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The lion head goose is one of the most important agricultural resources in China; however,
its breeding process is relatively slow. In the present study, a genome-wide association
study was performed for the genetic selection of egg production characters in lion head
geese. We detected 30 single-nucleotide polymorphisms located in or near 30 genes that
might be associated with egg production character, and quantitative real-time polymerase
chain reaction was used to verify their expression level in lion head geese. The results
showed that the expression levels of CRTC1 (encoding CREB-regulated transcription
coactivator 1), FAAH2 (encoding fatty acid amide hydrolase 2), GPC3 (encoding glypican
3), and SERPINC1 (encoding serpin family C member 1) in high egg production population
were significantly lower than those in the low egg production populations (*P < 0.05). The
expression levels of CLPB (encoding caseinolytic peptidase B protein homolog), GNA12
(encoding guanine nucleotide-binding protein subunit alpha-12), and ZMAT5 (encoding
zinc finger, matrin type 5) in the high egg production population were significantly higher
than those in the low egg production populations (*P < 0.05). The expression of BMP4
(encoding bone morphogenetic protein 4), FRMPD3 (encoding FERM and PDZ domain
containing 3), LIF (encoding leukemia inhibitory factor), and NFYC (encoding nuclear
transcription factor Y subunit gamma) in the high egg production population were very
significantly lower than those in the low egg production population (**P < 0.01). Our
findings provide an insight into the economic traits of lion head goose. These candidate
genes might be valuable for future breeding improvement.

Keywords: lion head goose, genome wide association study, egg production, candidate genes, quantitative real-
time polymerase chain reaction
INTRODUCTION

The lion head goose is named for the sarcoma that makes it resemble a lion's head from the front.
Lion head geese provide great economic benefits via the widespread consumption of their meat as
stewed products (Zhuang and Lin, 2006). Lion head geese, originating from Shantou Raoping in
Guangdong province, are the only large and major goose species in China, and are the germplasm
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resources under special state protection (Chen et al., 2011). Lion
head geese, whose ancestors are anser cygnoides, are herbivorous
animals showing fast growth and large body size; as such, their
feeding is relatively environment-friendly (Huang, 2009; He
et al., 2012). However, they show low fertility with an average
of 20–25 eggs per year (Zhang, 1991). The egg-laying period is
not continuous but is divided into three parts caused by its strong
broodiness (Wang, 2007). A lower laying rate may hinder the
development of the lion head goose industry. Therefore, based
on maintaining the characteristics of its original breeds,
improving the low fecundity has become an important
breeding objective of lion head goose, among which the egg
laying characteristics are one of the most significant aspects
(Wang et al., 2008). It is believed that egg production could be
improved by adopting a modern genome-enhanced
breeding scheme.

Genome-wide association studies (GWASs), which were
proposed first by Risch in 1996, are powerful and effective
tools to identify genetic markers associated with the trait of
interest (Risch and Merikangas, 1996). In recent years, a large
number of GWASs on human diseases have been published, such
as for vitiligo (Shen et al., 2016) and for livestock animals such as
pigs (Luo et al., 2012). Since the development of the HapMap
Project, a number of high-density single-nucleotide
polymorphism (SNP) chips for plant and animal species like
chicken, swine, cattle, sheep, and the like have been developed as
well (Gibbs et al., 2003). Hoglund et al. found that a total of
17,388 significant SNP markers and candidate genes associated
with female fertility were distributed on 25 chromosomes in the
Nordic Red cattle group (Hoglund et al., 2015). Shen et al. carried
out GWAS on Ningdu Sanhuang chickens with Chicken chip
and found the candidate gene, GARNL1, which was related to
reproductive traits (Shen et al., 2012). Xie used the Illumina
Porcine SNP60K chip to screen the potential candidate genes
that may be associated with the litter size of the Xiang Pig (Xie,
2016). The production of SNP chips and the appearance of high-
throughput sequencing technology have made GWAS an
important research strategy in some fields. GWAS is widely
accepted as a primary method for gene detection (Jiang
et al., 2010).

In the present study, we performed GWAS to identify SNPs
and potential genetic variants that may be associated with egg
laying character of the lion head geese. Then we attempted to
verify their functionality. As a result, we have identified certain
genes that might play important roles in the egg laying process.
MATERIALS AND METHODS

Animals Resources and Sample Collection
Lion head geese are the largest goose breed in China and are the
one of the world's big goose species. In the past 2 years, we have
bred a batch of lion head geese with high and low egg production
in the Shantou Baisha Research Institute of Original Species of
Poultry and Stock, Guangdong Province. These geese have the
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same growth environment and nutritional supplements, and they
have free access to food and water.

A total of 217 geese blood samples were collected at the
Shantou Baisha Research Institute of Original Species of Poultry
and Stock, including 136 high egg-production geese (more than
35 eggs per year) and 81 low egg-production geese (less than 25
eggs per year). Blood samples were stored at an ACD
anticoagulant tube at −80°C cryogenic refrigerator for
further experiments.

DNA Extraction and Whole Genome
Sequencing
Genomic DNA was extracted from peripheral blood cells of the
high and low egg production groups using a HiPure Blood DNA
Mini Kit (Magenbio, Guangzhou, China). After passing the
quality inspection of NanoDrop 2000 Spectrophotometer
(Thermo, America), the DNA samples were sent to Beijing
Genomics Institute (Shenzhen, China) for whole genome
resequencing. An Easy DNA Library Prep Kit (MGI, Shenzhen,
China) was used to carry out the double-enzyme digestion to
construct six libraries, re-sequenced using the BGISEQ-500RS
platform with an average 12× sequencing depth and coverage
of 8%.

Data Preparation and Statistical Analysis
Genotyping Data
To obtain better quality sequencing data, the raw data was
filtered using the software SOAPnuke (Chen et al., 2018). The
clean reads were then aligned with the Anser cygnoides
domesticus genome data (https://www.ncbi.nlm.nih.gov/
genome/31397?genome_assembly_id=229313) using BWA (Li
and Durbin, 2010; Lu et al., 2015). The software SAMtools and
GATK4 (https://software.broadinstitute.org/gatk/download/)
then were used to detect variations and SNPs (Li, 2011). To
limit the number of false positives and low confidence variants,
all called variants were filtered using hard filters set according to
the Broad Institute's hard filtering recommendations: quality by
depth (QD) 2.0, read position rank sum −8.0, Fisher strand (FS)
60.0, root mean square (RMS) mapping quality (MQ) 40.0,
strand odds ratio (SOR) 3.0, mapping quality rank sum test
(MQ Rank Sum) −12.5, quality 30, minimum allele frequency
5%, call rate 70%, and Hardy–Weinberg equilibrium (HWE)
P > 1e−6.

Then, Vcftools was used as a secondary filter, according to the
following criteria: minor allele frequency (MAF) 0.05, HWE
P = 1e−6, and max-missing 0.7 (Danecek et al., 2011).

Given the large number of scaffolds, scaffolds were combined
into 21 chromosomes. The ordered SNP loci were separated into
the 21 artificial chromosomes per 50 million base pairs (i.e. 1–50
Mbps, 51–100 Mbps etc.). Principal component analysis (PCA) was
performed to identify genetic variation and the population structure.

Phenotypic Data
Descriptive statistics of phenotypic data were carried out by SPSS
22 software (IBM Corp., Armonk, NY, USA), and the sample
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size, maximum, minimum, average and standard deviation of
high and low egg production samples were calculated.

Statistical Analysis
Genome wide association studies was performed using the
EMMAX software with egg production character classified by
dichotomies, i.e., the data was divided into high and low egg
production (Kang et al., 2010). The analysis model was as
follows:

P = m + Za + SNP + e

where P is the vector of phenotypes of the individuals, m is the
intercept of a straight line, Z is the incidence matrix of random
polygenic effects, a is the random polygenic effects, SNP is the
effect of a single nucleotide polymorphism, and e is the vector of
residual errors with e ~ N (0, Ise), where I is the identity of
matrix and se is the residual variance.

Multiple Hypothesis Testing and Correction
The tested SNP markers could be used to make a Bonferroni
adjustment with the 5% GWAS-wide significance level:

a =
0:05
n

where a is the GWAS-wide significance level, n is the number
of all tested SNP sites. In order to reduce false negative, and then
extending the threshold 20 times as the suggestive value.

Population Stratification
Population stratification refers to the existence of subpopulations
with different allele frequencies, which may pose a great threat to
the validity of GWAS results, and even leads to false-positive
results. The quantile–quantile plot (Q-Q plot) was used to assess
the GWAS results, to judge whether the P-value calculated by
SNP correlation analysis deviated from the hypothesis test on the
whole overall.

Detection of Candidate Genes
Based on the NCBI database (http://www.ncbi.nlm.nih.gov/) and
Ensemble (http://www.ensemblgenomes.org), these SNPs
identified by GATK4 were located in or near 30 genes.

Quantification of Candidate Genes
To observe whether the candidate genes were differentially
expressed in the high egg production group compared with the
low group, we performed quantitative real-time polymerase
chain reaction (RT-qPCR) for these genes. Total RNA was
extracted from PBCs using the TRIzol reagent, and synthesized
into cDNA using a Reverse Transcription Kit (Takara, Shiga,
Japan). The cDNA was then used as a template for RT-qPCR
using the CFX96 Touch (Bio-Rad, Hercules, CA, USA). The RT-
qPCR primer sequences were synthesized by Sangon Biotech
(Guangzhou, China) and were stored at −20°C for later use.
According to the instructions of 2× SYBR Green qPCR Master
Mix kit (Bimake, Houston, TX, USA), the RT-qPCR reaction was
Frontiers in Genetics | www.frontiersin.org 3
performed in triplicate and uses comprises 20 ml, containing
10 ml of 2× SYBR Green qPCR Master Mix, 0.4 ml of ROX
Reference Dye, 1 ml of cDNA template, and a 0.5 mM
concentration of specific primers. Thermal cycling parameters
were as follows: 95°C for 5 min; 40 cycles of 95°C for 15 s, 60°C
for 30 s, and 72°C for 30 s and 1 cycle of 95°C for 15 s, 60°C for
60 s, and 95°C for 15 s. Relative mRNA expression levels were
calculated using the 2−DDCt method and normalized using the
expression of GAPDH [encoding glyceraldehyde-3-phosphate
dehydrogenase, (Livak and Schmittgen, 2001)]. All the primers
for RT-qPCR are shown in Table S1.
RESULTS

Sample Phenotypic Data Statistics
The egg production performance of lion head goose was divided
into a high production group (>35 eggs per year) and a low
production group (<25 eggs per year).

The phenotypic data of low egg production was graphically
recorded in Figure 1A and high egg production was in Figure
1B. The sample size, maximum, minimum, average and standard
deviation of the trait measured in the current experiment were
presented in Table 1 and the boxplot is shown in Figure 1C. The
sample size, maximum, minimum, average and standard
deviation of the high egg production group were 136, 63, 35,
46, 54, while that in the low egg production group were 81, 25, 8,
17, 21, respectively. The annual egg production records for each
individual are shown in Table S2.

Sequencing Data Statistics
Aligning the clean reads to the reference sequence allowed us to
statistically analyze the sequencing depth, coverage rate, mapping
rate, and mismatch rate, as shown in Table 2. Based on 217
original high egg production and low egg production samples, 8
were excluded because of mismatch, leaving 209 samples (131
high egg production, 78 low egg production). And the average of
sequencing depth, coverage rate,mapping rate, andmismatch rate
are 12.05%, 7.56%, 91.31%, and 1.48%, respectively.

Genetic Variation and Population Structure
To determine data validity and population structure, PCA was
performed based on the variation of the sequence data, taking
principal component 1 as the horizontal and principal
component 2 as the ordinate (Figure 2). The differences
among individuals in each group were small, having high
similarity. However, the dispersion between the high and low
egg production groups was large, showing obvious population
differentiation and indicating that there was a great difference
between the two groups.

Significant Single-Nucleotide
Polymorphisms and Population
Stratification Assessment
The PCA results were used as covariates and EMMAX was used
for the GWAS analysis. In Figure 3, chromosomes 1–21 are
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shown separately with different colors. The corresponding
horizontal lines indicated the 5% GWAS-wide significance
levels and the threshold was expanded 20 times as a second
suggested value. The results are shown in Figure 3.

With the conditions of QD 2.0, Read Pos Rank Sum −8.0, FS
60.0, MQ 40.0, SOR 3.0, MQ Rank Sum −12.5, quality 30,
Frontiers in Genetics | www.frontiersin.org 4
minimum allele frequency 5%, call rate 70%, and HWE P >
1e−6, we finally identified 30 significant SNPs and the genes
located on or near them, as shown in Table 3.

The Q-Q plot showed that the screened SNPs were located
above the diagonal line, indicating that the analytical model is
reasonable. And the significantly higher points located at the top
right corner of the graph represented potential candidate
molecular markers associated with the trait (Figure 4).

Candidate Genes Analysis
To determine whether the candidate genes were differentially
expressed in the high and the low egg production group, we
performed RT-qPCR on these genes. The expression levels of
BMP4 (encoding bone morphogenetic protein 4), FRMPD3
(encoding FERM and PDZ domain containing 3), LIF
(encoding Leukemia inhibitory factor), and NFYC (nuclear
transcription factor Y subunit gamma) in the high egg
production population were significantly lower than those in
the low egg production population (**P < 0.01). The expression
levels of CRTC1 (encoding CREB-regulated transcription
coactivator 1), FAAH2 (encoding fatty acid amide hydrolase 2),
GPC3 (encoding glypican 3), and SERPINC1 (encoding serpin
TABLE 1 | Phenotypic statistics.

Group Sample
size

Maximum Minimum Average Standard
deviation

Low
group

81 25 8 17 21

High
group

136 63 35 46 54
TABLE 2 | Sequencing statistics.

Depth Coverage (%) Mapping rate (%) Mismatch (%)

Min 1.26 0.95 88.10 1.20
Max 35.64 16.85 93.06 1.79
Mean 12.05 7.56 91.31 1.48
FIGURE 1 | (A, B) The distribution of egg production in two groups. The horizontal axis shows the annual egg production and the vertical axis shows the frequency.
(A) is the distribution of low egg production group. (B) is the distribution of high egg production group. (C) is the boxplot of the average between the high and low
egg production groups.
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family C member 1) in the high egg production population were
significantly lower than those in the low egg production
population (*P < 0.05). The expression levels of CLPB
(encoding caseinolytic peptidase B protein homolog), GNA12
(encoding guanine nucleotide-binding protein subunit alpha-
12), and ZMAT5 (encoding zinc finger, matrin type 5) in the high
egg production population were significantly higher than those
in the low egg production population (*P < 0.05, Figure 5A). The
expression levels of the remaining genes (see Figure 5B for their
symbols) were not significantly different between the two groups
(Figure 5B).
Frontiers in Genetics | www.frontiersin.org 5
DISCUSSION

The Significance of Studying the Lion
Head Goose
The lion head goose is the largest meat goose currently bred in
China. It is characterized by a large size, crude feed tolerance, fast
growth, high forage reward, strong stress resistance, and has a
delicious meat that has extremely high economic value and is
deeply favored by consumers (Zhuang and Lin, 2006). Therefore,
an in-depth study of the breeding problem of lion head geese will
help to modernize the industry to meet market demand.
FIGURE 2 | Principal component analysis of egg production. Principal component 1 (PC1) and principal component 2 (PC2) values comprised the X-axis and the Y-
axis and were used to draw the scatter gram, and each dot represents one sample. Red points represent low-yield samples and blue points represent high-yield
samples.
FIGURE 3 | Manhattan plot of –log10 (P-values) for the egg laying traits in chromosome order. Each simulated chromosome contains 50 million bases. The solid line
indicates the 5% significance level and the dotted line indicates the suggested level that extended the threshold to 20 times. The red points and green points are the
significant SNPs.
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In this study, the high and low egg production populations
selected in a previous study were analyzed, and the number of eggs
per year was used as the parameter to carry out GWAS. The
phenotypic records of the egg laying character in this research were
normally distributed, which was consistent with the separation
characteristics and population separation characteristics.

Application of Genome-Wide
Association Study
In this study, we performed a GWAS for the egg production trait
of a lion head geese population. Genomic studies have been
carried out for many agricultural animals, such as chickens,
swine, sheep, cattle, and geese, however, few of them have
studied regionally important economic species such as lion head
geese in China. To the best of our knowledge, this is the first GWA
studies for the egg production character of lion head geese.
Currently, database such as NCBI and Ensembl contain few
reported goose sequences, which need to be further verification.
TABLE 3 | The SNPs related to egg laying trait was detected by GWAS.

Number SNP Position Gene P value

1 NW_013185654 11050658 CDH23 2.84E−07
2 NW_013185657 12830867 HSD17B12 3.21E−06
3 NW_013185670 6211741 EPHB3 3.95E−06
4 NW_013185674 6277159 GM2A 1.92E−09
5 NW_013185675 5989069 GNA12 4.83E−09
6 NW_013185680 1530955 NEXN 1.54E−06
7 NW_013185711 3613832 GPC4 4.56E−07
8 NW_013185714 4862813 FRMPD3 3.09E−06
9 NW_013185716 1472974 NFYC 4.45E−07
10 NW_013185724 1493289 GPC3 1.77E−06
11 NW_013185736 3684650 HTF3A 2.53E−06
12 NW_013185743 1607400 FGF9 4.42E−08
13 NW_013185754 2051719 FRY 4E−07
14 NW_013185766 1522744 ANTXR 1.51E−07
15 NW_013185777 85282 CLPB 1.12E−06
16 NW_013185779 779290 SMG7 1.30E−06
17 NW_013185791 1229858 SERPINC1 9.85E−07
18 NW_013185814 703561 SLITRK6 1.71E−07
19 NW_013185815 1430965 BMP4 4.21E−06
20 NW_013185816 1738455 RXRA 4.12E−06
21 NW_013185899 252542 CRTC1 2.37E−06
22 NW_013185902 401032 KCNAB2 3.75E−07
23 NW_013185915 928804 TMLHE 9.1E−07
24 NW_013185925 301227 LIMA1 5.46E−08
25 NW_013185930 275521 DDX49 2.86E−06
26 NW_013185967 383783 ELOVL4 2.28E−06
27 NW_013186001 299910 ZMAT5 2.11E−12
28 NW_013186015 302128 LIF 3.73E−06
29 NW_013186054 67611 FAAH2 6.08E−07
30 NW_013186105 38036 FBXL20 1.35E−07
GWAS, genome-wide association studies; SNPs, single-nucleotide polymorphisms.
FIGURE 4 | Quantile–quantile (Q-Q) plot of genome-wide association results
for egg production. The blue points represent SNPs, and the red points
represent the most significant SNPs.
FIGURE 5 | (A, B) The mRNA expression levels of key genes in different
groups. The horizontal axis shows the different genes, and mRNA expression
levels are on the vertical axis. Sign ** indicates extreme significance
(P < 0.01). Sign * indicates significance (P < 0.05). No marker means no
difference.
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The research on the breeding of lion head geese has lagged
behind that for other economically important species, which has
led to many problems in the lion head goose breeding industry,
such as backward breeding, and low productivity. With the
development of genome-enhanced breeding and the improved
the efficiency of genomic selection, it will be possible to protect
and develop the breeding resources of the lion head goose, thus
promoting the modernization and industrialization of the lion
head goose industry.

Significance of This Research
Next generation sequencing technology based on high-
throughput sequencing and molecular marker technology,
enables the fine mapping of functional genes. Genome
selection technology represents a new generation of molecular
breeding technology for livestock and poultry. This technique
has been successfully applied to the cultivation of sheep (Zhao
and Zhang, 2019). The high egg production traits of the lion head
goose breeding population, the identification of the SNPs, and
the selection of functional genes for economic traits will lay the
foundation for the development of genotyping technology for
lion head goose breeding.

Detection and Verification of Key Genes
Bioinformatic analyses at the Ensembl and NCBI databases were
used to identify the genomic location of SNPs that are significantly
associated with the selected trait. Subsequently, bioinformatics
and comparative genomics analysis were used to select key genes
and make preliminary annotations on related gene functions.

In this study, a GWAS was conducted on the egg production
trait of lion head geese, which detected 30 SNPs that were
significantly associated with the high egg-production
characteristic of lion head geese. We then screened the 30
genes that contained or were near, the SNPs.

Genes BMP4, FRMPD3, LIF, NFYC, CRTC1, FAAH2, GPC3,
SERPINC1, CLPB, GNA12, and ZMAT5 showed differential
expression in between the high and low egg production
populations of lion head geese.

In the present study, the expression levels of the BMP4, LIF,
NFYC and FRMPD3 genes in the low egg production population
of the lion head goose were significantly higher than those in the
high egg production population.

BMP4 (bone morphogenetic protein 4), a member of the
transforming growth factor beta (TGFb) superfamily of growth
factors, was first characterized for its role in bone metabolism
(Nilsson and Skinner, 2003). It was subsequently reported to be
involved in the regulation of embryonic mesoderm formation,
and the formation of primordial germ cells (Nilsson and Skinner,
2003). BMP4 mediates the formation of the mesoderm in mouse
embryos, in which knockdown of BMP4 leads to death and
neonatal malformation (Zhu et al., 2002). It was reported that
BMP4 inhibits secretion of progesterone by granulosa cells and
the expression of follicles in sheep and cattle (Monget et al., 2002;
Da et al., 2018). Our results were consistent with these reports,
i.e., BMP4might negatively affect the egg production character of
the lion head geese.
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FRMPD3 (FERM and PDZ domain containing 3), located on
the human X chromosome, is homologous to FRMPD4, which
indicated that FRMPD3 might mediate significant functions
related to excitability associated with neuronal migration
abnormality; however, the functions of FRMPD3 have not been
reported to be associated with poultry laying performance
(Mardinly, 2013).

LIF (leukemia inhibitory factor), a secretory glycoprotein, is
essential for the embryo implantation process inmice and humans
(Aghajanova, 2004). Females lackingLIF are infertile, because their
blastocysts cannot be implanted in the uterus, resulting in no
clinical pregnancy (Steck et al., 2004). Our results would seem to
conflict with those of previous reports, might reflect species
inconsistency, or other, as yet unidentified factors. This result
requires further verification and testing (Schofield and
Kimber, 2005).

NFYC (nuclear transcription factor Y subunit gamma), a
histone-fold domain-containing transcription factor, was
identified in mice and humans as an oncogene required for
the initiation and progression of tumors, and it engaged in
chromatin remodeling (Tong et al., 2015). As far as we
know, it has never been linked to reproductive function in
any species.

The expression levels of the CRTC1, FAAH2, GPC3, and
SERPINC1 genes in the high egg production goose population
were significantly lower than those in the low egg
production population.

CRTC1 (CREB-regulated transcription coactivator 1) is a
transcriptional coactivator that has a biological function that
affects energy balance and reproduction. Overexpression of
CRTC1 in mice led to obesity and infertility (Altarejos et al.,
2008). Breuillaud et al. showed that the CREB coactivator
CRTC1 is indispensable for mouse fertility (Breuillaud et al.,
2009). Our results were consistent with these reports, suggesting
that CRTC1 plays a negative role in the laying trait of the lion
head goose.

FAAH2 (fatty acid amide hydrolase 2), a member of the serine
hydrolase family of enzymes, regulates several physiological
processes, including appetite, inflammation, and various
reproductive processes like secretion of gonadotropin-releasing
hormone from the hypothalamus (Lunetta et al., 2015). FAAH2
may participate in negative regulation of egg laying.

GPC3 (glypican 3), a member of the heparan sulfate
proteoglycans, has been widely studied as a target in human
cancer, such as ovarian carcinoma. GPC3 mediates the
synthesis of integral membrane proteins that interact directly
with insulin like growth factor 2 (IGF2), which is considered
to be an important growth factor in ovarian cancer (Ofuji et
al., 2014; Wu et al., 2016). GPC3 induces apoptosis in ovarian
cells, suggesting that it plays an important role in the
development of ovarian cancer (Gonzalez et al., 1998).
According to comprehensive research reports, we believe that
low expression of GPC3 may promote egg laying in the lion
head goose.

SERPINC1 (serpin family C member 1), is the main
endogenous anticoagulant. Its mutations cause hereditary
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antithrombin deficiency and are associated with increased risk
for all forms of pregnancy-related complications, which cause
adverse pregnancy reaction (De la Morena-Barrio et al., 2012;
Rogenhofer et al., 2014). Thus, SERPINC1 may encourage low
egg production; however, its specific effects require to be
further verified.

The expression levels of CLPB, GNA12, and ZMAT5 in the
high egg production population were significantly increased
compared with those in the low egg production population.

CLPB (caseinolytic peptidase B protein homolog) encodes
an ATP-dependent chaperone. Disruption of CLPB is related
to human congenital microcephaly and small birth weight
(Capo-Chichi et al., 2015). Our results hint at a similar effect
in geese. An increase in CLPB might lead to an increase in
egg laying.

GNA12 (guanine nucleotide-binding protein subunit alpha-
12), the a subunit of a heterotrimeric G protein, participates in
cell transformation and embryonic development; is expressed in
the cytoplasm of Leydig cells; and has the biological function of
promoting the differentiation of cells and elongated sperm cells
into mature sperm (Hu et al., 2008, Udayappan and Casey,
2017). Shen et al. showed that preeclampsia is associated with
decreased methylation of GNA12 promoters (Shen et al., 2015).
Thus, the expression of GNA12 might promote high egg
production in the lion head goose.

For ZMAT5 (zinc finger, matrin type 5), there have been no
reports of its effects on animal reproduction.
CONCLUSIONS

In this study, based on the breeding group of lion head goose,
the blood DNA samples were collected to conduct a genome-
wide association study on egg production traits. Thirty SNPs
related to egg-producing traits were identified, and thirty genes
located in or near SNPs were screened. The selected key genes
were verified using RT-qPCR. The BMP4, CRTC1, FAAH2,
FRMPD3, GPC3, LIF, NFYC, and SERPINC1 genes might play
a negative role in the egg production character of the lion head
Goose. The CLPB, GNA12, and ZMAT5 genes might play a
positive role in egg production character in the laying trait of the
lion head goose. The ANTXR, CDH23, DDX49, ELOVL4,
EPHB3, FBXL20, FGF9, FRY, GM2A, GPC4, HSD17B12,
HTF3A, KCNAB2, LIMA1, NEXN, SLITRT6, SMG7, RXRA,
and TMLHE genes might have no significant effect on egg
production character of the lion head goose. These results
require further verification and confirmation.

In the past few years, GWASs have devoted to the
identification of key loci and genes related to the molecular
breeding of livestock and poultry. These genes may provide
novel target for hereditary approaches to improve breeding.
Developments in this area will be exciting and will affect the
future of genomic breeding. In view of the fact that most of these
genetic connections are limited, a large number of sample
studies are required in future investigations in order to detect
these subtle variations.
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