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Construction of regulatory networks using cross-sectional expression profiling of genes is
desired, but challenging. The Directed Acyclic Graph (DAG) provides a general framework
to infer causal effects from observational data. However, most existing DAG methods
assume that all nodes follow the same type of distribution, which prohibit a joint modeling of
continuous gene expression and categorical variables. We present a new mixed DAG
(mDAG) algorithm to infer the regulatory pathway frommixed observational data containing
both continuous variables (e.g. expression of genes) and categorical variables (e.g.
categorical phenotypes or single nucleotide polymorphisms). Our method can identify
upstream causal factors and downstream effectors closely linked to a variable and
generate hypotheses for causal direction of regulatory pathways. We propose a new
permutation method to test the conditional independence of variables of mixed types,
which is the key for mDAG. We also utilize an L1 regularization in mDAG to ensure it can
recover a large sparse DAG with limited sample size. We demonstrate through extensive
simulations that mDAG outperforms two well-known methods in recovering the true
underlying DAG. We apply mDAG to a cross-sectional immunological study of
Chlamydia trachomatis infection and successfully infer the regularity network of
cytokines. We also apply mDAG to a large cohort study, generating sensible
mechanistic hypotheses underlying plasma adiponectin level. The R package mDAG is
publicly available from CRAN at https://CRAN.R-project.org/package=mDAG.

Keywords: regulatory network, directed acyclic graphs, mixed observational data, continuous and categorical
variables, causal regulatory pathways
INTRODUCTION

Identification of differentially expressed genes associated with disease has become an instrumental
approach, but with only limited success in mechanistic discovery, partly due to the fact that current
methods based on fold-change focus only on a single gene. Co-expression network analysis
(Oldham et al., 2006; Chen, 2012; Hawrylycz et al., 2012), an approach that constructs networks
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of genes that tend to co-activate among a group of samples,
provides a connectome of gene interaction. (Zhuang et al., 2016)
proposes a more general class of undirected graphical models
that can handle mixed types of variables. However, the
undirected graphical model by itself cannot reveal disease
causality. There is a critical need to understand regulatory
pathways for discovery of therapeutic targets and
disease mechanisms.

A few approaches have been proposed in recent years to
estimate regulatory networks/pathways. iPoint was proposed by
Atias and Sharan (2013) to infer a compact subnetwork that
connects the source of the response (anchor genes) to the targets
of the response (terminal genes) while optimizing local
(individual path lengths) or global (likelihood) aspects of the
subnetwork to solve the “anchor” reconstruction problem. The
input of iPoint requires a single anchor gene and a list of terminal
genes. PINE was proposed by Wilentzik and Gat-Viks (2015) to
identify the particular pathways by which DNA variants perturb
the signaling network. It requires prior established biological
knowledge of how the stimulations affect gene expression and
existence of multiple stimulation conditions. TieDie was
proposed by Paull et al. (2013) to infer regulatory pathways
linking genomic events (e.g. mutated genes) to transcriptional
changes by a heat diffusion strategy. However, TieDie assumes
that mutations necessarily lead to loss of function. All these
methods assume prior knowledge of particular biological
networks/pathways or functions.

Over the past few years, there has been a growing interest in
utilizing directed acyclic graphs (DAG), which do not require
any prior biological knowledge, to infer directional relations in a
regulatory network in a large variety of disciplines such as
biology, neuroscience, and psychology (Friedman et al., 2000;
Huang et al., 2010; Borsboom and Cramer, 2013). The logical
basis of such graphical models is the conditional independence
structure of the underlying probability distributions of data. We
propose to jointly model the probability distribution of mixed
data composed of continuous variables (e.g., expression of
proteins or genes) and discrete variables (e.g., categorical
disease outcomes or single nucleotide polymorphisms) by DAG.

There are three types of methods to estimate a DAG
(Nagarajan et al., 2013): constraint-based methods, score-based
methods, and hybrid methods. The constraint-based methods
learn a DAG by exploiting the conditional independence
constraints in the observational distribution. The most
prominent example of such methods is the PC algorithm
(Spirtes et al., 2000). This algorithm first estimates the skeleton
of the underlying DAG, and then adds orientations to the
skeleton based on a set of edge orientation rules (Meek, 1995).
The CPC-stable algorithm (Colombo and Maathuis, 2014)
improves the PC algorithm by resolving the order-dependence
issue in the determination of the skeleton. A more recent
constraint-based method (Tsagris et al., 2018) proposes a
symmetric conditional independence tests based on likelihood-
ratio test and combines it with the existing constraint-based
methods (e.g. PC algorithm) to estimate a DAG. The score-based
methods (Chickering, 2002) learn a DAG by a greedy search for
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the optimal score of the goodness-of-fit of the estimated DAG.
The hybrid methods (Nagarajan et al., 2013) learn a DAG by
integrating the constraint-based and the score-based methods.
An example is the Max-Min Hill-Climbing (MMHC) algorithm
(Tsamardinos et al., 2006), which applies the Max-Min Parents
and Children algorithm to obtain the skeleton and the Hill
Climbing greedy search algorithm to orient edges in the
skeleton. Another example is the causalMGM algorithm
(Sedgewick et al., 2016; Sedgewick et al., 2017), which firstly
estimates an undirected graph and then uses PC-stable or CPC-
stable for orientation. The first step modifies the mixed graphical
model method (Lee and Hastie, 2015) by using different penalty
functions for different edge types. The second step uses a
likelihood-ratio test to test the conditional independence in
order to use the PC-stable or CPC-stable algorithm for edge
orientation. Based on our experience, such an orientation
method is not as efficient as score-based method, which is used
in our algorithm.

However, most of these methods assume that all variables are
of the same type. For example, the Gaussian graphic model
assumes that the joint distribution of all variables is multivariate
normal. Therefore, these methods cannot be directly applied to
infer the causal relationship between continuous measurements,
such as protein or gene expression, and the categorical variables,
such as categorical traits or single nucleotide polymorphisms
(SNPs). To this end, we propose a mixed DAG method (mDAG)
that accommodates data of different types. We assume the joint
distribution of all variables follow a pairwise Markov random
field, which ensure that the conditional distribution of one graph
node on all other nodes either follow a Gaussian distribution or a
multinomial distribution. Thus, it enables joint modeling of
continuous and categorical variables. We demonstrate the
efficacy of our method through extensive simulations and
apply it to a study of human cytokines associated with
chlamydial susceptibility to infer cytokines with causal effects
on a categorical disease phenotype. We also show that our
method can identify gene expression levels that mediate the
effect of genetic variants on traits.
MATERIALS AND METHODS

Definitions and Preliminaries
We first introduce a few key concepts in the DAG theory. A
DAG of a vector of random variables X = (X1,…,Xd)

T is a
directed graph with no cycle, which is denoted by G = (V, E),
where V is the set of d vertices representing X, and E is the set of
all directed edges. Given a path Xi0 ! Xi1 ! …! Xin in a
DAG, Xil−1   is called a parent of Xil   and Xil   is called a child of
Xil−1  . The d separation set S that blocks nodes i and j is a vertex
set that blocks all paths that connect i and j for either the path
that contains at least one arrow-emitting vertex belonging to S,
or the path that contains at least one collision vertex (a vertex
without emitting edges) that is outside S and no children of the
collision vertex belongs to S. In a DAG, the Markov blanket of a
node includes its parents, children, and the other parents of all
February 2020 | Volume 11 | Article 8
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of its children. In an undirected graph, the Markov blanket of a
node contains all nodes connecting to itself. The skeleton of a
DAG is the undirected graph that results from ignoring the
directionality of every edge in a DAG. In order to model the
mixed data, we assume the joint distribution of all variables is
faithful to a DAG, meaning that for any i, j∈V and any set S⊂V,
Xi and Xj are conditional independent given Xs if and only if
node i and j are d-separated by set S (Pearl, 2009) and S is called
the d-separation set of node i and j. In other words, the
conditional independence can be read from the DAG. Under
the faithfulness assumption, the joint distribution has the
Markov property that a node is independent of all other
nodes conditional on the Markov blanket. Such an
assumption is widely used in Bayesian Network literature, the
PC-algorithm (Spirtes et al., 2000), PC-stable and CPC-stable
algorithm (Colombo and Maathuis, 2014), and MMHC
algorithm (Tsamardinos et al., 2006). Meek (2013) proved
that this assumption holds for a variety of Bayesian Network.

To recover the underlying DAG from the mixed data, our
method consists of three main steps. First, we use a penalized
nodewisemaximum likelihoodmethod (Lee andHastie, 2015) to
identify the Markov blanket of each node. Second, we use a
modified PC-stable algorithm (Ha et al., 2016) to obtain the
DAG's skeleton and its d-separation set. Finally, we add
orientations to the skeleton using a greedy search algorithm
(Tsamardinos et al., 2006). Different from the existing literature,
since our data is of mixed types, we propose a new permutation
test on the second step to test the conditional independence,
which is the key to estimate the skeleton of the DAG for
mixed data.

Identification of the Markov Blanket
We assume the distribution of X = (X1,…,Xp+q)

T follows a
pairwise Markov random field with a density

p x;Qð Þ ∝ exp

�
Sp
s=1S

p
t=1 −

1
2
bstxsxt + Sp

s=1asxs

+ Sp
s=1S

q
j=1rsj xp+j

� �
xs + Sq

j=1S
q
r=1frj

�
xp+j, xp+r
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where we assume without loss of generality that Xj(j = 1,…p) are
continuous variables, Xp+j(j = 1,…q) are discrete variables, and
Q = (as, bst, rsj, frj) for s,t = 1,… and j,r=1,…q are parameters.
We assume that the discrete variable Xp+j takes a total of Lj
values. As shown in (Lee and Hastie, 2015), the conditional
distribution of a pairwise Markov random field is either Gaussian
or multinomial. Thus, it enables a joint modeling of mixed data.
In particular, for a continuous variable Xj its density conditional
on all other variables X-j is given by
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where x-j = (x1,…, xj-1, xj+1,…, xp+q)
T and qj∈R(p+q-1) and s 2

j   are
parameters from the Gaussian distribution. For a discrete
variable Xj, its conditional density is given by
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p xj = i
� ��x−jÞ = exp w0 ið Þ
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where (w(0)
j ,  …  w

(Lj)
j )T   are parameters from the multinomial

distribution. In order to recover the Markov blanket, we
implement a nodewise penalized generalized linear model
(GLM) to perform neighborhood selection for each node (Lee
and Hastie, 2015). More specifically, for node j we solve a
penalized maximum likelihood problem that

b̂ j =   arg min
bj

  –Sn
k=1 log p xkj

� ��xk,−jÞ + lj ∥ bj ∥1

Where xkj is the observed data for subject k at node j,xk,-j = (xk1,
xk2,…, xk,j+1,…, xkn) and Sn

k=1 log p (xkjjxk,−j) is the log-likelihood
of all subjects. The parameter bj = qj when Xj is Gaussian; and�
w(1)T

j ,w(2)T

j , � � �,w(Lj)
T

j

�T when Xj is categorical. In (1), we add

an L1-penalty on the bj to enable the neighborhood selection. If
node j is continuous, we connect node i with node j if the ith

element of b̂ j is nonzero. If node j is categorical, we connect node

i with node j if any ith element of ŵ (k)
j (k = 1,  …, Lj)   is nonzero.

In the next section, we will discuss how to remove false
connections identified at this stage that do not belong to the
skeleton of the DAG. In (1), the tuning parameter lj controls the
level of penalization and how sparse the resulting graph will be.
Its optimal value is chosen by minimizing the extended Bayesian
information criteria (EBIC) (Foygel and Drton, 2010).

EBICg bj
� �

= −2Sn
k=1 log p xkj

� ��xk,−jÞ + ∥ bj ∥0 log n

+ 2g ∥ bj ∥0 log p + q − 1ð Þ
where n is sample size, ∥bj∥0 is number of nonzero elements of
bj and g is a user-predefined constant.

Identification of the Skeleton
The nodewise penalized GLM results in a Mixed Graphical
Model (MGM), which is graphical model on continuous and
discrete variables. Next, we remove edges in a MGM that do not
exist in the corresponding DAG's skeleton. In a MGM, two
vertices are connected if the two variables are dependent
conditional on all other variables. However, in a v-structure
X ! W  Z of a DAG, co-parents X and Z are independent
conditional on their parents. Therefore, X and Z are not
connected in the DAG's skeleton. But since X and Z are
dependent given any vertex set that contains W or its
descendant, X and Z are connected in a MGM. Therefore, we
need to remove false connections between co-parents of v-
structures in a MGM to obtain the DAG’s skeleton.

The removal of false connections between co-parents of v-
structures relies on testing the conditional independence of two
variables given a set of other variables. In a Gaussian graphical
model, testing conditional independence is equivalent to testing a
zero partial correlation coefficient (Baba et al., 2004). Therefore,
such a test can be easily performed using a Fisher’s z-transformation
(Ha et al., 2016) on the partial correlation. However, for mixed data,
February 2020 | Volume 11 | Article 8
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testing conditional independence will be more complicated as it is
no longer equivalent to testing zero partial correlation coefficient.
To this end, we propose a permutation method to test the
conditional independence of mixed data. Let Xj and Xl be two
variables, and XK be the set of variables that Xj and Xl are
conditioning on. We first regress Xj and Xl on XK respectively
using a GLM. When Xj is Gaussian, we calculate the residual rij   =
  xij   – x̂ ij,   (i = 1,  …,   n)   from the ordinary linear regression,
where xij is the ith observation of Xj and x̂ ij   the prediction of xij
from the ordinary linear regression. When Xj is discrete, we
calculate the Pearson residual from a multinomial logit model

rij = SLj−1
k=1

xijk − m̂ ijkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̂ ijk 1 − m̂ ijk

� �q
where xijk the ith observation of the kth dummy variable created
for Xj and m̂ ijk is its predicted value from the logit model. In a
special case of binary outcome, the above form reduces to the
Pearson residual from a logistic model. Then, we calculate the
partial correlation

r̂ jl =
Sn
i=1 rij − �rj
� �

ril − �rlð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
i=1 rij − �rj
� �2Sn

i=1 ril − �rlð Þ2
q
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1
n S

n
i=1rij and  �rl =

1
n S

n
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n
i=1 to have (rp(i)l)

n
i=1 where p(i) ∈ { 1,…,n } is the

permuted label of i. The permutation is repeated for B times. For
the bth permutation, we calculate the partial correlation
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The p-value testing the conditional independence of Xj and Xl

then given by p = 1
B S

B
i=1I(r̂ jl > r̂ (b)

jl )where I(x) is the indicator

function. We conclude that Xj and Xl are conditionally
independent if such a p-value is greater than 0.05. Based on
the above test of conditional independence, we remove the edges
belonging to the MGM but not the DAG's skeleton and obtain
the d-separation set.

Orientation of the Mixed DAG
In the last step, we add orientation to the skeleton of the DAG
using a greedy search algorithm as proposed in (Tsamardinos
et al., 2006). We aim to find the orientation such that the
Bayesian Information Criterion (BIC) of the whole graph is
minimized (Schwarz, 1978). For a given directed graph, the BIC
score for the jth (j = 1,2,3,…,(p+q)) node is

BIC jð Þ = −2 log L jð Þ b̂
� 

+ ∥ b̂ ∥0 log n

where L(j)(b̂ ) is the log-likelihood of the GLM regressing the jth
node on its parents, b̂ is the estimated vector of coefficients,
and ∥ b̂ ∥0 is the number of nonzero elements in b̂ . The overall
score of a directed graph is then given by BIC(overall) = Sp+q

j=1 BI
C(j). The greedy search starts from an empty graph, whose
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score is calculated as summation of scores of each node without
any parent. Then, for a node j and any node k connected with j
in the estimated skeleton, we attempt to add, delete or reverse
an edge between them based on the BIC change. More
specifically, if there is no directed edge between nodes j and k
at the current iteration, we add a directed edge j!k if the BIC
score becomes smaller after adding this directed edge. If there is
a directed edge between nodes j and k, we delete or reverse it if
the BIC score becomes smaller after deleting or reversing this
edge. This algorithm stops when the above edge operations fail
to decrease the overall BIC score and the resulting directed
graph is the estimated DAG. For the pseudo code
(Supplementary Table S1) and a small-scale illustration
(Supplementary Figure S1) of our entire algorithm, see the
Supplementary Material.
RESULTS

Simulation Studies
To assess our method 's performance , we s imulate
eight scenarios with different combinations of sample
s ize , number of nodes and edges , and percentage
of categorical nodes. We vary the sample size by 100
and 1,000; the number of nodes by 100 and 500;
the percentage of categorical nodes by 10% and 20%; and
the number of edges by 100 and 500. For each scenario, each
categorical node contains 4 levels. More details of the
simulation settings are summarized in Table S2 in the
Supplementary Material.

For each scenario, we first use the R package spacejam to
generate a DAG. We randomly select 10% or 20% of the nodes as
categorical and remaining nodes as continuous. For node i with
no parents, if Xi is continuous, Xi is generated fromN(0,1); if Xi is
categorical, Xi is sampled from {1,2,3,4} with equal probabilities.
For node i; with parents, if Xi is continuous, Xi is generated from
N(∑j∈parent(i)Xj, 1), where parent (i) is the parent(s) of node i; if Xi

is a categorical variable, Xi is generated from Multinomial (1,p)

where p=(p1, p2, p3, p4) and pl =
exp (loj∈parent(i)Xj)

S4
l=1 exp (loj∈parent(i)Xj)

, l = 1, 2, 3, 4:  

In simulation studies, we compared our method with the
CPC-stable method (implemented the R package pcalg) and the
MMHC method (implemented by the R package bnlearn).
Both methods cannot d i s t inguish categor ica l and
continuous variables but treat all of them as continuous.
For each method, we evaluated edge recovery performance
in both the estimated skeleton and the estimated DAG.
The edge recovery performance is assessed through
sensitivity, specificity, and false discovery rate (FDR). When
evaluating the estimated skeleton, we define true edges as
edges appearing in the true DAG's skeleton, estimated edges as
edges appearing in the estimated skeleton, true null edges as
unconnected edges in the true DAG's skeleton, and estimated
null edges as unconnected edges in the estimated skeleton. We
further defined sensitivity, specificity, and FDR of the
estimated skeleton as follows:
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Sensitivity =
#   of   estimated   edges ∩ true   edgesð Þ½ �

#   of   true   edges
,

Specificity =
#   of   estimated null   edges ∩ true null   edges½ �

#   of   true null   edges
,

FDR  =
#   of   estimated   edges − true   edges½ �

#   of estimated   edges

When evaluating the estimated DAG, we defined true edges as
directed edges in the true DAG, estimated edges as directed edges
in the estimated DAG, undetermined edges as edges with
undetermined direction in the estimated DAG, true null edges
as unconnected edges in the true DAG, and estimated null edges
as unconnected edges in the estimated DAG. Then, the
sensitivity, specificity, and FDR of the estimated DAG is
defined as follows:

Sensitivity =
#   of   estimated   edges − undermined   edgesð Þ ∩ true   edges½ �

#   of   true   edges
,

Specificity =
#   of   estimated null   edges ∩ true null   edges½ �

#   of   true null   edges
,

FDR  directedð Þ = #   of   estimated   edges − true   edges½ �
#   of estimated   edges
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Among the three measurements, sensitivity measures how
a method recovers the connected edges in the true DAG
and its skeleton. In particular, for DAG, sensitivity
also measures if the direction of an edge is correctly
recovered. Specificity measures how a method identifies the
null edges in the true DAG and its skeleton. FDR measures
the rate of falsely identified edges. In Figure 1, we present the
boxplots of sensitivity, specificity, and FDR for all
simulated scenarios.

Sensitivity, specificity, and FDR should be considered
simultaneously to assess the overal l edge recovery
performance. In Figures 1A–D, the true DAG is sparse, i.e.,
not too many edges are connected. Our method has much
better specificity and FDR for recovering the DAG and its
skeleton, even though its sensitivity is smaller than the
two competing methods. In Figures 1E–H, the true DAG is
dense, i .e. , many edges are connected. Our method
performs the best in terms of all three measurements in
both recovering the DAG and its skeleton. In all cases,
our method's FDR is much lower, indicating that it
e s t imates many fewer fa l se pos i t ive edges . These
results clearly demonstrate the merit of our methods
by distinguishing categorial variables from continuous
variables in the mixed data, especially when the DAG is
dense. For mixed data, directly applying existing methods
a n d i g n o r i n g d a t a t y p e d i ff e r e n c e c l e a r l y h a s
inferior performance.
FIGURE 1 | Sensitivity, specificity, and FDR of mDAG and two alternative methods, MMHC and CPC-stable, in simulation scenarios 1–8. (A) Scenario 1; (B)
Scenario 2; (C) Scenario 3; (D) Scenario 4; (E) Scenario 5; (F) Scenario 6; (G) Scenario 7; (H) Scenario 8. The X-axis indicates the measurements of performance
(sensitivity, specificity, and FDR); the Y-axis indicates the corresponding values. “*” indicates the sensitivity/specificity/FDR from mDAG significantly differs from the
sensitivity/specificity/FDR of CPC-stable or the sensitivity/specificity/FDR of MMHC. “**” indicates the sensitivity/specificity/FDR from mDAG significantly differs from
the sensitivity/specificity/FDR of CPC-stable and the sensitivity/specificity/FDR of MMHC. Such comparisons are tested by two-sample Wilcoxon.
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Real Data Application
Human Chlamydia Infection Dataset
Chlamydia trachomatis can ascend from the cervix to the uterus and
fallopian tubes (upper genital tract) to cause long term sequelae,
including chronic pelvic pain and infertility. Inflammatory cytokines
and chemokines were measured in cervical secretions from 160
asymptomatic C. trachomatis infected women (age 15–30 years),
participating in a previously described T cell Response Against
Chlamydia (TRAC) cohort (Russell et al., 2015). The Institutional
Review Boards for Human Subject Research at the University of
Pittsburgh and the University of North Carolina approved the study
and all participants provided written informed consent prior to
inclusion. Ninety-six proteins were quantified using Milliplex
Magnetic Bead Assay Kits (Millipore Sigma, St. Louis, MO), as
previously described (Poston et al., 2019). 160 women who were
infected at enrollment were assigned to two groups: women who had
both cervical and endometrial infection were defined as Endo+
(cases), while those with cervical only infection were defined as
Endo- (controls). To determine the regulatory networks involved in
chlamydial ascension to the endometrium, we focused on 14
cytokines that were consistently detected in cervical secretions and
were tentatively positively or negatively associated with endometrial
infection by univariable logistic regression after adjustment for
previously determined confounders, including cervical chlamydial
load and gonorrhea coinfection (P<0.20) (Poston et al., 2019). We
jointlymodeled continuous nodes, including expression of 14 cervical
cytokines and one covariate (cervical chlamydial load), with
categorical nodes, including the binary disease outcome
(endometrial infection: Endo+ vs. Endo-) and a binary covariate
(gonorrhea coinfection) by the mDAG.

Results for our mDAG analysis are shown in Figure 2A, and the
arrows indicate direction. We found two distinct pathways that
emanate from CXCL10. The CXCL9 network is connected with
ascending infection, while the CXCL11 network is distant and
disconnected, which indicates a more favorable host response. The
CXCL9 network includes CXCL13, IL-17A, CCL4, and TNFa as
downstream regulated proteins. These cytokines are predominately
associated with the induction of antibody and Th17 cells that are not
protective against chlamydial genital tract infection (Andrew et al.,
2013; Frazer et al., 2013; Darville et al., 2019). CXCL13, a CXCR5
ligand, is produced bymultiple cell types and is a potent recruiter and
activator of T follicular helper (Tfh) cells and B cells (Legler et al.,
1998; Breitfeld et al., 2000). CXCL13 is a marker of germinal center
activity (Havenar-Daughton et al., 2016) and may also reflect
increased ectopic lymphocyte cluster development (Denton et al.,
2019). Thus, increased CXCL13 levels may promote or sustain
plasma cell aggregates previously observed in tissues from women
with chlamydial endometritis and salpingitis (Kiviat et al., 1990).
Increased CXCL13 levels that stimulate plasma cell development are
consistent with detection of high serum and cervical levels of anti-
chlamydial IgG and IgA in women who remain susceptible to
repeated chlamydial infection (Darville et al., 2019). This is
consistent with the network connectivity of CXCL13 and IL-17A,
since proinflammatory CXCR5+ Th17 cells are also effective B-cell
helpers capable of inducing strong antibody responses (Morita et al.,
2011). Furthermore, the production of TNFa by CCL4-recruited
Frontiers in Genetics | www.frontiersin.org 6
CD8 T cells may play a role in recruitment or differentiation of Th17
cells and enhance genital tract pathology (Murthy et al., 2011;
Andrew et al., 2013). Besides chlamydial load, a factor we
previously identified as associated with enhanced risk for upper
genital tract infection, the analysis indicated TNFa production was
FIGURE 2 | Graphic results for causal network analysis of human Chlamydia
infection dataset, a mixed type dataset consisting of continuous variables,
including expression of 14 cervical cytokines and one covariate (cervical
chlamydial load), and categorical variables, including the binary disease
outcome (endometrial infection: Endo+ vs. Endo-) and a binary covariate
(gonorrhea coinfection) by mDAG and two alternative methods, respectively.
The arrows indicate direction of causality. (A) mDAG; (B) MMHC; (C) CPC-
stable. The dashed line in (A) separates cytokines connected to ascension on
the left, from cytokines disconnected from ascension on the right.
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connected with chlamydial ascension. Previous studies have linked
TNFa to infertility in C. trachomatis-infected women (Reddy et al.,
2004; Srivastava et al., 2008).

The other major network that diverges from ascension is
driven by CXCL11 and includes IL-14, CXCL14, IL-16, IL-15,
PDGF-AA, and PDGF-BB. CXCL11 can induce and recruit
CXCR3+ T cells shown to be protective during chlamydial
infection (Perry et al., 1997), and could therefore prevent
ascension. CXCL11 has strong binding affinity to its receptor,
CXCR3, which is consistent with the ability of CXCL11 to
increase intracellular calcium at lower doses than CXCL9 (Cole
et al., 1998), and may explain the deviation of these two
chemokines into separate networks. Next, the convergence of
CXCL14 and CXCL11 with IL-14 could represent the ability of
CXCL14 to enhance CD4 T cell activation (Chen et al., 2010).
This activation would lead to the release of IL-14 and
subsequently stimulate local B cell activation and proliferation
(Ambrus et al., 1993). Although T cell interactions with activated
antigen-presenting B cells could enhance antibody production
capable of initiating Fc-mediated platelet activation and PDGF
release, this cell-to-cell signaling will also trigger T cell receptor-
mediated IL-16 secretion (Wu et al., 1999) and further enhance
CD4 T cell recruitment (Lynch et al., 2003). IL-16 can directly
stimulate mononuclear phagocyte IL-15 production (Mathy
et al., 2000), which is critical for T cell survival and effector
function (Borger et al., 1999; Purton et al., 2007) that would
protect from chlamydial ascension. These findings are consistent
with our previous analysis demonstrating that cytokines
downstream of CXCL9 were associated with increased odds of
endometrial infection, while cytokines downstream of CXCL11
were associated with decreased odds (Poston et al., 2019).

In addition, we applied theMMHC and CPC-stable algorithms to
infer the regulatory pathways. Although theMMHC (Figure 2B) was
able to predict the causal direction among cytokines, the
directionality was completely disconnected from the disease trait,
and the direction between cervical bacterial load and upper genital
tract infection was reversed. Regulatory networks predicted by the
CPC-stable algorithm (Figure 2C) completely failed to infer the
direction in our cytokine dataset, which might be due to its
conservative feature.

These results suggest that our proposed mDAG can infer
upstream causal cytokines and downstream effector cytokines
more closely linked to disease and correctly separate pathogenic
and protective regulatory networks.

Metabolic Syndrome in Men Dataset
The Metabolic Syndrome in Men (METSIM) study is a population-
based study with 10,197 males randomly selected from the
population register of the town of Kuopio in Finland (Stancakova
et al., 2009). The Ethics Committee of the University of Eastern
Finland and Kuopio University Hospital approved the METSIM
study, and this study was conducted in accordance with the
Declaration of Helsinki. All study participants gave written
informed consent. A subset of 770 participants have gene
expression measurements from subcutaneous adipose tissue
(Civelek et al., 2017), we analyzed genotype, gene expression, and
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plasma adiponectin levels using our mDAG and alternative methods.
For directional inference, we focused on two GWAS loci for
adiponectin (Zhong et al., 2019) and expression of genes within ±
1Mb at each locus t. Genetic variants at the first locus near the
ADIPOQ gene may exert their effects on adiponectin levels through
expression of the ADIPOQ gene, which is expressed in adipose tissue
and encodes the adiponectin protein studied. In contrast, genetic
variants identified at the second locus, where the index SNP (the SNP
with the most significant p-value from GWAS) is an intronic SNP in
ARL15, which might influence adiponectin levels through expression
of the FST gene instead of ARL15 (Civelek et al., 2017; Martin et al.,
2017; Zhong et al., 2019).

We extracted genotypes of the index SNP for each locus and
expression levels of genes within ± 1Mb of each index SNP.
Because a gene may have multiple probesets, we first applied a
Sobel test to each probeset to detect mediation effect of the index
SNP on adiponectin levels through the probeset. We then
selected the probeset with the minimum mediation p value.
We applied our mDAG and alternative methods to estimate
DAGs (Figures 3A–C) for the ADIPOQ locus and 4A-4C for the
FST-ARL15 locus]. mDAG has the feature of forcing SNPs to
point to other nodes. Results of mDAG suggest that the ADIPOQ
gene is a mediator at the first locus (Figure 3A), and that FST
gene (not ARL15) is a mediator at the second locus (Figure 4A).
These findings are consistent with the results in (Zhong et al.,
2019). In contrast, alternative methods failed to identify the
expected directional relationships (Figures 4B, C).
DISCUSSION

Jointly modeling the probability distribution of the continuous
measurements of gene expression or protein abundance and the
categorical nodes, such as disease traits and SNPs, identifies the
regulatory paths of a disease. More importantly, it distinguishes
the disease-causing pathways from the disease-reaction
pathways, and identifies genes mediating the effects of GWAS
loci on diseases. This leads to a better understanding of disease
mechanisms, and helps generate more precise targets for new
therapeutic and diagnostic interventions. The existing DAG
methods cannot be applied to such a joint model, as they
mostly assume all nodes are of the same type.

To this end, we proposed a mixed DAG (mDAG) algorithm to
infer the regulatory paths of mixed data. Our mDAG algorithm is a
hybrid method and consists of three main steps including
identification of the Markov blanket, determination of the skeleton,
and inference of edge orientation. There are some alternative
algorithms which can be applied in each step. For example, a more
general framework (Zhuang et al., 2016) can be used to estimate
undirected graph and PC algorithmbased approach can be applied for
edge orientation. Our algorithm uses a new permutation-based
method to test the conditional independence of nodes of mixed
types. We compared our method with two alternative well-known
methods that ignore the type difference of nodes. The simulation
results show that mDAG outperforms the alternative methods in
terms of the FDR, sensitivity, and specificity of the edge recovery of the
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underlying true DAG. Results from the human chlamydial infection
dataset demonstrates that mDAG successfully reconstructs the
pathogenic and protective regulatory networks for chlamydial
ascension. The regulatory pathways inferred by our method identify
upstream causal factors and generate hypotheses for causal direction
of regulatory pathways, and therefore provide candidates for
experimental validation. For the Metabolic Syndrome in Men
Frontiers in Genetics | www.frontiersin.org 8
dataset, mDAG also identifies the expected paths of important
GWAS loci for adiponectin suggested by previous publications
(Civelek et al., 2017; Martin et al., 2017), even in the presence of
multiple presumably irrelevant genes in the 1D neighborhood of the
loci under study in the model, indicating that mDAG can bridge
the functional gap of synonymous GWAS signals and provide the
mechanistic hypotheses underlying GWAS variants.
FIGURE 3 | Graphic results for causal network analysis of the Metabolic
Syndrome in Men dataset, a mixed type dataset consisting of a categorical
variable, genotypes of one index SNP at the ADIPOQ GWAS locus, and
several continuous variables, including expression levels of 21 genes and
plasma adiponectin levels (disease trait). The arrows indicate direction of
causality. (A) mDAG; (B) MMHC; (C) CPC-stable.
FIGURE 4 | Graphic results for causal network analysis of Metabolic
Syndrome in Men dataset, a mixed type dataset consisting of a categorical
variable, one index SNP at ARL15 GWAS locus, and continuous variables,
including expression of 8 genes and adiponectin levels (disease trait). The
arrows indicate direction of causality. (A) mDAG; (B) MMHC; (C) CPC-stable.
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The mDAG could not only be used to infer the causality paths
in mixed types of proteomic or transcriptomic data with
categorical phenotypes and/or SNP data, but it could also be
applied to other mixed data, such as metabolomics and DNA
structural variants, including copy number variation, since it
does not require prior biological knowledge. Beyond genetics, it
can be applied to social, behavioral, and psychology studies.
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