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Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland

RNase H1 is able to recognize DNA/RNA heteroduplexes and to degrade their RNA
component. As a consequence, it has been implicated in different aspects of mtDNA
replication such as primer formation, primer removal, and replication termination, and
significant differences have been reported between control and mutant RNASEHT skin
fibroblasts from patients. However, neither mtDNA depletion nor the presence of deletions
have been described in skin fibroblasts while still presenting signs of mitochondrial
dysfunction (lower mitochondrial membrane potential, reduced oxygen consumption,
slow growth in galactose). Here, we show that RNase H1 has an effect on mtDNA
transcripts, most likely through the regulation of 7S RNA and other R-loops. The observed
effect on both mitochondrial mMRNAs and 16S rRNA results in decreased mitochondrial
translation and subsequently mitochondrial dysfunction in cells carrying mutations
in RNASEH1.

Keywords: mitochondria, mtDNA, mitochondrial disease, RNase H1, transcription, translation, 7S DNA, 7S RNA

INTRODUCTION

Human mitochondrial DNA (mtDNA) encodes 2 rRNAs, 22 tRNAs, and 13 out of 83 proteins that
are subunits of the respiratory chain, while the remaining proteins required for mitochondrial
function are encoded in the nucleus. Indeed, all proteins responsible for mtDNA maintenance,
especially those involved in replication, as well as other proteins necessary for transcription and
translation, are encoded in the nucleus (Gustafsson et al,, 2016). Human mtDNA replication
requires several factors that constitute the replisome and that include DNA polymerase subunits
POLG and POLG2, the helicase TWNK, the single-stranded binding protein SSBP1, and DNA
topoisomerases TOP1, TOP2A and TOP2B (Gustafsson et al., 2016). The nucleases MGME],
DNA2, FENI, and RNase H1 have been described in mitochondria, and they have been related to
mtDNA replication, especially but not exclusively with regard to primer removal (Kazak et al., 2013;
Uhler and Falkenberg, 2015; Al-Behadili et al., 2018; Posse et al., 2019).

The nuclease RNase H1 can be targeted to both the nucleus and mitochondria, and it is able to
recognize DNA/RNA heteroduplexes and to degrade their RNA component (Suzuki et al., 2010).
The enzyme consists of three domains: a hybrid binding domain and a catalytic domain separated
by a connecting domain (Nowotny et al., 2007). The hybrid binding domain is responsible for the
recognition of the DNA/RNA hybrids, and it also enhances both the specific activity and the
processivity of the enzyme (Nowotny et al., 2008). Despite not being essential, the presence of this
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domain results in a protein with greater binding affinity and
positional preference for cleavage than the bacterial counterpart
(Wu et al.,, 2001). The catalytic domain is very conserved from
bacteria to humans and it contains key residues of the activity
(Nowotny et al., 2007). The connecting domain has been less
characterized, but it has been described to be required for RNase
H activity (Wu et al., 2001).

In the nucleus, RNase H1 activity has been linked to the
removal of R-loops (nascent RNA hybridized to template DNA
with a single-stranded non-template DNA) in rDNA (Shen et al.,
2017) and immunoglobulin sites (Parajuli et al., 2017), Okazaki
fragment processing (Lima et al., 2007), DNA repair (Tannous
et al., 2015; Amon and Koshland, 2016), telomere elongation
(Arora et al., 2014), and hypermutability in the immunoglobulin
locus (Maul et al., 2017). In mitochondria, RNase H1 has been
implicated in different aspects of mtDNA replication such as
replication initiation at origin-specific sites (Posse et al., 2019)
and primer removal at both origins of replication (Holmes et al.,
2015; Reyes et al., 2015; Al-Behadili et al., 2018), segregation of
daughter mtDNA molecules post replication (Akman et al,
2016), R-loop processing (Reyes et al., 2015; Lima et al., 2016;
Gonzalez de Cozar et al., 2019), and processing of mitochondrial
ribosomal RNA precursor (Wu et al., 2013).

Mutations in genes involved in mitochondrial genome
stability result in mtDNA depletion, large-scale multiple
deletions, or accumulation of point mutations, which, in turn,
can lead to mitochondrial diseases (Almannai et al., 2018;
Rusecka et al., 2018). In the past few years, 15 patients with
mitochondrial diseases have been found to carry mutations in
the RNASEH gene, mainly as compound heterozygous c.424G >
A (p.Vall42lle) and c.469C > T (p.Argl57*) (Reyes et al,, 2015),
c.424G > A (p.Vall42lIle) and ¢.554C > T (p.Alal85Val) (Reyes
et al, 2015), c.424G > A (p.Vall42lle) and c.442T > C
(p.Cys148Arg) (Bugiardini et al., 2017; Sachdev et al,, 2018),
and c.487T > C (p.Tyrl163His) and c.258_260del (p.GIn86del)
(Carreno-Gago et al., 2019) but in some cases as homozygous
c.424G > A (p.Vall42Ile) (Reyes et al., 2015; Akman et al., 2016).
All mutations mapped in the catalytic domain, except
¢.258_260del (p.GIn86del), which mapped in the connecting
domain. Affected individuals presented with adult-onset
chronic progressive external ophthalmoplegia (CPEO), ptosis,
dysphagia, muscle weakness, ataxia, and respiratory impairment.
Mitochondrial DNA depletion and multiple deletions, COX-
deficient fibers and low complex I and IV activities are
characteristic features of the muscle biopsies from the patients
with RNASEHI mutations (Reyes et al., 2015; Bugiardini et al.,
2017; Sachdev et al., 2018; Carreno-Gago et al., 2019). However,
neither significant mtDNA depletion nor the presence of
multiple deletions have been observed in skin fibroblasts
derived from these patients (Reyes et al.,, 2015; Akman et al,
20165 Carreno-Gago et al., 2019). Despite this, RNASEHI mutant
fibroblasts presented lower mitochondrial membrane potential,
reduced oxygen consumption, and slower growth than control
fibroblasts (Reyes et al., 2015; Reyes et al.,, 2018). Therefore,
RNase H1 may have additional roles not related to mtDNA
maintenance that could be held responsible for this phenotype.

In this paper, we show that RNase H1 plays an important role
in mtDNA transcription. Mutant RNASEHI skin fibroblasts
showed a significant decrease in some mitochondrial
transcripts, e.g., MT-CO2, MT-ND5, and MT-RNR2 (16S
rRNA). Interestingly, the levels of 7S RNA (MT-7S), a small
non-coding mitochondrial transcript, were also upregulated in
the patient fibroblasts. 7S RNA is involved in the primer
synthesis required for mtDNA replication but it has also been
suggested to play a role as a negative regulator of mtDNA
transcription (Cantatore et al., 1988). Hence, the decrease of
transcript levels in the patient fibroblasts could be related to the
increase in 7S RNA, as this may not have been efficiently
removed by the lower levels and activity of mutant RNase H1
in the patient. In addition, a lack of or slow processing of R-loops
in different regions of mtDNA could also affect transcript levels.
A decrease in mitochondrial translation due to a decrease in 16S
rRNA and possible direct interaction of 7S RNA with 12S rRNA
could also explain the mitochondrial dysfunction we detected in
these cells.

MATERIALS AND METHODS
Structural Modeling of Mutant RNase H1

The crystal structure of the human RNase H1 catalytic domain in
a complex with 18-mer DNA/RNA heteroduplex (PDB ID
2QK9) was downloaded from the Protein Data Bank (PDB)
database and loaded onto PyMOL. Conserved residues
previously reported to constitute the active site of the protein
(Nowotny et al, 2007) were manually colored in yellow and
visualized as sticks, while the DNA and RNA components of the
heteroduplex were colored in cyan and magenta, respectively.
The mutagenesis option available in PyMOL was used to replace
Val'** with Ile'**. These two residues and the neighboring
residue Trp'®* were displayed in different colors and visualized
as sticks in order to highlight the possible effect the mutation
could have on the structure of the protein.

Cell Culture Conditions

Fibroblasts derived from skin biopsy were obtained from a
patient (P) carrying two pathogenic mutations in the
RNASEHI1 gene (GenBank: NM_002936.4): c.424G > A
(p-Vall42lle) on the paternal allele and a nonsense mutation,
c469C > T (p.Argl57%), on the maternal allele (Reyes et al.,
2015). In addition, control fibroblasts were obtained from two
healthy controls (C1 and C2). Fibroblast cell lines were
maintained in high-glucose medium (Gibco) supplemented
with 10% FBS (Gibco) and 1% penicillin-streptomycin at 37°C
in a humidified atmosphere of 5% CO,. Primary skin fibroblasts
were immortalized by lentiviral transduction of pLOX-Ttag-
iresTK (Addgene #12246, Tronolab), as previously described
(Reyes et al.,, 2018). Briefly, human 293T cells were
cotransfected with transfer vector (pLOX-Ttag-iresTK),
second-generation packaging plasmid (pCMVdR8.74), and
envelope plasmid (pMD2.VSVG) (Naldini et al., 1996).
Infectious lentiviral particles were collected from the medium
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24 h after transfection and used for transduction of all three
fibroblast cell lines. Transduced fibroblasts were grown for at
least six passages in order to make sure immortalized cells were
selected. Changes in cell shape and doubling time were observed
as part of the normal process of immortalization. All
experiments here reported were carried out on immortalized
fibroblasts. When required, high-glucose medium was replaced
by glucose-free medium (Gibco) and supplemented with 50 mM
galactose (Sigma).

Immunoblot Analysis

Protein gel electrophoresis and blotting analyses were performed
on whole cell protein extracts obtained from patient (P) and
control (Cl and C2) fibroblasts. Samples containing 30 ug
protein were separated by denaturing NuPAGE 4%-12% Bis-
Tris gels and transferred to nitrocellulose membrane.
Immunodetection was carried out using primary antibodies
against target proteins: RNase H1 (ab56560, Abcam), POLG
(sc-5931, Santa Cruz), POLG2 (LS-C334882, LSBio), TWNK
(gift from M Falkenberg), SSBP1 (ab74710, Abcam), TFAM (gift
from RJ Wiesner), POLRMT (ab32954, Abcam), LRPPRC
(ab97505, Abcam), SLIRP (ab51523, Abcam), ATAD3 (gift
from JE Walker), bL12 (14795-1-AP, Proteintech), uLl1l
(SAB2701374, Sigma), MDDX28 (ab70821, Abcam), mS35
(16457-1-AP, Proteintech), mS18b (16139-1-AP, Proteintech),
NDUFS3 (ab110246, Abcam), NDUFBS8 (ab110242, Abcam),
SDHA (ab14715, Abcam), SDHB (ab14714, Abcam), UQCRC1
(ab96333, Abcam), UQCRC2 (ab14745, Abcam), MT-COl1
(ab14705, Abcam), MT-CO2 (ab91317, Abcam), COX4l1
(ab14744, Abcam), ATPF1 (ab84625, Abcam), and ATPAl
(ab110273, Abcam), along with GAPDH (ab8245, Abcam),
used as loading control. For quantifications, images were
digitalized and analyzed with Image] software, and data
analyses were performed in Microsoft Excel.

DNA Isolation, Gel Electrophoresis, and
Hybridization

Total DNA from patient (P) and control (C1 and C2) fibroblasts
was extracted using Wizard Genomic Purification Kit
(Promega). Total DNA (5 ug) was digested with Pvull (NEB),
and the fragments were resolved in 1% agarose gels. After
electrophoresis and Southern blot, hybridizations with
radiolabelled probes directed against the human mtDNA
(nucleotide positions 16,341-151) and nuclear 18S rDNA were
carried out overnight at 65°C in 7% SDS and 0.25M sodium
phosphate buffer pH 7.4. After washing four times with 1x SSC
(150 mM sodium chloride, 15 mM sodium citrate, pH 7.0) and
twice with 1 x SSC/0.1% SDS, membranes were exposed to
Phosphorimager screens for 0.5 to 10 days. ImageQuant
software was used for the quantification of the signal.

RNA Isolation and Quantitative PCR
(aPCR)

Total RNA from patient (P) and control (C1 and C2) fibroblasts
was extracted using Trizol (Invitrogen). RNA was then treated
with DNase I (DNA-free kit, Ambion) and reverse transcribed

with Omniscript reverse transcription kit (Qiagen). Quantitative
polymerase chain reaction (QPCR) analyses were performed with
Life Technologies Gene Expression Assays (Applied Biosystems):
RNase H1 (Hs00268000_m1, Hs01108220_gl1 and
Hs01108219_g1 on exons 7-8, 2-3 and 1-2 boundary,
respectively), MT-7S (7S RNA, Hs02596861_s1), MT-RNRI
(12S rRNA, Hs02596859_gl1), MT-RNR2 (16S rRNA,
Hs02596860_s1), MT-CO1 (Hs02596864_gl), MT-CO2
(Hs02596865_gl), MT-CO3 (Hs0259866_gl1), MT-ND1
(Hs02596873_s1), MT-ND5 (Hs02596878_gl1), MT-ND6
(Hs02596879_g1), MT-CYB (Hs02596867_s1), and MT-ATP6
(Hs02596862_gl) and normalized to levels of
GAPDH (Hs02758991_gl).

Mitochondrial Translation

Patient (P) and control (C1 and C2) fibroblast cell lines were
subjected to metabolic labeling of mtDNA encoded proteins.
[*°S]-methionine was added to the medium after treatment with
emetine dihydrochloride and labeling was performed for 1 h, as
previously described (Chomyn, 1996). Cells were lysed and
proteins (30 pg) were loaded onto 12% polyacrylamide gels.
Gels were stained with Coomassie blue, dried, and then exposed
to Typhoon phosphor screens, with products visualized and
quantified with ImageQuant software (GE Healthcare).

Oxygen Consumption

Respiration in patient (P) and control (C1 and C2) fibroblasts,
Ioz [pmols-s 107 cells], was calculated as the negative time
derivate of oxygen concentration as measured by the
OROBOROS Oxygraph-2k on one million cell/ml in a 2-ml
chamber at 37°C. Basal respiration was measured without
substrates, and the proton leak state after the addition of
oligomycin (50nM) was also measured. Oxygen consumption
coupled to ATP production was calculated as the difference
between basal respiration and proton leak. Maximal respiration
was measured by stepwise 1.25 puM titration of CCCP and
inhibition by 2 uM rotenone and 2.5 pM antimycin A for the
final measurement of residual oxygen consumption. Spare
capacity was calculated as the difference between maximal
respiration and basal respiration.

Mitochondrial Membrane Potential
Mitochondrial membrane potential was measured in patient (P)
and control (Cl1 and C2) untreated fibroblasts and after
treatment with 1 uM FCCP for 5 min at 37°C as the ratio of
the red to the green JC-1 signal using a Nucleo Counter NC-3000
Advanced Image Cytometer.

Statistics

Fibroblasts from a single patient with mutations in RNASEH1
and two non-related healthy individuals were analyzed as
controls. All numerical data are expressed as mean + standard
deviation of the mean (SD). Student’s unpaired two-tailed t-tests
under the assumption of a normal distribution and unequal
variance were used for statistical analysis combining the data
from both controls against the patient unless specified otherwise.
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Control 1 (C1) fibroblasts were randomly chosen as the reference
for all experiments, the values obtained in the first biological
repeat were arbitrarily assigned as 1 and, subsequently, all other
values were corrected accordingly.

RESULTS

Characterization of the Mutations in
RNASEH1

The two mutations present in the RNASEH1 gene in the patient
were first analyzed in silico. The missense mutation, ¢.424G > A
(p.-Val142lIle), involved a residue in a conserved position of the
B1 strand, close to one of the four key catalytic residues (Figure
1A). Modeling of the mutation on the crystal structure of human
RNase H1 (PDB ID 2QK9) showed that Ile'*? is a bulkier residue
than Val'** and therefore could interfere with another bulky
residue nearby, Trp'®*, causing a change in the orientation of the

B1 strand (Figure 1B). This could result in a misalignment of the
four catalytic residues that constitute the active site and/or the
residues involved in the interaction with the DNA/RNA hybrids.
The nonsense mutation, c.469C > T (p.Arg157*), affects a residue
at the N-terminus of the catalytic domain and, as a consequence,
the truncated protein is void of any activity (Reyes et al., 2015).
Nonsense-mediated decay is a conserved quality control
mechanism that selectively degrades the transcripts harboring
premature stop codons (Kurosaki et al., 2019). In order to
investigate if the presence of a nonsense mutation was
triggering nonsense-mediated decay, we checked RNASEHI
transcript levels in human control (C1 and C2) and patient (P)
fibroblasts grown in either glucose- or galactose-containing
medium with probe Hs00268000_m1, spanning exons 7-8
(Figure 1C). RNASEHI transcript levels were significantly
reduced to at least 50% of controls in both growing conditions.
The same results were obtained when different probes upstream
of the nonsense mutation were used, Hs01108220_g1 and
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FIGURE 1 | RNASEH1 mutations, transcript, and protein levels. (A) Domains ofhuman RNAse H1 protein (MTS, mitochondrial targeting sequence; HBD, hybrid
binding domain; CD, connection domain; catalytic domain). RNase H1 protein sequences from representative species,H. sapiens (Hs, NP_002927) M. musculus
(Mm, NP_035405), B. taurus (Bt, NP_001039970), G. gallus (Gg, NP_990329),X. tropicalis (Xt, NP_001096299),D. rerio (Dr, NP_001002659), C. intestinalis (Ci,
FBQPHOQ), D. melanogaster (Dm, NP_995777), C. elegans (Ce, NP_001040786), S. cerevisiae (Sc, Q04740), were extracted from the database and aligned using

ClustalW2. Conserved residues found mutated in the patient in exon 4 are boxed in red, while residues in the active site and interacting with DNA or RNA are boxed
in yellow and green, respectively. Positions of B strands are marked by blue arrows. (B) Human RNase H1 crystal structure (PDB ID 2QK9) 18 bp DNA(cyan): RNA
(magenta) hybrid is shown respectively. Residues in the active site are colored in yellow. Residues Trp164 (green) and Val'#?, or the mutated variant lle'*? (red), are
shown as sticks. (C) RNASEH1 transcript levels in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium assessed
by gPCR (probe Hs00268000_m1) and normalized to GAPDH transcript levels. Data are shown as mean + SD, n = 4, **p < 0.001. (D) RNASEH1 transcript levels in
control (C1) and patient (P) fibroblasts grown in glucose-containing medium assessed by gPCR with probes Hs00268000_m1 (i), Hs01108220_g1 (i), and
Hs01108219_g1 (jii) and normalized to GAPDH transcript levels. Data are shown as mean + SD, n = 3, **p < 0.001. (E) Western blot analysis of RNase H1 in
control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. GAPDH was used as loading control.
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Hs01108219_g1, spanning exons 2-3 and 1-2, respectively
(Figure 1D), further supporting nonsense-mediated decay. As
a consequence of the decrease in transcript levels, a significant
decrease was also observed at protein levels in patient fibroblasts
(Figure 1E).

Mitochondrial DNA-Related Alterations in
Patient Fibroblasts

Since analysis of muscle biopsy from patients carrying mutations
in RNASEH]1 has revealed the presence of multiple deletions and
depletion in mtDNA (Reyes et al., 2015; Bugiardini et al., 2017;
Carreno-Gago et al.,, 2019), we performed a Southern blot on
genomic DNA extracted from control (C1 and C2) and patient
(P) fibroblasts grown in either glucose or galactose (Figure 2A).
No deletions on mtDNA were detected in the patient fibroblasts,
and the mtDNA copy number was only marginally reduced to
80% compared to controls when the cells were grown in glucose,
with no significant difference observed when cells grew in
galactose (Figures 2A, B). By contrast, 7S DNA, the third
strand of the mtDNA displacement loop, was 10-fold higher in
the patient fibroblasts than in control, both in glucose and
galactose (Figures 2A, C). Furthermore, 7S DNA in controls
appears as a net band, as all the molecules have the same length,
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while in the patient fibroblasts, there is a smear below the main
band, indicating that some 7S DNA molecules are shorter than
the expected size (Figure 2A). This effect is more pronounced in
glucose than in galactose.

Then we analyzed the steady-state level of mitochondrial
proteins involved in mtDNA maintenance (Figure 2D). Other
than the overall increase in the steady-state level of all proteins
when cells were grown in galactose medium, no significant
differences between patient and control fibroblasts were
observed. These results are in agreement with the observed
minor changes in mtDNA copy number in the patient
fibroblasts (Figure 2A).

Mitochondrial RNA-Related Alterations in
Patient Fibroblasts

Mitochondrial dysfunction has been reported in fibroblasts from
patients carrying mutations in RNASEH1, but neither mtDNA
deletions nor depletion have been observed (Reyes et al., 2015;
Bugiardini et al., 2017; Carreno-Gago et al., 2019). Therefore, we
first investigated whether there was an effect on mitochondrial
transcription. The steady-state levels of 11 transcripts was
analyzed by qPCR and included 7S RNA (MT-7S), the two
ribosomal RNAs MT-RNRI (12S rRNA) and MT-RNR2 (16S
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FIGURE 2 | Mitochondrial DNA maintenance in mutant RNASEH1 fibroblasts. (A) Southern blot of total DNA digested with Pvull from control (C1 and C2) and
patient (P) fibroblasts grown in either glucose- or galactose-containing medium. A radioactive probe against mtDNA was used to detect both linearized mtDNA
(empty arrowhead) and 7S DNA (filled arrowhead and bracket), while a probe against 18S rDNA was used as loading control. (B) Relative mitochondrial DNA copy
number in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium, calculated as the linearized mtDNA/18S rDNA
signal ratio. Data are shown as mean + SD, n = 4, “**p < 0.001. (C) 7S DNA levels in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or
galactose-containing medium calculated as the 7S DNA/linearized mtDNA/18S rDNA signal ratio. Data are shown as mean + SD, n = 4, Student’s unpaired two-tail
t-test, **p < 0.001. (D) Western blot analysis of mitochondrial proteins involved in mtDNA maintenance in control (C1 and C2) and patient (P) fibroblasts grown in
either glucose- or galactose-containing medium. GAPDH was used as loading control.
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rRNA), and eight protein mRNAs from all four different
oxidative phosphorylation (OxPhos) complexes with
mitochondrially-encoded subunits: CI, CIII, CIV, and CV
(Figure 3). The non-coding 7S RNA is a polyadenylated
transcript of about 200 nt whose 5 end maps at the light
strand promoter (LSP) and has been implicated in both
mtDNA replication and transcription. Transcript levels of 7S
RNA in galactose medium were lower than in glucose in all cell
lines. Moreover, a two-fold and three-fold increase in 7S RNA
was detected in patient fibroblasts compared to controls grown
in glucose and galactose, respectively. As a result, patient cells
grown in galactose had the same levels of 7S RNA as controls
grown in glucose. For all the other transcripts analyzed, the levels
in control cells growing in galactose medium were always higher
than in glucose medium, suggesting increased mitochondrial
biogenesis. In the case of patient fibroblasts, the results varied
depending on the transcript. The two ribosomal rRNAs showed a
different behavior: a slight decrease in 12S rRNA was observed in
patient cells only when they were grown in galactose medium,
while a significant decrease in 16S rRNA compared to controls
was observed both in glucose and galactose growth (40% and
80% decrease, respectively). The transcripts of both complex IV
(MT-CO1, MT-CO2, MT-CO3) and complex I (MT-ND1, MT-
ND5, MT-ND6) subunits were moderately decreased in patient

cells grown in glucose medium (28-36% and 17-35% decrease for
complex IV and I, respectively), and culture in galactose medium
did not increase their levels very significantly in most of the cases,
which increased the difference with control cell lines (40-43%
and 35-50% decrease for complex IV and I, respectively). A
completely different trend was observed in transcripts from
complex III (MT-CYB) and complex V (MT-ATP6)
mitochondrial subunits: transcript levels in glucose growth
were higher in the patient fibroblasts than in controls (about
50% increase in both cases), while in galactose growth, they were
lower compared to controls (about 50% decrease in both cases).

Next, we analyzed the steady-state levels of proteins involved
in RNA metabolism and mitochondrial ribosomal proteins
(Figure 4A). Overall, protein levels were higher in galactose
than in glucose medium, suggesting increased mitochondrial
biogenesis. While the mitochondrial RNA polymerase,
POLRMT, was not significantly changed in patient fibroblasts,
other proteins such as LRPPRC, SLIRP, and ATAD3 were
decreased in patient fibroblasts, particularly when grown in
glucose medium. Moreover, mitochondrial ribosomal proteins
from the large 39S subunit (mt-LSU) but not the small 28S
subunit (mt-SSU) were also found to be decreased in patient
fibroblasts growing in glucose medium and, to a lesser extent,
also in galactose medium (Figures 4A, B). As a consequence,
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FIGURE 3 | Mitochondrial transcript levels in mutant RNASEH1 fibroblasts. Mitochondrial transcript levels in control (C1 and C2) and patient (P) fibroblasts grown in
either glucose- or galactose-containing medium, assessed by gPCR and normalized to GAPDH transcript levels. Analyzed transcripts included the non-coding 7S
RNA (MT-7S), the two ribosomal RNAs MT-RNR1 (12S rRNA) and MT-RNR2 (16S rRNA), three complex IV protein mRNAs (MT-CO1, MT-CO2 and MT-COQ), three
complex | protein mMRNAs (MT-ND1, MT-ND5 and MT-ND6), one complex Il protein mRNA (MT-CYB), and one complex V protein mRNA (MT-ATP6). Data are
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shown as mean + SD, n = 4, Student’s unpaired two-tail t-test, **p < 0.01, **p < 0.001.
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mitochondrial translation was impaired in patient fibroblasts,
with all mitochondrial proteins equally affected (Figure 4C).

Mitochondrial Dysfunction in Patient
Fibroblasts

Fibroblasts from patients carrying mutations in RNASEH] have
signals of mitochondrial dysfunction (Reyes et al., 2015;
Bugiardini et al., 2017; Carreno-Gago et al,, 2019). Indeed, we
have shown that patient fibroblasts have alterations in
mitochondrial transcription and translation that could lead to
mitochondrial dysfunction. Therefore, we first analyzed the
steady-state of the OxPhos constituents of all five complexes
(Figure 5A). Again, overall protein levels were higher in
galactose than in glucose medium, supporting increased
mitochondrial biogenesis. Patient fibroblasts presented lower
steady-state levels of all analyzed subunits of complex I and
complex IV, while no difference was detected for complexes III
and V. These results are in agreement with the data from
mitochondrial transcript levels (Figure 3). Complex II subunits
were slightly increased in patient fibroblasts compared to
controls, most likely as a compensation mechanism. A
consequence of the observed decrease in OxPhos protein levels
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FIGURE 4 | Mitochondrial translation in mutant RNASEH1 fibroblasts. (A) Western blot analysis of mitochondrial proteins involved in mitochondrial RNA metabolism
(RNA metab.) and mitochondrial large (mtLSU) and small (mtSSU) ribosomal subunits in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or
galactose-containing medium. GAPDH was used as loading control. GAPDH is from the same blot as Figure1D. (B) Quantification of the Western blots shown in
(A) normalized to GAPDH levels. Data are shown as mean + SD, Student’s unpaired two-tail t-test, *p < 0.05, **p < 0.01, **p < 0.001. (C) [*°S]-methionine de novo
synthesis of mitochondrially encoded proteins in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. Newly
synthesized proteins were visualized after exposure of the dried gel to phosphor screens. The coomassie blue (CB) staining shown below was used as loading
control. n = 3.

was an alteration in mitochondrial respiration, as measured by
oxygen consumption, Io,. Patient fibroblasts showed significant
lower basal In,, ATP-dependent, and maximal Io,, both in
glucose and galactose (Figure 5B). Mitochondrial membrane
potential is usually altered in cases of a dysfunctional electron
transport chain and, indeed, we observed a significant decrease in
membrane potential in patient fibroblasts both in glucose and
galactose (Figure 5C). These mitochondrial alterations in the
patient fibroblasts have many consequences at a cellular level,
and a lower growth rate is one of them (Figure 5D).

DISCUSSION

Pathological mutations in RNASEHI have been described in
patients with mitochondrial depletion and deletion syndromes
characterized by CPEO, cerebellar ataxia, and dysphagia
(Bugiardini et al., 2017). Mutations in RNASEH]I are still rare
and, to date, only 16 patients have been reported (Reyes et al.,
2015; Bugiardini et al., 2017; Sachdev et al., 2018; Carreno-Gago
et al., 2019). Mutations involve six different residues and are not
randomly distributed: four of them are in exon 4, one in exon 5
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FIGURE 5 | Mitochondrial DNA maintenance in mutant RNASEH1 fibroblasts. (A) Western blot analysis of representative components of the mitochondrial OxPhos
complexes |-V in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. GAPDH was used as loading control.

(B) Oxygen consumption (/op) measurements in control (C1 and C2) and patient (P) fibroblasts grown in either glucose- or galactose-containing medium. Values of
basal and maximal respiration along with ATP production-dependent, proton leak respiration, and spare capacity are presented. Data are shown as mean + SD, n =
4, Student’s unpaired two-tail t-test, *p < 0.01, **p < 0.001. (C) Mitochondrial membrane potential in control (C1 and C2) and patient (P) fibroblasts grown in either
glucose- or galactose-containing medium using JC-1 staining. Data are shown as mean + SD, n = 4, Student’s unpaired two-tail t-test, “**p < 0.001. (D) Growth
curves of control (C1 and C2) and patient (P) fibroblasts grown in either glucose or galactose. Cell growth was monitored continuously in an Incucyte cell imager
(Essen Bioscience). Data correspond to one of the three independent experiments carried out, and they are shown as the mean of three technical replicates + SD.

(in the N-terminal portion of the catalytic domain), and one in
exon 3 (in the connecting domain). The fibroblasts from the
patient presented here carry two mutations in exon 4: a missense
(424G > A, p.Vall42lle) and a nonsense mutation (c.469C > T,
p.Argl57*). Nonsense mutations are often associated with a
decrease in protein level due to nonsense mediated decay
(Kurosaki et al.,, 2019), and this has been reported not only in
fibroblasts carrying RNASEHI mutations (Reyes et al., 2015) but
also in fibroblasts with nonsense mutations in other genes such
as PYCR2 (Zaki et al., 2016), TIMM50 (Reyes et al., 2018), and
TAOKI1 (Dulovic-Mahlow et al., 2019). Similarly, albeit to a
lesser degree, two missense mutations in RNASEH1 (p.Vall42Ile
and p.Gln86del) have also been described to have an effect on
protein stability and therefore to result in a decreased steady-
state level of the protein in cultured fibroblasts (Reyes et al., 2015;
Akman et al., 2016; Carreno-Gago et al., 2019). In addition,
p.Vall42Ile mutant RNase H1 activity is only 36-40% of that of
wild-type protein based on in vitro assays (Reyes et al., 2015; Al-
Behadili et al., 2018). With our current knowledge, it is not
possible to ascertain whether it is the amino acid substitution

itself, the decrease/lack of activity, or a combination of both that
is responsible for the observed protein instability.

Notwithstanding the mtDNA depletion and deletion
observed in muscle biopsies from patients with mutations in
RNASEH]1, skin fibroblasts derived from the same patients
display normal to slightly decreased mtDNA content (Reyes
etal., 2015; Akman et al., 2016; Carreno-Gago et al., 2019). Thus,
it not surprising that the levels of proteins involved in mtDNA
maintenance are not markedly affected either. This could be
achieved, on the one hand, by other proteins with similar or
complementary functions, such as MGMEL, FENI, and DNA2,
helping to maintain the minimum requirements for mtDNA
replication, and on the other hand, by changes in the cellular
processes like a slow down of cellular growth that could
compensate for the slower or less active replication in cells
with mutant RNase H1 (Reyes et al., 2015).

Despite the lack of effect on mtDNA, RNASEH1 mutations
have a marked impact on several mitochondrial transcripts in the
patient fibroblasts. Significant decreases in mitochondrially
encoded complex IV (MT-CO1, MT-CO2, MT-CO3) and
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complex I (MT-ND1, MT-ND5, MT-ND6) transcripts have been
observed in RNASEHI patient fibroblasts. However, no such
decrease was observed in transcripts from complex III (MT-
CYB) and complex V (MT-ATP6) mitochondrial subunits in
glucose medium. Although this is the first report of transcript
levels in patient fibroblasts, our data are in agreement with recent
reports in a Rnasehl liver-specific knockout (KO) mouse model
(Lima et al., 2016) and in Drosophila S2 cell rnhl knockdown
(KD) (Gonzalez de Cozar et al., 2019). In the RnasehI KO mouse,
a decline was observed in all mitochondrial transcripts over time
from six to 14 weeks of Rnasehl ablation (Lima et al., 2016). In
Drosophila rnhl KD, transcript levels of Cox3 and ND5 were
decreased, while cyt b and ATP8 remained unaltered (Gonzalez
de Cozar et al, 2019). The main difference from our patient
fibroblasts is that in those cases, mtDNA depletion was also
present, making it more difficult to segregate the direct effect of
RNAse H1 on transcription from its secondary effect due to
partial mtDNA depletion. The non-coding 7S RNA is the only
transcript that was increased in the patient fibroblasts in both
glucose and galactose medium. This transcript has been
described to be involved in the synthesis of the 7S DNA
(Gustafsson et al., 2016), and therefore it is not surprising that
7S DNA levels were also increased in the patient fibroblasts,
albeit to a much higher level. Much less is known about its role in
transcription, despite the fact that early studies suggested that 7S
RNA could regulate mitochondrial transcription by preventing
the formation of new transcription initiation events (Cantatore
et al., 1988). More recently, it has been demonstrated for the first
time that RNase H1 is required for the effective removal of 7S
RNA, as the Rnasehl KO mouse presents higher levels of 7S
RNA, which results in failure to transcribe mtDNA (Lima et al.,
2016). In our RNASEHI patient fibroblasts, we detected a
concomitant increase in 7S RNA and a decrease in seven out
of 10 mitochondrial transcripts, supporting the idea that 7S RNA
plays a role in their transcription levels. Not only 7S RNA but
also other transcripts are able to form R-loops throughout the
mitochondrial genome (Brown et al., 2008), and, subsequently,
inefficient removal of these structures could block ongoing
transcription anywhere along the genome. In spite of this, the
mitochondrial degradosome, composed by SUV3 and PNPase,
has also been described to be involved in preventing the
accumulation of pathological R-loops in mtDNA (Silva et al.,
2018), providing a salvage pathway in cells carrying mutations in
RNASEHI. However, two of the mitochondrial protein
transcripts, MT-CYB and MT-ATP6, did not seem to be
affected in the patient fibroblasts. This could be explained by a
differential transcript half-life, as MT-ATP8/6 transcript is
among the longest half-life mitochondrial transcripts in HeLa
cells (Nagao et al., 2008). In certain situations, the stabilization of
some transcripts could be modified by the up- or downregulation
of certain proteins. It has been reported that upon decrease in the
steady-state levels of LRPPRC/SLIRP complexes, some transcript
levels, including MT-CYB, are less prone to degradation (Chujo
et al,, 2012). Both LRPPRC and SLIRP were downregulated in
patient fibroblasts and therefore could have an effect on MT-
CYB transcript stability.

Mitochondrial rRNAs are essential components of the
mitochondrial ribosomes, and alterations in their levels often
result in mitochondrial translation defects (Boczonadi et al.,
2018). The RNASEH1 patient fibroblasts displayed lower levels
of 16S rRNA (MT-RNR2) than controls and, in agreement with
these results, lower levels of mitochondrial ribosomal proteins
associated with the mt-LSU were observed. This is not the case
for 12S rRNA (MT-RNRI1) and associated ribosomal proteins,
mt-SSU. As discussed above for mitochondrial mRNAs, the
steady-state levels of mitochondrial rRNAs can also be
modulated by the levels of 7S RNA since this molecule could
impede transcription initiation not only at the light but also at
the heavy strand promoter (LSP and HSP, respectively).
However, this would result in lower levels of both 12S and 16S
rRNAs, and we have only detected a decrease in the levels of 16S
rRNA. RNase H1, along with P32, has been shown to be involved
in the processing of guanosine-cytosine rich mitochondrial
ribosomal RNA precursor (12S/16S rRNA precursor) (Wu
et al,, 2013). Downregulation of RNase H1 increases the levels
of the 125/16S rRNA precursor with one and two species
containing 12S and 16S rRNA, respectively (Wu et al., 2013).
This suggests that processing of the pre-rRNA by RNase H1 is
sequential, originating the mature 12S rRNA in the first step and
after further processing, the mature 16S rRNA. A delay in this
second processing step could result in the degradation of the
partly processed rRNA containing 16S rRNA we observed in the
patient fibroblasts. Lower levels of 16S rRNA would result in a
decrease of mt-LSU ribosomal proteins, leading to decreased
mitochondrial translation. In addition, mitochondrial translation
could also be directly modulated by 7S RNA, since this molecule
contains a region complementary to the 3’ end of 12S rRNA
(Cantatore et al., 1988), and therefore it could alter the structure
of the ribosomal subunit, preventing the formation of the full
ribosome. A decrease in mitochondrial translation has also been
observed in RNASEHI patient fibroblasts carrying the
p-Vall42Ile mutation in homozygosity; however, transcript
levels were not analyzed in that case (Akman et al., 2016). The
mitochondrial topoisomerase IB (TOPIMT) has also been
reported to have a role beyond the resolution of replication
and transcription stress, as it has been found to regulate
mitochondrial translation through protein-protein interaction
with at least one mtSSU ribosomal protein, uS22 (Baechler
et al., 2019).

As a result of the alterations in mitochondrial transcription
and translation, patient fibroblasts showed OxPhos deficiency
with lower oxygen consumption that was not related to mtDNA
depletion and slower growth compared to controls. Previous
studies also reported lower oxygen consumption in RNASEH]
patient fibroblasts carrying the p.Vall42Ile mutation (Reyes
et al,, 2015; Akman et al,, 2016) and a slower cell growth rate
(Reyes et al.,, 2015; Reyes et al.,, 2018). However, neither
RNASEH]I patient fibroblasts carrying p.Tyr163His and
p.GIn86del mutations (Carreno-Gago et al,, 2019) nor
Drosophila rnhl KD (Gonzalez de Cozar et al., 2019) showed
any defect on cell growth. This highlights the fact that RNASEH
mutations are rare and subsequently, the number of patients with
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mutations in this gene is still very low. More comprehensive
analyses, including more patient fibroblasts and different
mutations, will be needed in order to better establish the role
of RNase H1 in mitochondrial transcription and translation and,
in particular, the contribution of 7S RNA to these processes.
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