflffl{zfflfflfflfflffl}

Regularization

(1)
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In the above loss function, Wi,j denotes an ni × nj weight
matrix that assigns different weights to different associations in
the corresponding cross-layer relation matrix Di,j, depending
on the confidence in Di,j. The confidence scores are extracted
from the existing databases (Jensen et al., 2009; Kuhn et al.,
2012). The matrix Fi gives the low-rank representation for nodes
in layer i, while Ti is the diagonal degree matrix of Ai. Overall, the
first term in Eq. 1 is used to match all the cross-layer relations
calibrated by the weight matrix Wi,j,. The second term ensures
that the similar nodes have similar low-rank representations. The
third term is included to help prevent over-fitting. The
optimization problem defined in Eq. (1) is non-convex. Block
coordinate descent method is applied to find a local optima
(where each Fi naturally forms a ‘block’). Furthermore, the
second term in Eq. (1) allows us to address the cold-start
problem (namely the scenario where the query node does not
have any known cross-layer links with the existing nodes in the
network) based on similarity information.

There are several limitations of the existing MF-based
methods for HMLN. First, the linear reconstruction of the
complete matrix may not capture the complex cross-layer
relations that are often non-linear. Deep neural network
(DNN) has enjoyed great success in two-layered recommender
system (Batmaz et al., 2019). Thus, it is interesting and tempting
to extend the application of DNN to model the HMLN. Second,
multiple types of links are often needed to model various
biological relations between two layers. For example, there are
three types of links between ‘gene’ and ‘disease’ in HetioNet:
‘down-regulate’, ‘up-regulate’, and ‘associate’. And, while ‘down-
regulate’ and ‘up-regulate’ are mutually exclusive, ‘associate’ is
ambiguous (could be either ‘down-regulate’ or ‘up-regulate’). Few
FIGURE 3 | An illustration of the common algorithmic framework for the relation inference (link prediction). HMLN is represented as a graph or collection of matrices.
An inference algorithm takes the HMLN as input and generates a low-rank latent feature representation of chemicals, genes, and diseases, respectively. The inner
product of latent features or supervised learning techniques will reconstruct complete gene-disease, chemical-disease, and chemical-gene association matrix.
January 2020 | Volume 10 | Article 1381
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of the existing MF-based methods can handle such multi-type
relations. Finally, the scalability might become an issue when the
existing implementations of MF are applied to extremely large
matrices. A distributed variant of MF could alleviate the problem.

Random Walk
Network propagation algorithm has been widely used in network
biology (Cowen et al., 2017). Majority of applications of network
propagation to biology networks are formulated in a
homogeneous setting. For example, Lin et al. constructed a
disease-gene-chemical network by integrating multiple data
resources and then applied several homogenous network
propagation algorithms for the relation inference (Lin et al.,
2019). The random walk with restart (RWR) is one of the most
representative network propagation algorithms. It was first
developed to explore the global topology of networks, by
simulating a particle that iteratively moves from a node to a
randomly selected neighboring node (Lovasz, 1993). Only
recently, random walk model has been extended to HMLN by
allowing jumps across layers (Valdeolivas et al., 2019).

Consider an undirected graph, G = (V, E) with adjacency
matrix A. An imaginary particle starts a random walk at the
initial node v0 ∈ V. At a discrete time step t ∈ N, the particle is at
node vt. Then, it walks from vt to vt+1, a randomly selected
neighbor of vt, by following the transition matrix M calculated
from A via column normalizat ion (Lovasz , 1993).
Probabilistically, ∀x,y ∈ V, ∀t ∈ N

P vt+1 = yjvt = xð Þ =
1=d xð Þ if  x, yð Þ ∈ E

0 otherwise,

(
(2)

where d(x) is the degree of x in the graph G. The probability
distribution of random walk at time t+1 is described by the
following equation:

PT
t+1 = MPT

t (3)

Accounting for the restart probability r on the seed node to
avoid the particle’s dead-end, the random walk with restart
(RWR) can be reformulated as:

PTt+1 = 1 − rð Þ*MPT
t + r*PT0 (4)

Even a multiplex graph with the collection of L undirected
graphs can be formulated as a RWR problem (De Domenico et
al., 2013; Kivelä et al., 2014). Each layer a = 1,…,L, can be
represented by an n-by-n adjacency matrix A[a] = (A[a] (i,j))i,j = 1,

…,n, where A
[a] (i,j) = 1, if nodes i and j are connected in layer a,

and 0 otherwise (Battiston et al., 2014). The multiplex graph is
defined as GM = (VM, EM), where:

VM = vai , i = 1,…, n,a = 1,…Lf g,
where vai stands for node i in layer a ,  and

(5)

EM = vai , v
a
j

� �
,  i, j = 1,…, n,  a = 1,…L,  A½a� i, jð Þ ≠ 0

n o
∪ vai , v

b
i

� �
, i = 1,…, n,  a ≠ b

n o
: (6)
Frontiers in Genetics | www.frontiersin.org 6
The particle can walk from its current node vai to any of its
neighbors within a layer, or jump to any node vbi with a ≠ b (De
Domenico et al., 2013), and thereby travel from one layer to
another, as shown in Figure 1C.

Extending classical RWR algorithm to a multiplex graph
introduces a supra-adjacency matrix A of size nL*nL, which
contains different types of transitions:

A =

1 − dð ÞA½1� d
L−1ð Þ I ⋯ d

L−1ð Þ I

d
L−1ð Þ I 1 − dð ÞA½2� ⋯ d

L−1ð Þ I

⋮ ⋮ ⋱ ⋮
d
L−1ð Þ I

d
L−1ð Þ I ⋯ 1 − dð ÞA½L�

0
BBBBBB@

1
CCCCCCA (7)

In (7), I is the n-by-n identity matrix and A[a] is the adjacency
matrix of the layer a, as previously described. The diagonal
elements represent potential intra-layer walks, whereas the
off-diagonal elements account for possible jumps between
different layers. The parameter d ∈ [0,1] quantifies the
probability of staying in the current layer or jumping to another
layer. If d = 0, the particle will stay in the same layer after a non-
restart step.

Topological features of each node or edge derived from the
RW algorithm can be directly applied to link prediction. Those
features are often used as the basis of the more sophisticated
node embedding algorithms, such as DeepWalk (Perozzi et al.,
2014), Node2Vec (Grover and Leskovec, 2016), etc. However,
these algorithms focus on the homogenous network and have not
been extended to HMLN yet.

One of major limitations of the network propagation
algorithm is that its performance strongly depends on the
topology of the input network. It is less tolerant to biasness,
noisiness, and incompleteness of the network, which are the
characteristics of reconstructed biological HMLN.

Meta-Path-Based Algorithms
Meta-path has been extensively studied in heterogeneous
information networks (HIN) (Sun and Han, 2013). Since
HMLN is a variant of HIN, the meta-path algorithm, described
here, can be applied to the relation inference problem for HMLN.
Given a directed graph representation: G = (V, E) of HIN, an
object type mapping function t: V! A and a link type mapping
function j : E! R are defined such that object v ∈ V belongs to
one particular object type t (v) ∈ A and each link e∈ E belongs to
a particular relation j(e) ∈ R. A meta-path in G is a sequence of
relations R1, …, Rl, which connect two object types Ai and Aj. In
the example of Figure 2, the relation types include SNP-
associate-Phenotype (SaP), Chemical-associate-Gene (CaG),
and Gene-associate-Phenotype (GaP), SNP-similar-SNP (SsS),
Phenotype-similar-Phenotype (PsP), and Gene-similar-Gene
(GsG). The SNP-Phenotype association between Sx and P1 can
be defined by multiple meta-paths, e.g., SaG->GaP, SaG->GsG-
>GaP, and SsS->SaG->GaP, etc. By systematically designing
meta-path based topological features and their measures in
HLMN, supervised models can be used to learn the best
weights associated with different topological features for
January 2020 | Volume 10 | Article 1381
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effective relation inference (Sun et al., 2012). In general, for a
target relation <Ai, Aj>, any meta-path starting with type Ai and
ending with type Aj (other than the target relation itself) can be
used as a topological feature. All these meta-paths can be
obtained by traversing on the network schema, for example,
using the breadth first search. Most algorithms for HIN
reconstruction enumerate a predefined set of meta-paths. Once
all meta-paths are defined, the next task is to design measures
on their topology. The commonly used measures include the
count of the path instances and the random walk-based
measures. Using topological features, either a supervised or
unsupervised learning model is used for node representation.
For example, the metapath2vec method (Dong et al., 2017) uses
a meta-path-based random walk to form the heterogeneous
neighborhood of a node, taking advantage of word
representation algorithm in the Nature Language Processing to
perform node embedding (Dong et al., 2017). One of the
drawbacks of these algorithms is that they require manual
predefinition and enumeration of meta-paths. This may be not
feasible for schema-rich HMLN or the relations that involve
multiple hopping paths (Cao et al., 2017), e.g. relations inferred
through thousands of similar chemicals.

Graph Neural Network and Other Deep
Learning Techniques
Besides the traditional algorithms, like matrix factorization,
random walk, and meta-path, introduced in previous sections,
the embedding of HMLN can also benefit from Deep Learning
techniques, especially the Neural Networks (NNs). Though NNs
are initially proposed to learn the embedding of data, such as
texts, images, and videos, they have shown powerful
performance when dealing with graph structured data, which
exist in non-Euclidean domain. Due to the growing interests
and demands in recent years, Graph Neural Networks (GNNs)
have been proposed to learn the embedding of graphs (Li et al.,
2015; Scarselli et al., 2008; Duvenaud et al., 2015; Kipf and
Welling, 2017; Hamilton et al., 2017; Zhang et al., 2018; Ying
et al., 2018; Morris et al., 2019; Xu et al., 2019; Zhang and
Xie, 2019).

A GNN consists of a number of hidden layers that employ
iterative, propagation procedures in order to transform different
node and edge features. Each layer takes the output of the
previous layer as the input. With graph structured data, GNNs
adopt element (node or edge) features X and the graph structure
A as input to learn the representation of each element hi, or
graph hG, for different tasks. Each hidden layer employs the
“aggregation” functions and the “update” functions (Battaglia
et al., 2018). Each aggregation function r takes a set of node or
edge features as input and reduces it to a single element which
represents the aggregated information. The aggregations usually
operate on the nearest neighbors or the local subgraphs of each
element to capture local information gradually. Since the
permutation invariance of the input holds in graph data, the r
functions must also have the same property. These functions can
take variable numbers of arguments. Commonly used r
functions include sum (Xu et al., 2019), mean (Kipf and
Welling, 2017), max-pooling (Hamilton et al., 2017) and
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attention mechanism (Velickovic et al., 2018; Wang et al.,
2019; Fan et al., 2019). Update functions f are applied across
all elements to compute per-element updates after the
aggregations. In the final layer, the generated embedding can
be fed into the classification/prediction layer, and the whole
model is trained for different (e.g. node classification, link
prediction) tasks.

The design of GNNs is flexible. GNNs can be designed to fit
different graph structures and different tasks. In the link
prediction problem, the prediction of a feature (e.g. link or
non-link) of a desired edge is based on the local structural
information around that edge. For example, the method by
Zhang et al. learns the link prediction heuristics from local
(enclosing) subgraphs of edges rather than from the entire
network (Zhang and Chen, 2018). The prediction of cross-
layer relations follows a similar idea if HMLN is given as
input. The model designed by Fan et al. learns the embedding
of the two nodes by aggregating their neighbors (Fan et al., 2019).
The embedding of two nodes is fed into a classification layer to
classify the type of a given edge. Due to the topology of HMLN,
GNNs can take meta-path into consideration when designing the
aggregation functions r. In (Wang et al., 2019), the node
embedding are computed by the neighbor nodes connected by
meta-paths. During the training procedure, the effect of different
meta-paths can be distinguished by using attention mechanism
in aggregation. In (Zhang et al., 2018), the original input
heterogeneous network is modified to be multi-channel
network. Each channel is a homogeneous network consisting
of the nodes that are connected by a similar type of meta-paths
in the original network. Thus, GNNs can be used on each
channel for learning the embedding, which is concatenated
from all channels. As discussed in the previous section, the
meta-path based GNN shares the same limitations of other
meta-path based algorithms. New types of GNNs, those that
explicitly take different types of relations into consideration, are
needed for the link prediction problem in HMLN (Nathani
et al., 2019).

Although Graph Neural Networks have been applied to
heterogeneous networks and proven their ability of learning
representations (Zhang et al., 2019), GNNs still exhibit
limitations in several aspects. First, current GNNs proposed for
the learning of heterogeneous networks do not particularly
distinguish cross-layer from intra-layer relations. For example,
while researchers can simply treat distinct relations as different
types, the intra-layer relations in the same layer of an HMLN
usually represent the similarity relation, which is semantically
distinct from the cross-layer relation. The above needs to be
taken into consideration when designing GNNs for HMLN.
Second, the current design of GNNs relies on heuristics and
empirical findings, which adds to the difficulty of learning the
representations of HMLN. To enhance power of HMLN, it is
crucial to properly identify the conditions that the aggregation
and update functions ought to satisfy and to set those functions
accordingly. Third, although GNNs can achieve promising
results on different tasks for heterogeneous networks, it is hard
for GNNs to have interpretability comparing to other traditional
techniques. Therefore, new methods are needed to handle the
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problems that need interpretability (e.g. the need to find
important nodes or edges that contribute to the results).

Application of HMLN in Omics Data
Integration and Analysis
Homogeneous and bi-layered network models have been widely
applied in omics data integration and analysis. Recently, the
HMLN has emerged as a powerful alternative. Here, we will
highlight several exemplary applications of the HMLN to infer
genotype-phenotype associations, and to predict chemical and
other environmental perturbations.

Yao et al. integrated multi-omics data to construct a three-
layered network model MetPriCNet, which consists of
metabolite network, gene network, phenotype network,
metabolite-phenotype network, metabolite-gene network, and
gene-phenotype network (Yao et al., 2015). Afterwards, an RWR
algorithm is applied to prioritize metabolites associated with
diseases. The cross-validation on a benchmarking data set
achieved the AUC values exceeding 0.9. An approach similar
to MetPriCNet has been applied to identify and prioritize the
metabolites responsible for atrial fibrillation (Yan et al., 2019),
postmenopausal osteoporosis (Zhang et al., 2019), and Acute
Lung Injury in Patients with Sepsis (Wang et al., 2019).

In addition tometabolite-disease association, the RWRmethod
has been used to identify other molecular dysregulations that are
associated with diseases based on the multi-layered network
model. To infer disease associated m6A RNA methylation site,
Tang et al. constructed a three-layered network, that includes a
m6A site network, a gene network, a disease network, a m6A-gene
network, and a gene-disease network (Tang et al., 2019). Xu and
Wang applied random walk on a three-layer heterogeneous
network that uses a kinase layer as an intermediate to infer
disease-phosphorylation site relation. They showed that the
three-layer phosphorylation site-kinase-disease network model is
superior in inferring disease-phosphorylation site relation when
compared with the existing random walk models and commonly
used classification methods (Xu and Wang, 2016).

HMLN provides new opportunities for inferring novel drug-
target-pathway-disease-side effect associations. The
identification of such missing relations could facilitate the
discovery of new therapies for complex diseases.

The ANTENNA method by Wang et al. employs a one-class
collaborative filtering technique based on RWR and the matrix
tri-factorization to predict the drug-disease associations using a
three-layered drug-gene-disease network. In a comprehensive
benchmarking study, ANTENNA outperformed the more
conventional OCCF methods. Using ANTENNA, Wang et al.
showed that diazoxide might inhibit the growth of triple negative
breast cancer (TNBC) cells efficiently (Wang et al., 2018). Lim et
al. applied FASCINATE to a three-layered drug-gene-side effect
network model to identify biological pathways associated with
rare side effects. Their predicted side effect-causing pathways are
consistent with clinical evidences (Lim et al., 2018). Fu et al.
extracted meta-path based topological features from a semantic
network with nine object types (compound, ChEBI type,
chemical substructure, protein, GO annotation, pathway,
tissue, disease, and side effect), and twelve relation types.
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Subsequently, they applied the extracted features to predict
drug-target interactions (Fu et al., 2016).
FUTURE DIRECTIONS

Representation of Biological Hierarchy
and Environment
Only a few multi-layered network models for the genotype-
phenotype associations have been developed that consist of
more than three layers. These models lack the power to
represent the full spectrum of information flow from the
genotype to the phenotype. Even in a simplified picture, a
multi-layered network model needs more than three layers to
connect genome to phenome via epigenome (DNA layer),
transcriptome (RNA layer), proteome (protein layer), and
metabolome (metabolite layer). The representation of DNA,
RNA, protein, and metabolite in the different layer could
facilitate heterogeneous omics data integration and multi-scale
modeling of information flow from genotype to phenotype.
Furthermore, environmental components, such as gut
microbiome, play a critical role in shaping the organismal
phenotypes. With the exponential growth of different omics
data from the same cohorts [e.g. TCGA (Cancer Genome Atlas
Research Network et al., 2013)], the multi-layered network model
represents a potentially powerful tool to integrate and analyze
heterogeneous data sets for novel discovery.

Incorporation of Mechanism-Based
Modeling
The capability of data-driven modeling is limited by the existing
data. We can enrich the missing relations in HMLN using
complementary methods. For example, text mining is a
commonly used tool to construct HMLN. Besides alternative
machine learning approaches, mechanism-based modeling in
biophysics, systems biology, and other fields can be applied to
establish causal relations between entities. For example, protein-
ligand docking can be applied to infer chemical-protein
interactions. The mechanism argument HMLN may provide us
with new opportunities for novel discovery, as demonstrated in a
recent study (Lim et al., 2019). However, the potential false
positives from the outside predictions should be taken into
consideration when designing HMLN learning procedures.

Data Consolidation and Normalization
When reconstructing HMLN, both intra-layer and cross-layer
relations can come from multiple resources. For instance, in
HumanNet, gene-gene co-functional links are derived from co-
citation, co-essentiality, co-expression, pathway database, protein-
domain profile association, and gene neighborhood (Hwang et al.,
2019). Another example is chemical-protein interaction (Gaulton
et al., 2012). The binding assay could be performed using different
experimental techniques, and measured by different metrics
(IC50, pKi, etc.). However, mapping the entities, minimizing
batch effects, and normalizing the weights of different edge
types in the same network remain the challenging tasks.
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Inference of Directionality and Trend of
Relations
Few of relation inference algorithms can predict the
directionality and trend of edges. The directionality means that
one entity has effect on another but not vice versa. The trend
represents distinct and often opposite functional consequence.
For example, a drug can down- or up-regulate a gene. The
identification of the directionality and trend of relation is pivotal
to understand many biological processes such as drug action,
signaling transduction and gene regulation, and determine
causality between biological entities. For example, knowing
that a chemical C interacts with a gene G, which is associated
with a diseaseD, does not necessarily imply that the compound C
will be effective on the disease D. On the other hand, if the
compound C up-regulates the gene G, and the gene G is down-
regulated in the disease D, than it is more likely for the
compound C to treat or palliate the disease D. Recent
development on signed network algorithm may provide partial
solution to this problem (Kim et al., 2018).

Inference of Non-Binary and Dynamic
Relations
Existing link prediction algorithms for HMLN mainly focus on
binary relations. However, other types of relations, such as unary
and higher-arity relations, are needed to encode more complete
biological knowledge. The unary relation represents the property of
an entity, for example, the expression value of a gene. When
modeling a dynamic system, a relation is associated with time
and location. A single binary relation is not sufficient to capture its
temporal and spatial nature. In this case, the higher-arity relations
might prove beneficial. An example of a ternary relation is “gene A
with a mutation M down-regulates the expression of gene B in
neuro cells”. This relation includes three entities or layers (mutation,
gene, and cell), and it can be expressed by three binary relations:
“Mutation M is in gene A”, “drug A down-regulates gene B”, and
“gene B is expressed in the neuro cells”. However, the genesA and B
might be expressed in other types of cells in addition to the neuro
cells. The mutation M in gene A may not down-regulate gene B in
other cells. As a result, the tissue-specific correspondence between
mutation M and the neuro cell is lost.

Incorporation of Ontology
A number of biomedical ontologies have been developed to
facilitate knowledge integration and discovery (Musen et al.,
2012). These ontologies can serve as HMLN constraints to
reduce false positives and resolve contradictory relations. There
are two types of ontology constraints that can be applied to
HMLN, namely deterministic constraint and functional
constraint. A deterministic constraint imposes a clear
dependency on relations such as “IsA” and “LocatedIn”. For
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example, if a protein binds to zinc, it is safe to state that the
protein is metal-binding, because zinc is a metal. One can
precompute all relations derived from the deterministic
constraint and add them to HMLN prior to learning. Functional
constraints enforce mutual exclusiveness between possible values.
For example, if a chemical A is a known inhibitor of enzyme B,
one can exclude the relation “A activates B” from HMLN.

Sampling of Negative Relations
Many learning algorithms need a balanced number of negative
examples. As mentioned in section 2, there are much less
negative examples than positive examples in the biological
HMLN, although, in reality, the negative cases are substantially
more frequent than the positive ones. The conventional method
is to randomly sample from a uniform distribution after
excluding positive examples. However, this approach may not
be applicable to the biological HMLN, where opposite relations
exist between two entities. For example, a drug can either “down-
regulate” or “up-regulate” a gene. It is not obvious how to assign
the sampled relations to the opposites of “down-regulate” or “up-
regulate”. Cai et al. have recently developed an adversarial
reinforcement learning framework to assign the negative
samples (Cai and Wang, 2017). This approach can be extended
to the negative sampling for different relation types in HMLN.

Visualizing HMLN
Visualization plays a key role in data mining tasks. Although
many computational platforms, such as Cytoscape (Shannon
et al., 2003), have been developed for the network visualization,
few tools are available for efficient and intuitive visualization of
HMLN, especially when the network is large (Mcgee et al., 2019).
There is an urgent need to design a robust data structure for the
representation and grouping of nodes and relations in HMLN in
a way that they can be efficiently mapped to the graphic user
interface and easily navigated by users.
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