
Frontiers in Genetics | www.frontiersin.org

Edited by:
Guilherme J. M. Rosa,

University of Wisconsin-Madison,
United States

Reviewed by:
Hao Cheng,

University of California, Davis,
United States
Lingyang Xu,

Chinese Academy of Agricultural
Sciences, China

Gota Morota,
Virginia Tech, United States

*Correspondence:
Patrik Waldmann

Patrik.Waldmann@slu.se

Specialty section:
This article was submitted to

Livestock Genomics,
a section of the journal
Frontiers in Genetics

Received: 26 September 2019
Accepted: 08 January 2020

Published: 06 February 2020

Citation:
Waldmann P, Pfeiffer C and
Mészáros G (2020) Sparse

Convolutional Neural Networks for
Genome-Wide Prediction.

Front. Genet. 11:25.
doi: 10.3389/fgene.2020.00025

METHODS
published: 06 February 2020

doi: 10.3389/fgene.2020.00025
Sparse Convolutional Neural
Networks for Genome-Wide
Prediction
Patrik Waldmann1*, Christina Pfeiffer2 and Gábor Mészáros2

1 Department of Animal Breeding and Genetics, The Swedish University of Agriculutural Sciences, Uppsala, Sweden,
2 Division of Livestock Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria

Genome-wide prediction (GWP) has become the state-of-the art method in artificial
selection. Data sets often comprise number of genomic markers and individuals in ranges
from a few thousands to millions. Hence, computational efficiency is important and various
machine learning methods have successfully been used in GWP. Neural networks (NN)
and deep learning (DL) are very flexible methods that usually show outstanding prediction
properties on complex structured data, but their use in GWP is nevertheless rare and
debated. This study describes a powerful NN method for genomic marker data that can
easily be extended. It is shown that a one-dimensional convolutional neural network (CNN)
can be used to incorporate the ordinal information between markers and, together with
pooling and ℓ1-norm regularization, provides a sparse and computationally efficient
approach for GWP. The method, denoted CNNGWP, is implemented in the deep
learning software Keras, and hyper-parameters of the NN are tuned with Bayesian
optimization. Model averaged ensemble predictions further reduce prediction error.
Evaluations show that CNNGWP improves prediction error by more than 25% on
simulated data and around 3% on real pig data compared with results obtained with
GBLUP and the LASSO. In conclusion, the CNNGWP provides a promising approach for
GWP, but the magnitude of improvement depends on the genetic architecture and
the heritability.

Keywords: genomic selection, machine learning, deep learning, dominance, QTL, livestock breeding
INTRODUCTION

Extraction of valuable information from big data is a critical endeavour in different disciplines of
genomics and bioinformatics (Fan et al., 2014). A major direction of machine learning is to develop
efficient algorithms for analysis and model prediction of large scale data sets (Ghahramani, 2015;
Jordan and Mitchell, 2015). There are many instances of the effective use of machine learning in
genomic prediction, genome-wide association studies and different types of DNA-sequence analysis
(Okser et al., 2014; Libbrecht and Noble, 2015).

Artificial neural networks (NN) are multifaceted methods that recently have attracted much
attention because of their superior prediction characteristics (LeCun et al., 2015). The input layer of
a NN is connected to an output layer, either directly or through one or several hidden layers of
February 2020 | Volume 11 | Article 251

https://www.frontiersin.org/article/10.3389/fgene.2020.00025/full
https://www.frontiersin.org/article/10.3389/fgene.2020.00025/full
https://www.frontiersin.org/article/10.3389/fgene.2020.00025/full
https://loop.frontiersin.org/people/101425
https://loop.frontiersin.org/people/841530
https://loop.frontiersin.org/people/97641
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Patrik.Waldmann@slu.se
https://doi.org/10.3389/fgene.2020.00025
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00025
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00025&domain=pdf&date_stamp=2020-02-06

Waldmann et al. GWP Using CNN
interconnected neurons. The number of hidden layers
determines the depth of a NN, and the width depends on the
number of neurons of each layer. Deep neural networks (DNNs)
are NNs with several hidden layers. Fast optimization algorithms
are used to iteratively perform forward and backward passes for
minimization of a loss function and to learn the weights and
biases of the layer. The activation functions are applied to the
current values of the weights at each layer in the forward pass.
The final result of a forward pass is new predicted outputs. The
backward pass computes the error derivatives between the
predicted outputs and the real outputs. These errors are then
propagated backwards updating the weights and calculating new
error terms for each layer. Iterative repetitions of this process is
denoted back-propagation (Rumelhart et al., 1986). Stochastic
gradient descent (SGD) is the most common technique to train
parameters in NNs. Several variants of SGD have been developed
and some of them adapts the learning rate automatically
throughout the course of learning (Goodfellow et al., 2016).

The multilayer perceptron (MLP) is the most basic NN and
its minimum configuration consists of three layers of nodes: an
input layer, a hidden layer, and an output layer (Rosenblatt,
1962). Except for the input nodes, each node is a neuron that uses
a nonlinear activation function. The MLP can be seen as a
hierarchical mathematical function mapping some set of input
values to output values via many simpler functions. Normally,
the nodes are fully connected between layers and therefore the
number of parameters quickly increases to huge numbers with a
considerable risk of overfitting. There are several techniques to
avoid overfitting in NN (Theodoridis, 2015).

The convolutional neural network (CNN) technique is built
around sharing of weights and is influenced by the structural
architecture of the human visual system. CNNs are based on
ideas that utilize local connectivity between neurons and
hierarchically organized transformation of the input (Min
et al., 2017). Nodes form groups of d-dimensional arrays
known as feature maps. Each node in a given map receives
inputs from a certain window area of the previous layer, which is
referred to as its receptive field. The convolution operation
results in a much sparser NN than the MLP. The first CNN
was proposed by LeCun et al. (1989) and the technique has
become popular in the analysis of structured data, for example in
speech recognition and image analysis.

Gianola et al. (2011) suggested Bayesian ridge regression
based regularization to prevent over-fitting in feed-forward
NNs and showed that this improved prediction accuracy of
traits in Jersey cows and wheat compared to standard linear
models. The approach was further improved by replacing the
computationally demanding Levenberg-Marquardt training
algorithm with back-propagation (Ehret et al., 2015). Bellot
et al. (2018) compared a few MLPs and CNNs with each other
on large human SNP and phenotype data. They found that, in
general, the performance of CNN was comparable to that of
regularized linear models, but suggested that more research was
needed to adapt the CNNmethodology to genetics-based studies.
This conclusion is further supported by conflicting results
Frontiers in Genetics | www.frontiersin.org 2
between different methods in a recent review (Pérez-Enciso
and Zingaretti, 2019).

The purpose of this study was to further evaluate the CNN
methodology within the GWP framework. Tuning of the
structure and hyper-parameters of the CNN was performed
with Bayesian optimization (Mockus, 1975). Moreover, the
importance of sparsity inducing regularization was evaluated.
The predictive properties of the CNN models were evaluated on
both simulated data with additive and dominance genetic effects
and real pig data. To our knowledge, this is the first time a 1d
CNN is combined with ℓ1-norm regularization, Bayesian
optimization and ensemble prediction in a GWP setting.
METHODS

Neural Networks
The multilayer perceptron (MLP) is defined as

y = f (X; q) (1)

where function f(·) maps an input X (genomic markers) of
dimension n×p to an output y (phenotype) of dimension n×1,
and learns the parameters q that result in the best function
approximation. This model is also known as a feedforward
network because information flows from X through f(·) to y
without any feedback connections (LeCun et al., 2015). The MLP
usually consists of several functions expanded over each other,
for example three functions f(1)(·), f(2)(·), and f(3)(·) which results
in the connected chain f(X) = f(3)(f(2)f(1)(x))) where f(1)(·) is
referred to as the first layer, f(2)(·) the second (hidden) layer and
the final layer is called the output layer. The length of the chain
defines the depth of the NN. Each layer consists of one, or usually
more, units called nodes that act in parallel. The number of
nodes per layer determines the width of the model.

With only input and output layers, model (1) is equivalent to
a linear model. However, it is straightforward to apply a
nonlinear transformation f(·) to the input and thereby obtain
a more flexible model

y = f (X; q,W, b) = f(X; q)TW + b (2)

where q are the parameters of the (non)-linear activation
functions, W are the weight parameters that map from f(X) to
the output, and b is the bias parameter that captures the overall
deviation from zero. The activation functions are usually applied
to the affine transformation z = WTX+b of the hidden layers.
There is a large number of activation functions to choose from.
Unfortunately, there is no activation function that works best in
all situations. Hence, a trial-and-error approach seems to be the
most viable solution.

The rectified linear unit (ReLU) has become a popular default
activation function and is defined as f(z) = max{0,z}.The only
difference between a linear function and ReLU is that the latter
outputs zero across half of its domain. This makes the derivatives
through a ReLU remain large and consistent when the function is
February 2020 | Volume 11 | Article 25

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Waldmann et al. GWP Using CNN
active. However, it should be noticed that the ReLU is not
differentiable at z = 0, but this seems to have relatively small
effects on gradient-based algorithms in practice (Goodfellow
et al., 2016). There are several variants of the ReLU function,
for example the leaky ReLU, parametric ReLU and maxout.

Training of the MLP parameters is usually performed with a
gradient-based technique in order to minimize a loss (i.e., cost)
function

argmin
q ,W ,b

 J(q,W, b) (3)

which is equivalent to minimization of the negative log-
likelihood -log p(y|X). The characteristics of the output
variable determine which cost function and output activation
function to use. For continuous output variables the modeling
approach is regression where it is most common to use mean
squared error (MSE) cost following

argmin
f

jjy − bf (X; q,W, b)jj22, (4)

where jj � jj22 denotes the squared Euclidean loss and f̂ (X; q,W,
b) is the predicted output. Another popular cost function for
continuous output is the mean absolute error (MAE) which is
based on the ℓ1-norm, ||⋅||1, and therefore considered to be less
sensitive to outliers. For categorical outputs the problem
becomes classification. Loss functions for categorical data
include the logistic, the cross entropy, and the hinge loss. The
two former loss functions are continuous and convex, and
therefore can be optimized with gradient descent methods. The
hinge loss is used in Support Vector Machines, but is not convex
and needs to be minimized with subgradient descent methods
and was not further investigated in this study. The choice of loss
function is closely connected with the choice of output activation
function. In regression, it is common to use the linear output
activation, whereas binary classification often use the sigmoid
func t ion and mul t inomia l c l a s s ifica t ion uses the
softmax function.

Convolutional Neural Networks
Convolutional neural networks are a specialized form of NN for
analysis of input data that contains some form of spatial
structure (Goodfellow et al., 2016). Examples include time-
series data which is one-dimensional, image data which is two-
dimensional and video data which is three-dimensional. A CNN
consists of one or several convolutional layers of the form g = CK

(f) which acts on a p-dimensional input f(x) = (f1(x),…, fp(x)) by
applying a set of filters (also referred to as kernels) K=(ĸl',l) for
l = 1,…, q and l' = 1,…, p together with a possible non-linear
activation f

gl(x) = f o
p

l0=1
(fl0 ∗ kl0 ,l)(x)

 !
(5)

producing a q-dimensional output g(x) = (g1(x),…,gq(x)), often
referred to as a feature map. Here, each convolution operation is
Frontiers in Genetics | www.frontiersin.org 3
over discrete univariate index variables and therefore becomes
(f ∗ k)(x) = fl0 (x Þkl0 ,l . A discrete convolution can be interpreted
as a multiplication of the input vector with a Toeplitz matrix with
the kernel repeated on the diagonal. Hence, for a univariate
discrete convolution, each row of the matrix is constrained to be
equal to the row above, but sequentially shifted by one element
(Goodfellow et al., 2016). In the first layer of a genetic
application, l' will refer to SNP index or chromosome position,
q to the size of the window to slide over the chromosomes, and x
the genotype value. In a fully connected MLP, every output unit
interacts with every input unit. However, in a CNN, the
interactions are sparse because the filter is normally set to be
of smaller size than the input. This means that fewer
parameters need to be calculated and stored which improves
computational efficiency.

The convolution layer expands the parameter space
considerably and therefore is often followed by a pooling layer
g = P(f) that replaces the full output with a summary statistic of
the neighborhood V(x) of the convolution

gl(x) = P(fl(x
0) : x0 ∈ V(x)Þ (6)

where x′ refers to the set of values from the neighborhood to
consider for the pooling function. There are several pooling
functions P that can be used. The max pooling function provides
the maximum output of the convolution neighborhood. Other
pooling functions reports the weighted average or some norm
regularized measure. The size of the pooling function is typically
smaller than the size of the convolution which reduces the
parameter space even further. Sometimes it is also beneficial to
systematically skip some positions of the filter kernel in order to
reduce the precision. A powerful approach for this is known as
strided convolution. A stride length of two means that only every
second input is sampled, which also leads to a halved number of
parameters. Another important feature of any CNN is the ability
to zero pad the input to make it wider. Without this feature the
width of the input shrinks by one unit for each layer and allows
for independent control over the kernel width and the output
size. Equal padding means that the number of zeros is the same
on both sides of the input data. Before the output layer is
reached, it is necessary to flatten the convolution and it is also
useful to regularize these weights with the ℓ1-norm to prevent
over-fitting. Regularization can also be obtained using dropout,
where a random fraction of the nodes (i.e., weights) in a layer are
set to zero. The surviving nodes have to stand in for those that
are omitted, which produces a form of regularization that has
been shown to be effective in preventing over-fitting. In the CNN
layer dropout is usually performed by treating filters as units and
all weights belonging to the same filter are set to zero. Pérez-
Enciso and Zingaretti (2019) provides further explanation and
illustration of CNNs.

Bayesian Optimization of
Hyperparameters
Bayesian optimization (BO) forms a set of powerful tools that
allows efficient black-box optimization and has general
applications in a broad spectrum of fields (Shahriari et al.,
February 2020 | Volume 11 | Article 25

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Waldmann et al. GWP Using CNN
2016). It is applicable in situations where one does not have a
closed-form expression for the objective function and its
hyperparameters f(X;g), but where it is possible to perform
noisy evaluations of this function at sampled values of g. BO is
particularly useful when the evaluations of f(X;g) are demanding,
when derivatives are difficult to obtain, or when the optimization
problem is non-convex. BO is a probabilistic sequential approach
with two key steps. First, it uses the entire sample history to
update a posterior distribution over the unknown f(X;g). Second,
it uses an acquisition function a to trade off between exploration
and exploitation when selecting the points of g at which to
evaluate next. The optima are located where the uncertainty (the
variance) in the objective function is large (exploration) and/or
where the function value of the model (the mean) is
high (exploitation).

One common BO approach is to assume that f(X;g) is
distributed according to a Gaussian process prior:

f (X; g) eGP(m(X; g),C((X; gi), (X; gj)) (7)

where the properties of the resulting distribution are completely
detemined by the mean function m(X;g) and the covariance
function C((X;gi),X;gj), and it is assumed that the negative of the
test MSE observations are normally distributed:

−MSE eN(f (X; g),s 2I) : (8)

Given this generative model, the posterior over functions will
be the acquisition function a which determines the next point to
evaluate via a proxy optimization:

gt+1 = argmaxa(g1 : t) : (9)

One useful acquisition function that fits well with the GP
approach is the upper confidence bound (UCB) (Srinivas et al.,
2010)

aUCB = m(g1 : t) + bs (g1 : t), (10)

where m is the mean and s the standard deviation of f(X;g1:t),
respectively. b is a tunable hyperparameter that determines the
trade-off between exploration and exploitation. The BO is run for
T number of iterations.

Model Averaged Ensemble Predictions
The stochastic sampling of mini-batches in SGD based
algorithms introduces uncertainty that leads to parameter
fluctuations between iterations (Waldmann, 2018). In NN,
poor generalization behavior of the SGD has been observed in
practice (Hardt et al., 2015). Ensemble methods use multiple
learning algorithms, or replicates of the same algorithm on
stochastic manipulations of the data, to obtain better predictive
performance than could be obtained from any of the algorithms
alone. It is possible to obtain model averaged (MA) estimates by
averaging over ensemble predictions. In this study, S replicates of
the BO were run and the hyperparameters g were extracted from
the model with lowest test MSE, which were then averaged to
obtain gMA. After that, the CNN was re-run S times with fixed
gMA (without BO), and test predictions were calculated for each
Frontiers in Genetics | www.frontiersin.org 4
of these runs, and finally averaged to obtain MA predictions

byMA =
1
So

S

s=1

bf (X; q,W, b, gMA)s (11)

which was used to calculate minimum test MSEMA.
DATA

Simulated Data
The primary data was created for the QTLMAS2010 work-shop
and consists of 3,226 individuals structured in a pedigree with 5
generations (Szydłowski and Paczyńska, 2011). The pedigree is
founded on 20 individuals (5 males and 15 females). Each female
is mated once giving birth to approximately 30 progeny. A
neutral coalescent model was used to simulate the SNP data
where the genome is made up of five autosomal chromosomes
each with a length of 100 Mbp. This procedure resulted in 10,031
markers, including 263 monomorphic and 9,768 biallelic SNPs.

The continuous quantitative trait was created from 37 QTLs,
including 9 controlled genes, and 28 random genes. The
controlled QTLs included two pairs of epistatic genes with no
individual effects, three maternally imprinted genes and two
additive major genes with effects of -3 and 3. The additive genes
are positioned at SNP indices 4,354 and 5,327, whereas the major
epistatic locus is at SNP 931. The random genes were selected
among the SNPs. Their effects were sampled from a truncated
normal distribution and designated to be a QTL if the absolute
value of the additive effect was smaller than 2. The QTLs were
surrounded by 19–47 polymorphic SNPs (MAF > 0.05) located
within 1 Mb distance from the QTL. 364 SNPs display moderate
to high linkage disequilibrium (LD) with the QTLs.

In addition to the original data simulated by Szydłowski and
Paczyńska (2011), one dominance locus was placed at SNP
number 9212 by assigning an effect of 5.00 to the heterozygote
and a value of 5.01 to the upper homozygote. One over-
dominance locus was created at SNP 9404 by allocating an
effect of 5.00 to the heterozygote, and an effect of -0.01 to the
lower homozygote and 0.01 to the upper homozygote. Finally, by
allocating a value of -5.00 to the heterozygote, an effect of -0.01 to
the lower homozygote and 0.01 to the upper homozygote, one
under-dominance loci was generated at SNP id 9602. The effects
of the genotypes of these new QTLs were added to the original
phenotype values. Minor allele frequency (MAF) cleaning was
performed at the 0.01 level, so the final sample of SNPs with 0,1,2
coding was 9723. The phenotype values were mean standardized.
The SNP data was normalized to mean zero and variance one
over each SNP. Data from individual 1 to 2,326 was used as
training data and from individual 2,327 to 3,226 (the 5th
generation) as validation data.

Real Data
For evaluation of the CNN methodology within the GWP
framework, 808 Austrian Large White and Landrace sows with
high-density genotypes were used. Genotyping was carried out
February 2020 | Volume 11 | Article 25

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Waldmann et al. GWP Using CNN
using Illumina PorcineSNP60 BeadChip (Illumina, San Diego
CA, USA). SNPs were quality controlled using the software
package PLINK 1.9 (Purcell et al., 2007), excluding SNPs if
MAF was lower than 0.01 and if SNPs deviated strongly from
Hardy-Weinberg equilibrium (< 10-9). After quality control
50,174 SNPs remained, recoded to additive genotype format
(0,1 or 2) with PLINK using −−recode A. A total of 207,488
genotypes were missing and therefore imputed with FImpute
using pedigree information (Sargolzaei et al., 2014).

Most of the genotyped sows had repeated phenotypic
information for the trait number of live born piglets. For the
evaluation based on real data, the phenotypic records were
averaged over individuals. The number of measurements
ranged from 1 to 9 with a median value of 4. The heritability
for number of live born piglets were 0.16 ± 0.04 using pedigree
evaluation based on 7,940 pigs. For comparative purposes, we
used the breeding values (EBVs) from the pedigree evaluation as
one trait (808 records) and the real measurements as another
trait (702 records). For cross-validation (CV), data was
partitioned into eight folds with each training data of 707
individuals and each test data containing 101 individuals for
the EBV trait and into seven folds for the real measurements.
IMPLEMENTATION

Nowadays, there are several software packages designed for deep
learning. In this study, the R interface to Keras (Chollet et al.,
2017) with the Tensorflow back-end was used. As a base model, a
1-dimensional CNN with an MSE loss function was
implemented. The input (SNP markers) was connected to a 1d
CNN layer. This layer was followed by max pooling and flatten
layers. At the end, a 1-unit dense output layer with linear
activation and ℓ1-norm regularization of the weights was
connected to the output (phenotypic values). The adaptive
moment estimation (ADAM) optimizer, which adapts the
decay of the learning rate using moving average and bias-
correction, was chosen for all analyses (Kingma and Ba, 2014;
Waldmann, 2018). The R package rBayesianOptimization (Yan,
2016) was used for UCB based BO using the minus of the
validation MSE as score value since this package cannot perform
minimization directly. The R-code for this model is denoted
CNNGWP and can be found at github (Waldmann, 2019).

For comparison, the simulated and real data were also
analyzed with the genomic best linear unbiased prediction
(GBLUP) and Bayesian LASSO (BLASSO) implemented in the
using default settings in the R-package BGLR Pérez and de los
Campos, 2014).
RESULTS

Simulated Data
Together, the model and optimizer have at least 10 g that need to
be tuned. BO of all these g proved to be difficult, probably
because of structural dependencies in the NN that led to flat
Frontiers in Genetics | www.frontiersin.org 5
ridge-like structures in the MSE surface. Hence, after some initial
evaluations against validation data where some of the g were
fixed, the following parameters of the 1d CNN layer were fixed:
linear activation function, equal zero padding, and strides of two,
because they yielded relatively low and overall stable errors.
Interestingly, ReLU activation and 1d spatial dropout showed no
decrease in MSE when applied to this layer, and were for this
reason not used. The pool size of the max pooling layer should be
smaller than the kernel size and therefore was set to two.
Moreover, the learning rate of the ADAM optimizer was set to
0.00025 after visual inspection of validation MSE against epoch
number of several plots. Too high a learning rate can result in a
bumpy MSE trajectory that may miss the minimum, whereas too
low a learning rate will require a huge number of epochs to reach
the minimum. One epoch refers to a learning pass over all data
points (i.e., individuals) and therefore the number of iterations
within one epoch depends on the batch size. The batch size was
fixed at 48, which is the integer part of the square root of the
number of observations in the training data. The maximum
number of epochs was set to 250.

This set up resulted in three g that needed to be tuned with
BO, namely, the number of filters of the CNN layer (filter), the
size of the convolution window (kernel), and the regularization
parameter l of the ℓ1-norm in the output layer. The initial
bounds of g were set to [20,100], [10,50], and [0.1,1.0] for the
filter, kernel, and l, respectively. It is well-known that SGD and
related algorithms suffer from numerical instability and statistical
inefficiency, and it has been suggested that averaging of
parameters induces stability and results in lower generalization
error (Toulis et al., 2016). Hence, in order to obtain a reasonable
compromise between computing time and statistical accuracy,
the number of iterations in the BO T and the number of
replicates of the BO and MA S were set to 40, 25, and 25,
respectively. This resulted in the following gMA estimates from
the BO: filter = 64, kernel = 27, and l = 0.571. The type of layers
and the number of parameters of the optimized model are
outlined in Table 1 based on the summary() function in Keras.
The CNN was re-run 25 times with these hyperparameters to
obtain ŷMA which resulted in a final test MSEMA of 62.34. Note
that it is not possible to doMA over the weights in the CNN layer
because the filters may pick up different QTLs at different runs.
Hence, each of the 25 runs was treated as different prediction
models. The GBLUP and BLASSO produced mean MSE over
folds of 88.42 and 89.22, respectively (Table 2). This implies that
TABLE 1 | Layer name and type, output data shape of the layer, and number of
trainable parameters per layer for the model with the Bayesian optimized model
averaged hyperparameters using the simulated data.

Layer (type) Output shape # Parameters

Conv1d (Conv1D) (None, 4862, 64) 1792
Maxpooling (MaxPooling1D) (None, 2431, 64) 0
Flatten (Flatten) (None, 155584) 0
Out (Dense) (None, 1) 155585
Total 157377
February 2020 | Volume
The model description is based on the output from the summary() function in Keras. None
is an internal Keras representation which means that the mini-batch size is a variable to be
set in the consequent fit() function.
11 | Article 25

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Waldmann et al. GWP Using CNN
the improvement for the simulated data was 29.5% and
30.1%, respectively.

The output layer of this data set contains 155,584 weights
and 1 bias parameter. Dividing the number of weights by the
number of SNPs in the input layer resulted in a factor that can
be used to map the SNP index to approximate positions of the
weight index, i.e., 155,584/9723 = 16.002. The epistatic locus
mainly contains an additive part that after multiplication with
the factor should be found at weight index 14,898. The two
major additive SNPs should be positioned around weight
indices 69,673 and 85,243, whereas the dominance, over-
dominance and under-dominance loci should be at positions
147,410, 150,483 and 153,651, respectively. Figure 1 provides a
plot of the MA weight effects of the output layer against weight
index with the five major true QTL positions marked. It is
interesting to note that the positions are mapped very well.
Moreover, the additive weight effects are centered around zero
whereas the dominance effects deviate from zero.
Real Data
After some initial evaluations against validation data of each of
the folds, it was found that the model used on the simulated
data could be used also on the real data with the following
changes. The learning rate of the ADAM optimizer was
changed to 0.00001 for the EBV trait and 0.000025 for the
real trait. The batch size was changed to 26 for the EBV trait
and to 25 for the real trait, whereas the maximum number of
epochs were changed to 150 and 50 for the EBV and real trait,
respectively. For BO of the EBV trait, the initial bounds of g
Frontiers in Genetics | www.frontiersin.org 6
were altered to [5,50], [5,50], and [0.002,0.1] for the filter,
kernel, and l, respectively. For the real trait, these bounds were
set to [5,60], [5,60], and [0.5,5.0] for the filter, kernel, and l,
respectively. T and S were set to 40 and 25 for each of the folds
of both real data sets. The BO resulted in gMA estimates: filter =
41, kernel = 40, and l = 0.0071 for the EBV trait. These
hyperparameters resulted in a final test MSEMA of 0.301 for the
EBV trait. The GBLUP and BLASSO produced mean MSE over
folds to be 0.305 and 0.307, respectively. Hence, the
improvements of the CNNGWP compared to the GBLUP
and BLASSO were 1.3% and 2.0%, respectively. The model
characteristics for the EBV trait is summarized in Table 3. For
the real trait, the BO resulted in gMA estimates: filter = 25,
kernel = 34, and l = 2.54 which produced a MSEMA of 3.51.
The GBLUP and BLASSO produced mean MSE over folds of
the real trait of 3.64 and 3.61, respectively (Table 2). This
implies that the improvement for the real phenotype was 3.6%
and 2.8%, respectively. The model characteristics for the real
trait is summarized in Table 4.

The pig data contains no known QTL positions. The mapping
factor is equal to 484,949/47,299 = 10.2 and 295,626/47,299 =
6.25 for the EBV and raw phenotype, respectively. Figure 2
provides a plot of the MA weight effects of the output layer
against weight index for the EBV. There are some indications of
QTL-peaks, especially one with negative effects around weight
index 25,000 which maps back to SNP 2450. No peaks can be
found for the raw phenotype, which is not surprising because of
the low heritability (Figure 3).
TABLE 2 | Test mean squared error (MSE) for CNNGWP, GBLUP, and BLASSO
for each of the three data sets.

Data set CNNGWP GBLUP BLASSO

QTLMAS2010 62.34 88.42 89.22
Pig EBV 0.301 0.305 0.307
Pig phenotype 3.51 3.64 3.61
FIGURE 1 | Plot of model averaged weight effects against weight index in
the output layer of the simulated QTLMAS2010 data. The true major additive
(including the additive part of the epistatic) QTLs are marked in red + and the
dominance QTLs are in green ×.
TABLE 4 | Layer name and type, output data shape of the layer, and number of
trainable parameters per layer for the model with the Bayesian optimized model
averaged hyperparameters using the pig raw phenotype data.

Layer (type) Output shape # Parameters

Conv1d (Conv1D) (None, 23650, 25) 875
Maxpooling (MaxPooling1D) (None, 11825, 25) 0
Flatten (Flatten) (None, 295625) 0
Out (Dense) (None, 1) 295626
Total 296501
February 2020 | Volume 1
The model description is based on the output from the summary() function in Keras. None is
an internal Keras representation which means that the mini-batch size is a variable to be set
in the consequent fit() function.
TABLE 3 | Layer name and type, output data shape of the layer, and number of
trainable parameters per layer for the model with the Bayesian optimized model
averaged hyperparameters using the pig EBV data.

Layer (type) Output shape # Parameters

Conv1d (Conv1D) (None, 23657, 41) 1681
Maxpooling (MaxPooling1D) (None, 11828, 41) 0
Flatten (Flatten) (None, 484948) 0
Out (Dense) (None, 1) 484949
Total 486630
The model description is based on the output from the summary() function in Keras. None
is an internal Keras representation which means that the mini-batch size is a variable to be
set in the consequent fit() function.
1 | Article 25

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Waldmann et al. GWP Using CNN
DISCUSSION

Recently, Waldmann (2018) showed how the dropout technique
can be applied to an MLP, resulting in an approximate Bayesian
(ABNN) model that provided a computationally efficient
approach. The ABNN method was compared with GBLUP and
BLASSO on the same simulated dataset used in the present study.
The resulting testing set MSE on the simulated QTLMAS2010
data was 82.69, 88.42, and 89.22 for the ABNN, GBLUP, and
BLASSO, respectively. Waldmann (2018) used the Cleveland pig
data (Cleveland et al., 2012) as an example of a real data and
found the test MSE estimates were equal to 0.865, 0.876, and
0.874 for ABNN, GBLUP, and BLASSO, respectively.
Unfortunately, the Cleveland data could not be used in the
current study because the order of the SNPs was randomized
which breaks down the LD structure.

There are some interesting properties and findings of the
CNNGWP worth mentioning. In contrast to the ABNN
(Waldmann, 2018), dropout did not improve on prediction
error. The reason for this is probably that the ℓ1-norm
constraint of the weights in the output layer of the CNNGWP
Frontiers in Genetics | www.frontiersin.org 7
is equivalent to the LASSO, which is known to be a more efficient
regularizer. Another consideration is that the linear activation
function was superior to the ReLU activation, irrespective of
whether the latter was applied directly to the one-dimensional
convolution layer or in an extra fully connected layer before the
pooling layer. Hence, there is not much non-linearity to capture
by the model apart from the dominance, which is not surprising
because of the 0, 1, and 2 coding of the SNPs. It can also be seen
in the plot of the weights in the output layer of the QTLMAS2010
data that CNNGWP captures the true QTLs with clear peaks that
indicate whether a region is mostly additive or dominant. The
difference in the plots of the weights of the real pig data is most
likely caused by the the fact that the EBV phenotype has less
error variance than the raw phenotype.

Regarding computational efficiency, it is difficult to give an
exact timing of the CNNGWP analyses because it depends
heavily on what strategies that are used for parallel computing,
the need for initial ad-hoc evaluation of hyper-parameters, the
number of epochs in ADAM, and number of iterations and
replicates of the BO. The most computationally demanding part
is the BO of the hyper-parameters because of the sequential nature
of this algorithm. Speed ups can be obtained by using the GPU
version of Keras (Chollet et al., 2017), and by fully parallelizing the
BO and ensemble prediction.With a carefully optimized strategy it
would be possible to appraoch a computing time of a few hours of
based on data sets of similar size as in this study.

The dominant design of the relatively few applications of NN
in GWP is the MLP (e.g., Ehret et al. (2015) and Glória et al.
(2016)). Bellot et al. (2018) compared deep learning models on
large human SNP data combined with five phenotypes with
varying levels of heritability. For height, a highly heritable
phenotype, all methods performed more or less similarly,
although CNNs were slightly but consistently worse. For the
rest of the phenotypes, the performance of some CNNs was
comparable to, or slightly better than, that of Bayesian linear
methods. Performance of MLPs was highly dependent on SNP
set and phenotype. Over the range of traits evaluated in that
study, CNN performance was competitive with that of linear
models, but the difference from the linear model was not large in
any of the cases investigated. The CNNmodels in that study have
some similarities with CNNGWP, but the authors regularized
weight parameters with dropout, used genetic algorithms for
hyperparameter tuning, and did not use model averaged
ensemble prediction. Bellot et al. (2018) also showed that CNNs
performed comparatively better as narrow-sense heritability
decreased and the contribution of dominance increased. These
results are consistent with those obtained with the CNNGWP
analysis of the simulated QTLMAS2010 data. Our conclusion is
that CNNGWP and related CNN approaches can improve
prediction accuracy, but the magnitude of improvement most
likely depends on the genetic architecture and to some extent on
the heritability. A thourough analysis of simulated data sets with
different genetic architechtures and heritabilities would be needed
to shed more light on this issue.

Ma et al. (2018) proposed a deep convolutional NN (DeepGS)
with a fixed 8–32–1 architecture including ReLU activation and
FIGURE 3 | Plot of model averaged weight effects against weight index in
the output layer when number of live born piglet of the Austrian pig data are
used as phenotypes.
FIGURE 2 | Plot of model averaged weight effects against weight index in
the output layer when breeding values (EBVs) of the Austrian pig data are
used as phenotypes.
February 2020 | Volume 11 | Article 25

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Waldmann et al. GWP Using CNN
dropout between all layers. They evaluated prediction
performance as the phenotypic values of the eight traits scored
on 2,000 individuals of wheat and 33,709 DArT (Diversity Array
Technology) markers. In general, they found that DeepGS
performed only marginally better than GBLUP and RR-BLUP,
but considerably better than three different MLPs. However, the
lack of formal hyperparameter and NN structure optimization
limits the usefulness of that result.

There is increasing interest in applications of deep learning in
various areas of genomics (Zou et al., 2019). However, most of
the applications concern functional genomics, with examples
including predicting the sequence specificity of DNA- and RNA-
binding proteins and of enhancer and cis-regulatory regions,
methylation status, gene expression, and control of splicing.
Deep learning has been especially successful when applied to
regulatory genomics, by using architectures directly adapted
from modern computer vision and natural language-processing
applications. Some ongoing work is focusing on predicting
phenotypes from genetic data, but most of these examples
concern tools for base calling and structural prediction. In the
future, it will be interesting to see if integration of data from
different sources, for example DNA variants, RNA expression
profiles, other types of omics data as well as environmental
variables can contribute to better prediction accuracy (Grapov
et al., 2018).

Finally, we would like to provide some notes regarding the
importance of modeling of the spatial structure between the
genomic markers. A large number of methods have been
developed for incorporation of LD or physical marker order. Yang
and Tempelman (2012) suggested Bayesian first-order
antedependence models and reported that these methods had
higher accuracies compared with models without the
antedependence parameters between the markers. Recently, Wang
et al. (2019) devloped the Precision Lasso, which is a Lasso variant
that promotes sparse variable selection by regularization directed by
the covariance and inverse covariance matrices of the explanatory
variables. They found that the variable selection properties improved,
but the prediction error increased. It has also been proposed tomodel
the marker dependency between the markers using different graph
procedures (Martinez et al., 2017; Stephenson et al., 2019). A unifying
factor for all these approaches is that the spatial structure is used to
regularize and/or smooth the predictors, but the number of
predictors is constant through the model. In contrast, the
convolution operator in CNNGWP first expands the number of
parameters locally, and then regularizes these via the maxout pooling
Frontiers in Genetics | www.frontiersin.org 8
and the ℓ1-norm on the output layer. Further work is definitely
needed in this area, both on development of new methods and to
establish mathematical relationships between all these methods.
DATA AVAILABILITY STATEMENT

The simulated dataset analyzed in this study can be found at
github https://github.com/patwa67/CNNGWP. The pig data that
support the findings of this study are available from University of
Natural Resources and Life Sciences Vienna (BOKU) but
restrictions apply to the availability of these data, which were
used under license for the current study, and so are not publicly
available. Data are however available from the authors upon
reasonable request and with permission of University of Natural
Resources and Life Sciences Vienna (BOKU).
ETHICS STATEMENT

Ethical review and approval was not required for the animal
study because the study was performed with data from
production animals.
AUTHOR CONTRIBUTIONS

All the authors contributed to the method design. CP and GM
acquired and edited the Austrian Large White and Landrace sow
data. PW implemented the algorithm, carried out the
experiments, and wrote the paper. All authors read and
approved the final manuscript.
FUNDING

Financial support was provided by the Beijer laboratory for
animal science, SLU, Uppsala.
ACKNOWLEDGMENTS

Thanks to National Supercomputer Centre at Linköping
University for providing computing resources.
REFERENCES

Bellot, P., De Los Campos, G., and Pérez-Enciso, M. (2018). Can deep learning
improve genomic prediction of complex human traits? Genetics 210, 809–819.
doi: 10.1534/genetics.118.301298

Chollet, F., Allaire, J., Falbel, D., Tang, Y., Van Der Bijl, W., Studer, M., et al.
(2017). R interface to Keras. https://github.com/rstudio/keras.

Cleveland, M. A., Hickey, J. M., and Forni, S. (2012). A common dataset for
genomic analysis of livestock populations. Genes Genom. Genet. 2, 429–435.
doi: 10.1534/g3.111.001453

Ehret, A., Hochstuhl, D., Gianola, D., and Thaller, G. (2015). Application of neural
networks with back-propagation to genome-enabled prediction of complex
traits in Holstein-Friesian and German Fleckvieh cattle. Genet. Selection Evol.
47, 22. doi: 10.1186/s12711-015-0097-5

Fan, J., Han, F., and Liu, H. (2014). Challenges of big data analysis.Natl. Sci. Rev. 1,
293–314. doi: 10.1093/nsr/nwt032

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence.
Nature 521, 452–459. doi: 10.1038/nature14541

Gianola, D., Okut, H., Weigel, K. A., and Rosa, G. J. M. (2011). Predicting
complex quantitative traits with Bayesian neural networks: a case study
with Jersey cows and wheat. BMC Genet. 12, 87. doi: 10.1186/1471-2156-
12-87

Glória, L. S., Cruz, C. D., Vieira, R. A. M., de Resende, M. D. V., Lopes, P. S.,
de Siqueira, O. H. D., et al. (2016). Accessing marker effects and heritability
February 2020 | Volume 11 | Article 25

https://github.com/patwa67/CNNGWP
https://doi.org/10.1534/genetics.118.301298
https://github.com/rstudio/keras
https://doi.org/10.1534/g3.111.001453
https://doi.org/10.1186/s12711-015-0097-5
https://doi.org/10.1093/nsr/nwt032
https://doi.org/10.1038/nature14541
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.1186/1471-2156-12-87
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Waldmann et al. GWP Using CNN
estimates from genome prediction by Bayesian regularized neural networks.
Livestock Sci. 191, 91–96. doi: 10.1016/j.livsci.2016.07.015

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (Cambridge,
MAMIT Press).

Grapov, D., Fahrmann, J., Wanichthanarak, K., and Khoomrung, S. (2018). Rise of
deep learning for genomic, proteomic, and metabolomic data integration in
precision medicine. Omics A J. Integr. Biol. 22, 630–636. doi: 10.1089/
omi.2018.0097

Hardt, M., Recht, B., and Singer, Y. (2015). Train faster, generalize better: stability
of stochastic gradient descent. ICML′16: Proceedings of the 33rd International
Conference on International Conference on Machine Learning. 48, 1225–1234.
doi: 10.5555/3045390.3045520

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: trends, perspectives,
and prospects. Science 349, 255–260. doi: 10.1126/science

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,
et al. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1, 541–551. doi: 10.1162/neco.1989.1.4.541

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Libbrecht, M. W., and Noble, W. S. (2015). Machine learning applications in
genetics and genomics. Nat. Rev. Genet. 16, 321–332. doi: 10.1038/nrg3920

Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J., et al. (2018). A deep
convolutional neural network approach for predicting phenotypes from
genotypes. Planta 248, 1307–1318. doi: 10.1007/s00425-018-2976-9

Martinez, C. A., Khare, K., Rahman, S., and Elzo, M. A. (2017). Modeling
correlated marker effects in genome-wide prediction via gaussian
concentration graph models. J. Theor. Biol. 437, 67–78. doi: 10.1016/
j.jtbi.2017.10.017

Min, S., Lee, B., and Yoon, S. (2017). Deep learning in bioinformatics. Briefings In
Bioinf. 18, 851–869. doi: 10.1093/bib/bbw0689

Mockus, J. (1975). “On Bayesian methods for seeking the extremum,”. Optimization
Techniques IFIP Technical ConferenceNovosibirsk, July 1–7, 1974. Ed. G. I.Marchuk
(Berlin, Heidelberg: Springer), 400–404. doi: 10.1007/3-540-07165-2_55

Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., and Aittokallio, T.
(2014). Regularized machine learning in the genetic prediction of complex
traits. PloS Genet. 10, e100475. doi: 10.1371/journal.pgen.1004754

Pérez, P., and de los Campos, G. (2014). Genome-wide regression and prediction
with the BGLR statistical package. Genetics 198, 483–495. doi: 10.1534/
genetics.114.164442

Pérez-Enciso, M., and Zingaretti, L. M. (2019). A guide on deep learning for
complex trait genomic prediction. Genes 10, 553. doi: 10.3390/genes10070553

Purcell, S., Neale, B.other (2007). Plink: a toolset for whole-genome association
and population-based linkage analysis. http://zzz.bwh.harvard.edu/plink/. doi:
10.1086/519795

Rosenblatt, F. (1962). Principles of Neurodynamics (New York: Spartan).
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by backpropagating errors. Nature 323, 533–536. doi:
10.1038/323533a0
Frontiers in Genetics | www.frontiersin.org 9
Sargolzaei, M., Chesnais, J. P., and Schenkel, F. S. (2014). A new approach for
efficient genotype imputation using information from relatives. BMC Genomics
15, 478. doi: 10.1186/1471-2164-15-478

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016).
Taking the human out of the loop: A review of Bayesian optimization. Proc.
IEEE 104, 148–175. doi: 10.1109/JPROC.2015.2494218

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2010). Gaussian process
optimization in the bandit setting: No regret and experimental design, in:
ICML'10 Proceedings of the 27th International Conference on International
Conference on Machine Learning, Haifa, Israel. pp. 1015–1022.

Stephenson, M., Darlington, G. A., Schenkel, F. S., Squires, E. J., and Ali, R. A.
(2019). DSRIG: incorporating graphical structure in the regularized modeling
of SNP data. J. Bioinf. Comput. Biol. 17, 1950017. doi: 10.1142/
S0219720019500173

Szydłowski, M., and Paczyńska, P. (2011). QTLMAS 2010: simulated dataset. BMC
Proc. 5 (Suppl 3), S3. doi: 10.1186/1753-6561-5-S3-S3

Theodoridis, S. (2015). Machine Learning: A Bayesian and Optimization
Perspective (London, UK: Academic Press). doi: 10.1016/B978-0-12-801522-
3.00013-6

Toulis, P., Tran, D., and Airoldi, E. (2016). “Towards stability and optimality in
stochastic gradient descent,”, vol. 51. Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics Eds. A. Gretton and C. C.
Robert (Cadiz, Spain: PMLR). Proceedings of Machine Learning Research.
1290–1298.

Waldmann, P. (2018). Approximate Bayesian neural networks in genomic
prediction. Genet. Selection Evol. 50, 70. doi: 10.1186/s12711-018-0439-1

Waldmann, P. (2019). CNNGWP. https://github.com/patwa67/CNNGWP.
Wang, H., Lengerich, B. J., Aragam, B., and Xing, E. P. (2019). Precision lasso:

accounting for correlations and linear dependencies in high-dimensional
genomic data. Bioinformatics 35, 1181–1187. doi: 10.1093/bioinformatics/bty750

Yan, Y. (2016). rbayesianoptimization. https://github.com/yanyachen/
rBayesianOptimization.

Yang, W., and Tempelman, R. J. (2012). A bayesian antedependence model for
whole genome prediction. Genetics 190, 149–1501. doi: 10.1534/
genetics.111.131540

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., and Telenti, A.
(2019). A primer on deep learning in genomics. Nat. Genet. 51, 12–18. doi:
10.1038/s41588-018-0295-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Waldmann, Pfeiffer and Mészáros. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.
February 2020 | Volume 11 | Article 25

https://doi.org/10.1016/j.livsci.2016.07.015
https://doi.org/10.1089/omi.2018.0097
https://doi.org/10.1089/omi.2018.0097
https://doi.org/10.5555/3045390.3045520
https://doi.org/10.1126/science
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nrg3920
https://doi.org/10.1007/s00425-018-2976-9
https://doi.org/10.1016/j.jtbi.2017.10.017
https://doi.org/10.1016/j.jtbi.2017.10.017
https://doi.org/10.1093/bib/bbw0689
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1371/journal.pgen.1004754
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.3390/genes10070553
http://zzz.bwh.harvard.edu/plink/
https://doi.org/10.1086/519795
https://doi.org/10.1038/323533a0
https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1142/S0219720019500173
https://doi.org/10.1142/S0219720019500173
https://doi.org/10.1186/1753-6561-5-S3-S3
https://doi.org/10.1016/B978-0-12-801522-3.00013-6
https://doi.org/10.1016/B978-0-12-801522-3.00013-6
https://doi.org/10.1186/s12711-018-0439-1
https://github.com/patwa67/CNNGWP
https://doi.org/10.1093/bioinformatics/bty750
https://github.com/yanyachen/rBayesianOptimization
https://github.com/yanyachen/rBayesianOptimization
https://doi.org/10.1534/genetics.111.131540
https://doi.org/10.1534/genetics.111.131540
https://doi.org/10.1038/s41588-018-0295-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Sparse Convolutional Neural Networks for Genome-Wide Prediction
	Introduction
	Methods
	Neural Networks
	Convolutional Neural Networks
	Bayesian Optimization of Hyperparameters
	Model Averaged Ensemble Predictions

	Data
	Simulated Data
	Real Data

	Implementation
	Results
	Simulated Data
	Real Data

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

