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Endothelial cells (ECs) form the lining of lymph and blood vessels. Changes in tissue
requirements or wounds may cause ECs to behave as tip or stalk cells. Alternatively, they
may differentiate into mesenchymal cells (MCs). These processes are known as EC
activation and endothelial-to-mesenchymal transition (EndMT), respectively. EndMT, Tip,
and Stalk EC behaviors all require SNAI1, SNAI2, and Matrix metallopeptidase (MMP)
function. However, only EndMT inhibits the expression of VE-cadherin, PECAM1, and
VEGFR2, and also leads to EC detachment. Physiologically, EndMT is involved in heart
valve development, while a defective EndMT regulation is involved in the physiopathology
of cardiovascular malformations, congenital heart disease, systemic and organ fibrosis,
pulmonary arterial hypertension, and atherosclerosis. Therefore, the control of EndMT has
many promising potential applications in regenerative medicine. Despite the fact that
many molecular components involved in EC activation and EndMT have been
characterized, the system-level molecular mechanisms involved in this process have
not been elucidated. Toward this end, hereby we present Boolean network model of the
molecular involved in the regulation of EC activation and EndMT. The simulated dynamic
behavior of our model reaches fixed and cyclic patterns of activation that correspond to
the expected EC and MC cell types and behaviors, recovering most of the specific effects
of simple gain and loss-of-function mutations as well as the conditions associated with the
progression of several diseases. Therefore, our model constitutes a theoretical framework
that can be used to generate hypotheses and guide experimental inquiry to comprehend
the regulatory mechanisms behind EndMT. Our main findings include that both the
extracellular microevironment and the pattern of molecular activity within the cell regulate
EndMT. EndMT requires a lack of VEGFA and sufficient oxygen in the extracellular
microenvironment as well as no FLI1 and GATA2 activity within the cell. Additionally Tip
cells cannot undergo EndMT directly. Furthermore, the specific conditions that are
sufficient to trigger EndMT depend on the specific pattern of molecular activation within
the cell.

Keywords: endothelial-mesenchymal transition, systems biology, angiogenesis, Boolean network, endothelial cell
plasticity, heart development, fibrosis
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INTRODUCTION

The circulatory system allows the body to efficiently transport
oxygen and nutrients to all the constituent cells of animals
through an intrincate network of blood vessels. Capillaries are
the smallest blood vessels, communicating arterioles and venules;
they are composed of a single layer of endothelial cells (ECs), and
are partially covered by mural cells called pericytes (PCs). ECs
and PCs are in close proximity to most cells in multicellular
animals and are some of the most important cells involved in
wound healing and tissue regeneration. Thus, alterations that
affect these cells result in several pathological processes (Eming
et al., 2014; Birbrair et al., 2015).

While ECs and PCs are fully differentiated cell types, they
have the notable capacity to trans-differentiate into each other
(Nakagomi et al., 2015; Chen et al., 2016; Jackson et al., 2017),
and are also capable of differentiating into hematopoietic stem
cells, mesenchymal stem cells, and several other cell types (van
Meeteren and Ten Dijke, 2012; Birbrair et al., 2017; Dejana et al.,
2017). Notably, ECs differentiate into PCs in a process called
endothelial to mesenchymal transition (EndMT), which is very
similar to the epithelial-to-mesenchymal transition (EMT)
(Lamouille et al., 2014; Méndez-López et al., 2017). Like EMT,
EndMT is a reversible process, and the opposite mechanism is
denominated mesenchymal-to-endothelial transition (MEnT)
(Sánchez-Duffhues et al., 2018). EndMT is triggered either by
changes in the concentration of WNT, NOTCH, FGF, or TGF
ligands in the extracellular microenvironment, reduced oxygen
availability or shear stress. These changes lead to the activation of
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the transcription factors SNAI1, SNAI2, TWIST1, ZEB1, and
SPI1(ZEB2), resulting in the repression of the expression of
endothelial markers, specifically VEGFR2, PECAM1, VE-
Cadherin, TIE1, TIE2, and vWF accompanied by the
augmented expression of mesenchymal markers including a-
SMA, N-cadherin, and Collagen I//II. During EndMT, ECs lose
cell-to-cell adhesion and luminobasal polarity, gaining migratory
and invasive potential (Figure 1B) (Gong et al., 2017; Jackson
et al., 2017).

EndMT is a key process; physiologically, it is present during
the development of the heart. The formation and maturation of
the endocardial cushion leads to the formation of the septa and
valves. First, the endocardial cells located at the atrioventricular
canal (AVC)—including endocardial ECs—separate from the
myocardial cells that cover them. Then, the endocardial and
myocardial cells secrete extracellular matrix (ECM) components
that accumulate to form and expand the cardiac matrix jelly that
separates them. After that, AVC myocardial cells secrete bone
morphogenetic proteins (BMPs), causing AVC ECs to undergo
EndMT. Lastly, the mesenchymal cells resulting from the
EndMT differentiate into the cells that compose the cardiac
septa and heart valves (Kaneko et al., 2008). From the
pathological perspective, EndMT alterations are involved in
many cardiovascular disorders including artherosclerosis,
congenital heart disease, myocardial fibrosis, myocardial
infractions, and pulmonary arterial hypertension.

Stable vascular networks are lined by a layer of quiescent ECs
called Phalanx cells that are tightly bound to each other and to
the basement membrane, as well as being at least partially
FIGURE 1 | Sprouting angiogenesis as partial endothelial-to-mesenchymal transition (EndMT): (A) In a precapillary arteriole with an angiogenic sprout, the pericytes
(light orange cells that surround the arteriole) detach from a region of the arteriole exposed to a concentration of angiogenic signal that exceeded a certain threshold
leading to the activation of an endothelial cell (EC) that became a Tip cell (purple) that extends filipodia to sense the angiogenic signal gradient. The ECs that
surrounded the Tip cell where induced to become Stalk cells (pink) that proliferate, elongate, secrete vacuoles, and trail the tip cell as it migrates following the
angiogenic signal gradient. (B) The EndMT process is similar to sprouting angiogenesis, as ECs have to be activated and secrete Matrix metallopeptidases that
degrade the basement membrane to increase their motility and proliferate. However, in contrast to Tip and Stalk cells, ECs that undergo EndMT completely detach
from other ECs and stop expressing EC markers.
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covered by PCs. These Phalanx ECs do not proliferate, however,
they do exhibit lumen to basal membrane polarity, and express
EC markers (Korn and Augustin, 2015; Betz et al., 2016). Either
hypoxia or the lack of sufficient nutrients may cause cells that
surround a microvascular network to secrete angiogenic factors,
triggering sprouting angiogenesis. In this process, certain ECs are
induced to become migratory, invasive Tip cells (TCs), while
adjacent PCs detach from the capillary segment. Each TC
induces abutting ECs to become Stalk cells (SCs). Then, both
the TC and SCs detach from the basement membrane and the
TC migrates toward the source of the angiogenic signal trailing
SCs that elongate and proliferate (Figure 1A). The new sprout
continues to grow until the TC reaches either another blood
vessel or the TC leading another sprout. Then, the lumen of the
new segment is formed from the fusion of vacuoles (Jianxin et al.,
2015; Kim et al., 2017) and flow-mediated apical membrane
invagination (Gebala et al., 2016). Lastly, the new capillary
segment is stabilized and surrounded by PCs.

During sprouting angiogenesis TCs and SCs detach from the
basement membrane, migrate, and lose their luminobasal
polarity. Furthermore, TCs are invasive and secrete MMPs that
degrade the ECM while SCs proliferate. However, during
angiogenesis, ECs continue to express their characteristic
molecular markers, and the adherens and tight junctions that
bind ECs remain intact, thus suggesting that TC and SC behavior
involves partial EndMT (Welch-Reardon et al., 2015). Both TCs
and SCs express SNAI1 and SNAI2, and silencing either of these
genes inhibits angiogenic sprout formation, TC migration, and
affects lumen formation. SNAI2 directly regulates the expression
of MT1-MMP, the protein encoded by this gene cleaves and
activates MMP2 and MMP9. These are two proteases involved in
ECM degradation during sprouting angiogenesis (Welch-
Reardon et al., 2014).

As summarized above, a large set of molecules has been
described to be involved in angiogenesis and EndMT.
Nonetheless, the integrated dynamical mechanisms that
underlie full or partial EndMT are still not well understood
(Welch-Reardon et al., 2015). We propose that theoretical and
system-biology approaches, such as those proposed by (Álvarez-
Buylla Roces et al., 2018; Yang and Albert, 2019), can help us
elucidate the molecular mechanisms involved in EndMT
regulation. Cell types and behaviors are defined by a
combination of morphological, behavioral, genetic, and
epigenetic traits (Pavillon and Smith, 2019). In molecular
regulatory network models, cell types and behaviors are
represented by fixed and cyclic patterns of molecular activation
called attractors. Both ECs and MCs are very diverse groups of
cells with different developmental origins and exhibit many
patterns of gene expression and molecular activation (Chi
et al., 2003; Ho et al., 2018) Therefore, we expect the
underlying molecular mechanism involved in EC and MC
identity and behavior regulation to be multistable.

Due to the enormous biological and medical importance of
angiogenesis and EMT, both processes have been widely explored
through the simulation of models at the molecular and cellular
levels (Peirce, 2008; Qutub et al., 2009; Lu et al., 2013;
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Steinway et al., 2014; Heck et al., 2015; Li et al., 2016; Méndez-
López et al., 2017; Weinstein et al., 2017; Suzuki et al., 2018). In
contrast, to the best of our knowledge, simulation or formal
analyses of the molecular mechanism that control EndMT are
lacking. To this aim, we inferred the regulatory network of EndMT
by undertaking an exhaustive search of published data, and
formalizing it as a dynamical network system to study its
behavior under wild type and mutant backgrounds. The model
is able to recover the expression patterns that characterize the
main cell types during normal and pathological angiogenesis.
Importantly, the model can be used as a tool to generate
hypotheses regarding molecular and cellular effects of a large
group of perturbations, such as mutations and pharmacological
manipulations. Our main findings are that the specific conditions
sufficient to trigger EndMT and MEnT depend on the pattern of
molecular activation within the cell. EndMT requires a lack of
FLI1 and GATA2 activity within the cell and also requires the
absence of VEGFA and the presence of sufficient oxygen in the
extracellular microenvironment. Additionally Tip cells cannot
undergo EndMT directly.
METHODS

We assembled the molecular regulatory network of EndMT
using information available in the literature, focusing on the
incorporation of key molecules and their regulatory
interactions. Then, the inferred network was transformed
into a discrete dynamical system in the form of a Boolean
network (BN). We analyzed the dynamical behavior of the
model to find and classify the stationary and cyclic patterns of
molecular activation. Thereafter, we studied the conditions
that led to changes in the behavior or identity of the cells.
Also, we evaluated the robustness of the model to single gain-
and loss-of-function mutations, as well as its robustness to
changes in the components of the logical update rule. Besides
the study of these properties of the system, the model was
compared with the expected effect of the extracellular
microenvironments, gain- and loss-of-function mutations,
and mechanical forces associated to several diseases
in humans.

Regarding the validation of our model, the standard way of
doing it is by comparing the specific effects of gain and loss-of-
function mutations as reported in the references with their
simulated effect. Furthermore, we also simulated the conditions
that have been associated with several diseases related o EndMT
and compared the simulated dynamic behavior of our model
with the clinical observations of the pathologies.

Formalization of the Molecular Regulatory
Network as a Discrete Dynamical System
By assuming that every molecule in a regulatory network has a
concentration threshold that must be exceeded in order to have
an effect, it makes sense to use the formalism of a BN, where each
molecule is represented by a node that can be either active or
inactive, represented by 1 or 0, respectively. Let B = { 0,1 } and
March 2020 | Volume 11 | Article 40
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Z+
≤n = f1, 2,…, ng a set of labels. A state of a BN is an n-tuple x =

(x1,x2,…,xn) such that x ∈ Bn, and each component xi of a state x,
represents the activation state of variable i. To relate a
synchronous BN with a molecular network, we interpret that
variable i denotes a molecule included in the network. A BN is
then a set of functions that contains for each variable i in the
network an update rule fi:Bk!B where k is the number of nodes
that regulate variable i, and the n-tuple is an ordered list of the
states of the nodes that regulate node i. The dependency of the
state of activation of each node on the discrete time parameter t is
denoted as xi (t), and obeys the update rule given by fi, such that
for all t ∈ Z:

xi t + 1ð Þ = f (x tð Þ)i = fi ri tð Þð Þ :
When no race conditions or important cyclic behaviors are

expected from the simulated dynamic behavior of the model, it is
convenient to update all nodes simultaneously obtaining a
deterministic discrete dynamic system. A synchronous BN with
n components is a function f:Bn!Bn, where the i-th component
of f is a function fi such that fi(x) = f(x)i. That is for all t ∈ Z

x t + 1ð Þ = f x tð Þð Þ = f1 r1 tð Þð Þ, f2 r2 tð Þð Þ,…, fn rn tð Þð Þð Þ :
BNs encode regulatory interactions among the molecules that

compose them. Node j activates node i if there exists a pair of
network states x, y that differ only in the state of activation of
variable j, where xj = 0 and yj = 1, such that fi(y) – fi(x) > 0.
Conversely, node j inhibits node i if there exists a pair of network
states x, y that differ only in the state of activation of variable j.
Specifically, xj = 0 and yj = 1, such that fi(y) – fi(x) < 0. Node i
both activates and inhibits node j if there exists a pair of network
states x, y that differ only in the state of activation of variable j.
Specifically, xj = 0 and yj = 1, such that fi(y) – fi(x) > 0, and there
exists another pair of network states p. q that differ only in the
state of activation of variable j. Specifically, pj = 0 and pj = 1, such
that fi(q) – fi(p) > 0. An interaction denoted as the pair (i, j), i,j ∈
N≤n is functional if variable j activates or inhibits variable i,
or both.

BNmodels as defined above are deterministic andfinite systems,
thus simulating the dynamic behavior fromany given initial state of
the network leads to an attractor. A fixed point attractor is a state
s∈Bn such that f (s) = s. If we define f ol as the l-th iterate of the
function f such that f ol = f (f o(l – 1)). Then, an attractor is a set of
statesA⊆Bn, such that f ol(x) = x for any state x∈A. Furthermore, l
is the size of the attractor and for any j ∈ N+

<l , f
oj(x)∈A.

It is a standard practice to interpret fixed point attractors as
the stationary patterns of molecular activation observed in a
given regulatory network, and attractors of larger order as cyclic
patterns of molecular activation (Álvarez-Buylla Roces et al.,
2018; Yang and Albert, 2019). In the present study, we were able
to assign to all attractors a biological interpretation in term of
either a cell type or a cellular behavior.

We defined each component fi of the update rule f as follows:
In the simplest case, the node N1 is only regulated by R1, then
fN1 = xN1 (t + 1) = xR1(t). However, when the number of
regulators is greater than one, we find groups of active and
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inactive regulators that are sufficient to activate a given node. We
then represent such group as a logical expression where if all the
regulators of the group are active or inactive, as needed, then the
node is active. For instance, if N2 is regulated by the activators
A1, A2, and A3 that form a complex, and the formation of such
complex is inhibited by I1, then fN2 = xN2(t+1) = xA1(t) ∧ xA2(t) ∧
xA3(t) ∧ ¬xI1(t). If there are several groups of molecules that are
sufficient to activate the node, then those groups form an OR
expression. For example, if N3 represents a gene that can be
activated either by A4 if I2 is absent, or independently by A5,
then fN3 = xN3(t+1) = (xA4(t) ∧ ¬xI2(t)) ∨ xA5(t). Additionally,
some nodes are regulated at transcriptional, posttranslational
and protein levels and can be formalized using an AND
expression. For example, if the transcription of node N4 is
regulated by TF1 or TF2, its splicing is regulated by SF1, and
also MPK1 activates the protein by phosphorylation and PF1
causes its proteolysis. Then fN4=xN4(t+1)=(xTF1(t)∨xTF2(t))∧xSF1
(t)∧(xMPK1(t)∧¬xPF1(t)).

The molecular basis of our regulatory network is sufficient to
specify the direction and sign for most of the interactions, as well
as to specify most of the components of the logical update rule of
the model. Nevertheless, in some cases the published
information was not sufficient to unequivocally determine the
sign of an interaction or an update rule. In these cases, we
adjusted the system by assuming that the dynamic behavior of
our model must reach fixed or cyclic patterns of molecular
activation that correspond to the expected cell marker
expression for Phalanx, Stalk, and Tip EC behaviors, as well as
mesenchymal cells.

For the interested reader, the BoolNet, and GINsim versions
of the discrete model are available for download at https://github.
com/NathanWeinstein/EndMT.
Molecular Pattern Identification
We labeled the attractors according to the molecular activation
patterns associated to specific cell types or cell states. Notably,
these labels are not mutually excluding; a given network state
may fit more than one label. In the following paragraphs, we
describe the possible labels that might be assigned to network
states. Furthermore, some of the attractors are cyclic in nature,
therefore, we applied a label to a cyclic attractor only if it was
possible to apply the label to each one of the states that composes
the cyclic attractor.

It is known that all ECs express VE-cadherin, PECAM1,
TIE2, and VEGFR2. These molecules, in turn, are activated by
the combined presence of the transcription factors GATA2, and
FLI1. Hence, whenever a network state has these two nodes in an
active state, we say that such network represents an EC. Some
mesenchymal cells express GATA2 and FLI1, but they also
express fibroblast specific protein-1 (FSP-1), asmooth muscle
actin (aSMA), Smooth muscle-22a (SM22a), encoded by
transgelin (TAGLN), and fibronectin (Kamata et al., 2014).
The precise mechanism by which mesenchymal markers are
expressed during EndMT has not been fully elucidated.
However, SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2, which
March 2020 | Volume 11 | Article 40
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are also expressed by certain ECs, have been used experimentally
as mesenchymal markers (Magenta et al., 2011; Welch-Reardon
et al., 2014; Mahmoud et al., 2016). Because of these, we identify
as a mesenchymal cell all those network states where ZEB1,
ZEB2, TWIST1, and either SNAI1 or SNAI2 are active. Phalanx
ECs are the quiescent and tightly-bound ECs that form a layer
that functions as a barrier. We identify as Phalanx ECs those
states where there is an absence of NPR1, CTNNB, SNAI1,
SNAI2, while GATA2 and FLI1 are present. The absence of the
first set of markers is important because SNAI1 and SNAI2
inhibit the transcription of VE-cadherin (Lopez et al., 2009;
Cheng et al., 2013), and other important components of
endothelial adherence and tight junctions (Laakkonen et al.,
2017). Also, CTNNB activates the transcription of SNAI2 and
TWIST1, while CTNNB and LEF1 induce EC proliferation by
activating the transcription of Cyclin D1. Finally, NRP1 is a
marker for Tip EC behavior (Aspalter et al., 2015), (Phng et al.,
2009). Stalk cells are activated ECs that trail ECs. These cells
express FLI1, GATA2, and JAG1, yet they do not express NPR1
(del Toro et al., 2010; Blancas et al., 2012). Finally, Tip cells are
activated ECs that grow filipodia. Here, we use the presence of
FLI1, GATA2, NRP1, and ETS1 to identify Tip cells. NRP1 is a
recognized Tip cell marker (del Toro et al., 2010; Blancas et al.,
2012) and Tip cells must express DLL4, which requires ETS1
activity (Wythe et al., 2013).

The basin of attraction of an attractor is the group of states
that converges to that attractor. These states include the attractor
itself. In models where an attractor corresponds to just one cell
type (see for example Weinstein et al. (2015)), it is customary to
characterize the basins of attraction. In the present model,
however, a given attractor may correspond to more than one
label, and vice versa, one label can be assigned to more than one
attractor. Henceforth, it is necessary to define a trap space of any
given cell type or behavior c. This trap space is the union of the
basins of attraction of the fixed and cyclic behaviors that can be
classified as c. We estimated the size of each trap space by first
generating 107 random network states. For each state, we
simulated the behavior of our model until reaching an
attractor. We then classified the attractor and calculated the
fraction of the sampling space covered by each trap space.

Robustness of the Model
Evolution has made biological organisms resilient to several
perturbations such as mutations and fluctuations in the
concentration or level of molecular activation, while at the
same time remaining sensitive to changes in the concentration
of key molecular signals used to regulate its development. We
refer to this property as selective robustness. Specifically, the
systems affected by EndMT resist most changes in the
extracellular microenvironment, single gain and loss-of-
function mutations, as well as parameter variation. Substantial
alterations occur only when a critical molecule or interaction is
affected, or when several molecules are affected simultaneously.
Therefore, the molecular mechanisms involved in EndMT
regulation exhibit selective robustness. For clarity, we need to
Frontiers in Genetics | www.frontiersin.org 5
specify the trait we test for robustness, as well as the nature of the
perturbations we use to assess such robustness. Moreover, it is
also necessary to define a method to quantify robustness (Félix
and Barkoulas, 2015). Hence, we measured the robustness of the
network in the following ways:

1. The robustness of the cell types, as measured by the
percentage of gain- or loss-of-function mutations the
system is able to resist without the loss of a specific
stationary or cyclic pattern of molecular activation.

2. The robustness of the cell types to random changes in the
update rule. This was done by generating a population of
100,000 instances of the models, but each instance affected by
a single bit-flip in a random component of the update rule.
The mean number of attractors for all the networks in the
population were calculated. We say in this case that a cell type
is robust if the mean of the population is closer to the
nonperturbed model, and also if the variance is small.

3. The sensitivity of each component of the update rule to
molecular activation noise. For each update rule component,
namely each fi ∈ f, we generated 500,000 random initial
states, and for each one of those initial states s, a variant s' is
generated with a one bit flip. Then, we applied the update rule
to both s and s' and calculated the sensitivity of fi as the
fraction of initial states where f (s)i ≠ f (s')i. Additionally, we
calculated the sensitivity of each update rule component
when flipping from 2 to 15 bits of s to obtain s' in order to
observe how the sensitivity of each update rule is affected by
different levels of molecular activation noise. For each
component and each number of flipped bits we used 20,000
random initial states.

4. The robustness of each cell type in response to perturbations in
themoleculesthatrepresent theextracellularmicroenvironment
and the main transcription factors involved in maintaining EC
identity. Such nodes are DLL4, FGF2, FLI1, GATA2, HIF1a,
PDGF_AB, TGFb, VEGFA, WNT5b, andWNT7a. For each of
the patterns classified as a cell type or cellular state, we tested all
possible combinations of perturbations in the aforementioned
nodes and let the system converge. Here, the robustness is the
fraction of the perturbations that were absorbed by the system,
such that the network reached the original cell type or behavior
before the perturbation.
Libraries for the Dynamical Analysis
We used GINsim (Naldi et al., 2009) to find and analyze the
feedback circuits of our model. Then, we used the R package
BoolNet (Müssel et al., 2010) to find the attractors using a heuristic
method that formulates the attractor search as a boolean
satisfiability (SAT) problem that is solved using the PicoSAT
solver (Biere, 2008; Dubrova and Teslenko, 2011). We also used
BoolNet to simulate mutations and perturbations. The analysis of
the perturbations that cause changes in cell type and behavior
required preparing a function for parallel processing, and for this
we used the R package doParallel (Weston and Calaway, 2019).
We also used the R package ggplot2 (Wickham, 2011) to create
March 2020 | Volume 11 | Article 40
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graphics. Lastly, we used the R package xtable (Swinton, 2014) to
export matrices and data frames from R into LaTeX. The scripts
and the data generated by the scripts are freely available at: https://
github.com/NathanWeinstein/EndMT.
RESULTS

Molecular Basis of the Regulatory
Network
EndMT is defined by the loss of EC adhesion, the conversion of
endothelial apical-basal polarity to front end-back end polarity,
and a marked decrease in EC markers accompanied by increased
MC marker expression. During EndMT, the signaling pathways
of TGF, WNT, NOTCH, VEGF, FGF, TNF, and PDGF modulate
the activity of the transcription factors FLI1 and GATA2 that are
essential for EC identity, as well as the activity of SNAI1, SNAI2,
TWIST1, ZEB1, ZEB2, and LEF1 that are necessary for
mesenchymal cell differentiation. Importantly, these
transcription factors form a complex regulatory network that
we have uncovered here. The following sections include the
mechanism by which these and other relevant molecules regulate
each other.

EC Adhesion
In stable and mature blood vessels, ECs are interconnected, forming
a barrier that separates blood or lymph from the surrounding tissue.
Additionally, ECs are covered by a basement membrane, and at
least partially covered by mural cells. Many of the proteins that
compose the transmembrane complexes that bind ECs together are
expressed only in ECs, and are thus used as EC markers. Both
EndMT and EC activation reduce EC adhesion and increase the EC
barrier permeability; however, only EndMT causes ECs to
completely detach from the endothelial monolayer.

EndMT represses the expression of many of the proteins that
compose intraendothelial junctions resulting in loss of EC
adhesion and identity. ECs are connected by junctional
proteins, which assemble to form adherens junctions (AJs) that
link the cytoskeletons of adjacent ECs; by tight junctions (TJs)
that function as a selectively permeable barrier between ECs; and
by gap junctions (GJs) that function as selective ion channels
(Radeva and Waschke, 2018). Furthermore, focal adhesions
(FAs) anchor ECs to the basement membrane, but they can
also be located between ECs where they function as important
regulators of the microvascular function (Wu, 2005).

Vascular endothelial cadherin (VE-cadherin) is one of the
main components of endothelial AJs (Giannotta et al., 2013). a,b
and g-catenins, a-actinin and vinculin anchor VE-cadherin to
actin. VE-cadherin can also recruit the desmosomal proteins
desmoplakin and vimentin. Intermediate filaments composed of
vimentin may be linked to endothelial AJs via plakoglobin/
desmoplakin or p0071 forming junctional structures called
complexus adherens (Wallez and Huber, 2008). Moreover, VE-
PTP inhibits VEGFA-mediated phosphorylation of VE-
cadherin, thus stabilyzing endothelial AJs (Bazzoni and Dejana,
2004). Furthermore, VE-cadherin, PECAM1, and VEGFR2 form
Frontiers in Genetics | www.frontiersin.org 6
a junctional mechanosensory complex (Conway et al., 2013;
Kutys and Chen, 2016). Nectins are one of the main
components of AJs, are linked to actin microfilaments through
Afadin, and also form interendothelial bonds.

Tight junctions also include proteins that form bonds at the
interendotelial cleft, forming a physical barrier that prevents
solutes and water from freely crossing the EC sheet. The number
of TJs at an interendotelial cleft is proportional to the shear stress
applied to the endothelial sheet by blood flow. The proteins that
compose TJs include Claudins, Ocludin, JAMS, ESAM, and
Nectins. Those proteins are linked to numerous intracellular
partners, including AF-6/afadin, cingulin, the antigen 7H6, PAR-
3, ZO-1, ZO-2, and ZO-3, forming a molecular complex (Wallez
and Huber, 2008). The barrier forming Claudins CLDN3,
CLDN5, and CLDN11 are expressed by ECs. Occludin
(OCLN) increases TJ barrier function and is one of the main
molecules involved in the regulation of endothelial layer
permeability. The expression of ocludin is upregulated by
Angiopoietin 1 (ANGPT1), and further stabilized by
angiotensin-2 (AT2) binding to type 1 angiotensin receptor
(ATR). VEGFA downregulates OCLN by inducing OCLN
proteolysis through activation of the urokinase (uPA)/uPAR
system and also by PKC-mediated phosphorylation. OCLN is
also regulated by monocyte chemoattractant protein-1 (MCP-1/
CCL-2), histamine, oxidized phospholipids, lysophosphatidic
acid, and shear-stress (González-Mariscal et al., 2008; Wallez
and Huber, 2008; Radeva and Waschke, 2018). The junctional
adhesion proteins F11R (JAM-A), JAM2 (VE-JAM or JAM-B),
JAM3 (JAM-C), and the related protein ESAM (EC adhesion
protein) from the immunoglobulin superfamily are important
components of endothelial TJs that regulate paraendothelial
permeability, leukocyte trafficking and TJ dynamics (Wallez
and Huber, 2008; Rahimi, 2017).

FAs are composed of a and b integrin heterodimers that bind
several ECM components, as well as TJ components and several
intracellular proteins. Those adhesive integrin interactions
contribute to the maintenance of endothelial barrier function,
and the loss of integrin-matrix adhesion results in leaky
microvessels (Wu, 2005; Izawa et al., 2018). ECs express
multiple integrins that assemble into several different
heterodimers. The extracellular domains of many integrins
have a high binding affinity for the Arg-Gly-Asp (RGD)
sequence and are able to interact with several matrix proteins.
However, certain heterodimers exhibit a higher affinity for a
specific protein including a6b1 and a6b4 that favor laminin,
a1b1 and a1b2 that tend to bind collagen, avb3 and avb5 that
exhibit affinity to vitronectin, as well as a3b1 and a5b1 that favor
fibronectin (Wu, 2005). Focal adhesion kinase (FAK) is another
important FA component. The N-terminal domain of FAK
contains a region called FERM homology that exhibits a high
binding affinity for growth factor receptors and integrins. The C-
terminal domain contains a noncatalytic region, also referred to
as FRNK (FAK-related nonkinase), that carries a FAT sequence
that directs FAK to adhesion complexes and provides docking
sites for other cytoplasmic proteins. FAK activation, triggered by
phosphoryation regulates endothelial barrier function either
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increasing or decreasing permeability depending on the site of
phosphorylation and the context. When VEGFA binds VEGFR2,
it causes a conformation change that exposes an integrin avb3
binding site. Integrin avb3 then binds VEGFR2, recruits FAK
and promotes the activation of several signaling pathways that
lead to increased microvascular permeability. VEGFA also causes
phosphorylation-coupled FAK activation and relocation from
the cytoplasm to focal contacts.

EC Polarization
Certain cellular processes including asymmetric cell division, cell
migration, and barrier formation require the asymmetric
organization of components within a cell. In stable blood
vessels, ECs have an apical (luminal) membrane domain, an
interendothelial (lateral) membrane domain, and a basal
membrane domain. This organization results in a luminobasal
or apicobasal EC polarity. During angiogenesis, the cytoskeleton
of tip cells and stalk cells undergoes several changes that result in
transient front-to-rear EC polarity which is necessary for
collective directed migration (Ebnet et al., 2018). Many of the
molecules involved in EC polarization are implicated in lumen
formation and also regulate endothelial permeability linking
these processes (Lizama and Zovein, 2013).

Both angiogenesis and vasculogenis involve cord hollowing, a
process that results in lumen formation. Prior to lumen
formation, the ECs that compose the segment must acquire an
apicobasal polarity (Lizama and Zovein, 2013; Ebnet et al., 2018).
The molecular signaling pathways involved in EC polarization
and lumen formation are largely unknown and are subject to
current research (Norden et al., 2016; Szymborska and Gerhardt,
2018). During early embryonic vasculogenesis, b1 integrin
(ITGB1), RAS interacting protein 1 (RASIP1), and partitioning
defective 3 (PAR3) interact to establish EC apicobasal polarity
before epithelial lumen formation (Herbert and Stainier, 2011).
VE-cadherin acts as a positional cue to attract and organize the
proteins involved in EC polarization. Accordingly, loss of VE-
cadherin function prevents apicobasal EC polarization and EC
agglomerations from developing a vascular lumen. VE-cadhein
directly interacts with many proteins involved in EC polarization
such as PAR3, PARD6A (PAR6), MPP5 (PALS1), and KRIT1
(CCM1) (Giannotta et al., 2013; Lizama and Zovein, 2013;
Brinkmann et al., 2016). VE-cadherin recruits the sialomucins
CD34 and PODXL (Podocalyxin) to EC-cell contact sites.
Sialomucins contain negative charges that cause repulsive
forces and initiate adjacent EC membrane separation. Later,
VE-cadherin is involved in Moesin, F-actin and nonmuscle
myosin II recruitment to induce lumen expansion and
stabilization. Other proteins involved in lumen expansion and
stabilization include Protein kinase C (PKC) that links CD34 to
the actin cytoskeleton through Moesin phosphorylation, and
ROCK, that is also necessary for nonmuscle myosin II
recruitment (Lizama and Zovein, 2013).

During the initial stages of angiogenesis, tip cells form
filopodia and lamellipodia and orient them following the
gradient of a vascular growth factor, typically VEGFA. The Ras
homologue gene (Rho) and Ras-related protein (Rap) families of
small G proteins are important mediators of VEGFA signaling in
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ECs (Shimizu et al., 2018). The Rho GTPases RhoA, Rac1, and
Cdc42 interact with integrins at FAs where actin accumulates to
initiate the formation of filopodia and lamellipodia (Lizama and
Zovein, 2013). Tip cells then migrate toward the source of the
morphogen trailing stalk cells. During sprout elongation, the
elastic properties of the cytoskeleton of the ECs that conform the
sprout have to be tightly regulated (Szymborska and Gerhardt,
2018). In vitro, EC sprout elongation requires a reduction of EC
contractility mediated by the downregulation of Rho kinase
(ROCK) and myosin light chain 2 (MLC2). Another important
molecular mechanism that increases EC contractility involves
RAP1, which induces the formation of a RAF1-VE-cadherin
complex that recruits ROCK (Szymborska and Gerhardt, 2018).
KRIT1 is an effector of RAP1, which upon activation interacts
with b-catenin and afadin. Additionally, KRIT1 stabilizes
endothelial junctions by recruiting RAP1 that stabilizes and
concentrates VE-cadherin. KRIT1 also recruits CCM2 to the
junction where it inhibits RHOA to further stabilize the junction.
Another important function of KRIT1 is to prevent the
activation of the canonical WNT signaling pathway by
sequestering b-catenin (Wilson and Ye, 2014).
Key Transcription Factors for Endothelial and
Mesenchymal Identities
The specification and maintenance of EC identity requires the
function of ETV2, FLI1, ERG, ETS1, and other members of the
E26 transforming specific (ETS) family of transcription factors; all of
them share a core GGAA/T DNA-binding motif (Craig and
Sumanas, 2016). ETV2 function is required for endothelial
specification during early embryonic development in both mice
and zebrafish (Abedin et al., 2014), and it is also necessary for
vascular regeneration after an injury (Park et al., 2016). ETV2
directly binds to the promoters of Cdh5 (VE-cadherin), Tie2, Kdr
(VEGFR2), Scl, Gata2, Meis1, Dll4, Notch1, Nrp1/2, Flt4, RhoJ,
Mapk, and Fli1 (Oh et al., 2015). Later, during embryonic
development, ETV2 is no longer expressed and FLI1 maintains
endothelial identity by binding to the promoters of Cdh5, Tie2,
Cd31(PECAM1), Erg and Fli1, activating their expression as well as
its own (Abedin et al., 2014). Notably, diminishing the expression of
FLI1 and ERG triggers the EndMT (Nagai et al., 2018).

ETS1 exhibits functional redundancy with ETS2, is expressed
during angiogenesis, and is involved in the regulati6on of EC
survival, migration, and proliferation. ETS1 induces the
expression of several matrix metalloproteinases (MMPs),
integrins, and NRP1 (Teruyama et al., 2001; Craig and Sumanas,
2016). Then, GATA2 belongs to the C2H2 zinc-finger class of
transcription factors and is also involved in the regulation of EC
identity. Importantly, the loss of GATA2 in ECs triggers EndMT. In
ECs, GATA2 activates the transcription of Emcn (Endomucin,
interferes with FJ assembly), Cdh5, Pecam1, Vegfr2, Nrp1, vWF,
and Gata2 itself (Kanki et al., 2011; Coma et al., 2013). It is also
important to mention that GATA2 and FLI1 activate the
transcription of each other (Pimanda et al., 2007b).

Five transcription factors have been associated with EndMT.
Four of them, SNAI1 (SNAIL), SNAI2 (SLUG), ZEB1, and ZEB2
(SIP1), contain four to six E2â€ box DNA binding zinc fingers,
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and a SNAG domain involved in transcriptional repression. The
other transcription factor is the basic helix-loop-helix (bHLH)
TWIST1 (Gong et al., 2017; Jackson et al., 2017; Sánchez-
Duffhues et al., 2018). SNAI1, SNAI2, and TWIST directly
repress the transcription of VE-cadherin (Lopez et al., 2009;
Cheng et al., 2013). Other components of endothelial AJs and TJs
are also downregulated during EndMT. However, in most cases,
the molecular mechanism has not been fully elucidated. For
instance, CLDN5 is downregulated by SNAI1 (Kokudo et al.,
2008) and SNAI2 (Laakkonen et al., 2017), yet it is well
recognized that VE-cadherin is a key component of endothelial
junctions that integrates molecular and mechanical signals. VE
cadherin is involved in EC identity, quiescence, migration and
polarization. Therefore, loss of VE-cadherin function explains
several of the cellular processes involved during EndMT.

Both SNAI1 and SNAI2 proteins bind to E2 boxes in
promoters that regulate Snai1 and Snai2 expression (Chen and
Gridley, 2013b). SNAI1 and SNAI2 directly suppress each other's
transcription during chondrogenesis (Chen and Gridley, 2013b;
Chen and Gridley, 2013a). SNAI1 (Peiro et al., 2006) and
TWIST1 (Yu et al., 2013; Forghanifard et al., 2017) directly
repress the transcription of Snai1. However, E47 binds TWIST1
forming a dimer that binds to the Snai1 promoter and activates
its expression (Yu et al., 2013). In certain tumor cells, SNAI1
upregulates ZEB1 and ZEB2 expression (Guaita et al., 2002;
Takkunen et al., 2006). In contrast, in melanoma cell lines,
SNAI1 does not activate the transcription of ZEB1 (Wels et al.,
2011), thus, we have not included this interaction in our model.
SNAI2 (Kumar et al., 2015) and TWIST1 (Casas et al., 2011)
directly activate the transcription of Snai2. SNAI2 also directly
induces the transcription of ZEB1 (Wels et al., 2011). The
molecular mechanism that causes loss of FLI1, ERG, and
GATA2 expression to induce EndMT remains obscure.
Nonetheless, it is known that GATA2 siRNA leads to increased
SNAI1 and SNAI2 expression, and GATA2 binds to the
proximal promoter of SNAI2 (Kanki et al., 2011). Additional
interactions have been reported for other cell types. In
hematopietic stem cells, for example, TWIST1 binds to the
promoter of Gata2 and induces its transcription (Kulkeaw
et al., 2017), while in nasopharyngeal carcinoma cells, GATA2
induces EMT by binding to the promoter of Twist1 and
activating its expression (Wang et al., 2017b). Furthermore,
ETS1 and ZEB2 activate each other's transcription (Katoh and
Katoh, 2009; Yalim-Camci et al., 2019).

The Molecular Signaling Pathways Involved in
EndMT Regulation
In a previous model of endothelial behavior during angiogenesis
(Weinstein et al., 2017), the TGF, NOTCH, WNT, VEGF, FGF,
and HIF signaling pathways were described in detail. Thus, we
will focus now on their roles during the EndMT.

The TGF signaling pathway is of central importance for the
regulation of EC plasticity and EndMT (Dejana et al., 2017).
When a TGF or a BMP ligand binds to a TGF receptor complex,
it causes the activation of several signaling pathways that mediate
TGF-induced EndMT, among them SMAD, MEK, p38 MAPK,
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and PI3K signaling (Medici et al., 2011). Some of the key
components of TGF signaling involved in the regulation of
EndMT include the ligand TGFb2 (Chen et al., 2012), type I
receptors ALK1 and ALK5 (TGFBR1), the type II receptor
TGFbR2, as well as SMAD2, SMAD3, and SMAD4 (Medici
et al., 2011; Chen et al., 2012). SMAD2 and SMAD3 activate the
transcription of SNAI2, while SMAD4—which is a co-SMAD
that allows other SMADs to activate the transcription of target
genes—is required for TGF-induced SNAI1 expression (Cooley
et al., 2014). The expression of ZEB2 is induced by TGF signaling
and its promoter contains SMAD binding sites (Katoh and
Katoh, 2009). Furthermore, ZEB1 and ZEB2 bind SMADs
forming transcriptional regulation complexes (Grabitz and
Duncan, 2012). Also, TGFb2 also induces inhibitory VEGFA
splicing (Weinstein et al., 2017).

FGF signaling modulates EC and PC function and behavior.
When an FGF ligand, like FGF2, binds to an FGF receptor such
as FGFR2, it causes FRS2-mediated ERK and PI3K signaling
pathway activation (Yang et al., 2015). FGF signaling inhibits
EndMT by downregulating TGF signaling; FGF2 activates the
transcription of miRNAs from the let7 family, especially let7b
and let7c, which prevents the expression of TGFBR1 (Chen et al.,
2012). FGF2 also increases the expression of mir-20a, another
miRNA that prevents the expression of TGFBR1, TGFBR2 and
SARA (Smad anchor for receptor activation) (Correia et al.,
2016). In addition to RNA silencing, FGF2 activates the Ras-
MAPK signaling pathway that regulates TGFB1-induced
SMAD2 phosphorylation in lymphatic ECs (Ichise et al., 2014).
Another important function of FGF signaling in ECs is to
activate the transcription of VEGFR2. FGF activates ERK
signaling, which then activates several transcription factors
from the ETS family including ETS1 and ETV2 that activate
Vegfr2 transcription (Murakami et al., 2011; Yang et al., 2015).

Insufficient oxygen availability (hypoxia) in the cells that
compose the tissue surrounding a network of capillaries
triggers angiogenesis. HIF1, composed of subunits HIF1a
and HIF1b, is a key mediator of the cellular response to
hypoxia. Hypoxia prevents the PHD-mediated proteasomal
degradation of HIF1a, a molecule that directly activates the
transcription of VegfA (Forsythe et al., 1996; Kumar et al.,
2014). When ECs themselves are exposed to hypoxia, it may
cause senescence, increased apoptosis and necrosis rates due
to augmented oxidative stress and irreparable DNA damage,
or angiogenesis and proliferation, depending on the duration
and severity of the reduction in oxygen availability (Baldea
et al., 2018). Under certain circumstances, hypoxia causes
EndMT. In this case, HIF1a directly binds to the promoter
region of Snai1 and induces its transcription (Xu et al., 2015).
Hypoxia also induces the expression of SNAI2 and TWIST1 in
ECs (Xu et al., 2015). Additionally, during EMT (Yang and
Wu, 2008) and also during EndMT associated with pulmonary
arterial hypertension, HIFa directly induces the expression of
TWIST1 (Zhang et al., 2018). Furthermore, the proximal
promoter region of ZEB2 contains a HIF1a-binding site
(Katoh and Katoh, 2009). Finally, HIF1 is an important
inducer of EC differentiation since HIF1a binds to the Etv2
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promoter and activates its transcription. ETV2, in turn,
activates the transcription of Fli1 (Oh et al., 2015).

VEGF signaling is involved in EC activation during
vascular remodeling. Typically, during angiogenesis VEGFA
binds to a VEGFR2 homodimer and activates PLCg, and
TSAd-AKT signaling (Simons et al . , 2016). VEGFA
signaling strengthens the EC identity by activating the
expression of GATA2 (Coma et al., 2013). Further, VEGFA-
VEGFR2 signaling phosphorylates and activates STAT3
(Chen et al., 2008), which then activates the transcription of
SNAI1 in HeLa cells (Saitoh et al., 2016). Additionally, the
VEGF co-receptor NRP1 is a key molecule that promotes tip
cell behavior and inhibits stalk cell behavior by limiting
SMAD2/3 phosphorylation (Aspalter et al., 2015). However,
NRP1 also acts as a co-receptor for TGFb1 and is necessary for
TGFb-mediated EndMT (Matkar et al., 2016).

Notch signaling is required for EndMT by the cardiac
cushions during early cardiac valve development. The signaling
of this pathway is initiated when a ligand (DLL4) binds to a
Notch receptor (NOTCH1). Then, the receptor is cleaved into an
intracellular domain, a transmemrane domain, and an
extracellular domain. NOTCH1 activation leads to increased
SNAI2 expression (Niessen et al., 2008), as well as increased
SNAI1 stability and nuclear retention. The intracellular domain
of NOTCH1 forms a complex with b-catenin and TCF4 that
activates the transcription of AKT2. This molecule then inhibits
glycogen synthase kinase 3 (GSK3b)-mediated proteolysis and
translocation of SNAI1 from the nucleus to the cytoplasm (Frías
et al., 2016). Furthermore, Notch signaling induces the
transcription of both subunits of the nitric oxide (NO)
receptor soluble guanylyl cyclase (sGC), namely GUCY1A3
and GUCY1B3. Also, this signaling induces Activin A,
consequently promoting both NO production and the
transcription of its receptor, which are necessary for EndMT to
occur in the developing AVC (Chang et al., 2011). In response to
an increase in shear stress, NOTCH1 activation leads to the
formation of GTPase signaling complexes at AJs composed of the
NOTCH1 transmembrane domain, VE-cadherin, the guanine
nucleotide exchange factor Trio, and the tyrosine phosphatase
LAR that activates RAC1 to stabilize adherens junctions (Fischer
and Braga, 2018). NOTCH also induces the transcription of
Vegfr1. VEGFR1 inhibits VEGFA-VEGFR2 signaling by
reducing the amount of VEGFA available to bind VEGFR2
(Funahashi et al., 2010). The Notch-regulated ankyrin repeat
protein (NRARP) links NOTCH and WNT signaling. Dll4-
NOTCH1 signaling induces Nrarp expression in ECs. NRARP
negatively regulates Notch signaling by destabilizing the Notch
intracellular domain and positively regulates Wnt signaling by
increasing the stability of the LEF1 protein (Ishitani et al., 2005;
Phng et al., 2009). Finally, another important function of
NOTCH signaling in stalk cells is to negatively regulate the
expression of NRP1 (Aspalter et al., 2015).

Canonical Wnt signaling is initiated by a WNT ligand, which
is usually WNT7A or WNT3, and leads to the stabilization of
CTNNB (b-catenin). Like Notch signaling, canonical Wnt
signaling also causes GSK3b phosphorylation, allowing the
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accumulation and nuclear localization of SNAI1 and SNAI2
(Wu et al., 2012; Menezes, 2014). Further, the complex formed
by CTNNB and TCF activates the transcription of many of the
genes regulated by canonical Wnt signaling (Menezes, 2014),
including SNAI2 (Conacci-Sorrell et al., 2003), TWIST1 (Howe
et al., 2003), and ZEB1 (Sánchez-Tilló et al., 2011; Sanchez-Tillo
et al., 2014). CTNNB and TCF also induce the transcription and
activation of LEF1. During EMT, LEF1 activates the
transcription of Snai2 and Zeb1 even in the absence of both b
and g-catenins (Kobayashi and Ozawa, 2018). Other WNT
ligands including WNT5a, WNT5b, and WNT11 activate the
noncanonical planar cell polarity (PCP) and CA+2 WNT
signaling pathways that also activate the Activator protein 1
(AP-1) transcription factor (Nishita et al., 2010). AP-1 binding
sites exist in the promoter regions of Snai1 and Snai2, and the
inhibition of AP-1 results in reduced SNAI1 expression in
mesenchymal cells (Nguyen et al., 2013). Moreover, WNT5b
induces EndMT and SNAI1 expression in lymphatic ECs
through the activation of WNT/b-catenin and PCP pathways.
WNT5b also induces inhibitory VEGFA splicing through
noncanonical WNT signaling (Weinstein et al., 2017).

The PDGF signaling pathway is involved in the regulation of
pericyte recruitment during microvascular maturation, and
EndMT-mediated pericyte differentiation from ECs (Gaengel
et al., 2009; Chen et al., 2016). The signaling is initiated by a
PDGF ligand that can be the PDGF-AB heterodimer, or one of
four homodimers, namely PDGF-AA, -BB, -CC, and -DD. The
tyrosine kinase receptors PDGFRa and PDGFRb dimerize after
ligand biding. PDGF-AA forms PDGFRaa. PDGF-BB can form
either PDGFRaa, PDGFRbb or PDGFRab dimers. PDGF-CC
forms PDGFRaa, or PDGFRab receptors. PDGF-DD signals
specifically via the PDGFRbb receptor, but is able to form the
PDGFRab heterodimer. PDGF-AB forms PDGFRaa, or
PDGFRab receptors. After activation and dimerization,
PDGFRs can interact with signaling proteins that contain an
SH2 domain, including FER, PI3K, PLC, SHP2, and SRC, leading
to the activation of several signaling pathways, such as MAPK,
PI3K-AKT-NF-kB and PLCg (Romashkova and Makarov, 1999;
Papadopoulos and Lennartsson, 2018). ECs weakly express
PDGFRa and PDGFRb. However, when brain ECs are exposed
to PDGF-AB, it causes the activation of the transcription factor
NF-kB, which binds to the promoter of Snai1 and activates its
transcription, leading to EndMT (Liu et al., 2018). In spite of the
fact that in human breast cancer cells, NF-kB binds to the
promoter regions of Snai2, Twist1, and ZEB2 and activates
their transcription (Pires et al., 2017), PDGF-AB does not
increase the expression of Snai2, Twist1, and ZEB2 in brain
ECs (Liu et al., 2018). Additionally, NF-kB directly activates the
transcription of Lef1 in chondrocytes (Yun et al., 2007).

During acute inflammation, TNFa and IL-1b cause NF-kB-
mediated EndMT by inducing the degradation of the inhibitory
kB (Ikba) protein, which sequesters NF-kB in the cytosol
(Sánchez-Duffhues et al., 2018). Furthermore, inflammation
may suffice to determine if an EC is activated or if it undergoes
full EndMT. TNFa induces VE-cadherin internalization and
degradation. Additionally, TNFa inhibits VE-cadherin
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expression by activating the transcription of hsa-miR-6086 (Cai
et al., 2018). Shear stress and cyclic strain also modulate EndMT.
Laminar shear stress activates the mechanosensitive
transcription factors KLF2 and KLF4 that inhibit EndMT by
downregulating AP1 and NFkB. Also, KLF2 induces the
expression of Smad6, Smad7 and VegfA, which inhibit SMAD2
activity. Further, KLF4 activates the transcription of VE-
cadherin, prevents the expression of genes regulated by
SMADs by binding to the TGFb control element, and also
impedes the transcription of mesenchymal genes by binding
SMAD3. Cycle strain induces EndMT by Rho mediated VE-
cadherin translocation from the membrane into the cytoplasm,
causing the concentration of b-catenin in the nucleus to increase
(Krenning et al., 2016). For simplicity, we only take into account
one activating signal for AP-1, b-catenin, and NF-kB.

BN Model Assembly
As summarized in the previous section, a very large number of
molecular components and pathways have been described to be
involved in the regulation of EndMT and angiogenesis. In order
to integrate their roles and understand their concerted action, we
propose here a BN approach. For simplicity, we selected a subset
of molecules. Specifically, we incorporated into our model only
those molecules that are essential either due to their biological
function, or due to their effect in the simulated dynamic behavior
of our model. As a result, the regulatory network of EndMT
includes 29 molecules connected by 77 regulatory interactions, as
shown in Figure 2. The model encompasses molecules necessary
for EC identity, the ligands that activate the VEGF, HIF,
NOTCH, FGF, TGF, WNT, and PDGF signaling pathways, as
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well as the main transcription factors involved in EndMT. We
did not include many EC and MC markers because they act as
network sinks, and their activity can be inferred from that of the
included transcription factors. Most of the 77 interactions
represent direct transcriptional or posttranscriptional
regulations. However, the interactions that connect ligands
directly to transcription factors represent entire linear
signaling pathways.

After the reconstruction of the regulatory network, we
translated the information to construct a Boolean model, as
described in Section 2.1. We used the molecular information
outlined in Section 3.1 to obtain the logical rules. Additionally,
the references we used to define each component of the update
rule are specified in Table 1. However, in order for our model to
reach fixed or cyclic patterns of molecular activation that
correspond to the expected cell marker expression for Phalanx,
Stalk and Tip EC behaviors as well as mesenchymal cells, we had
to fix the rules in three instances (Table 2). As a result, the
components of the update rule of the network are shown as
follows in equations 1–29.
Our Model Formalized as a Set of Boolean
Equations

AP1(t + 1) = WNT5b(t)∨ SMAD2(t) (1)

CTNNB(t + 1) = WNT5b(t)∨WNT7a(t) (2)

DLL4(t + 1) = DLL4(t) (3)
FIGURE 2 | The topology of our model of the network of molecules involved in the regulation of endothelial-to-mesenchymal transition (EndMT) represented as a
signed directed graph: Black arrows represent positive regulations, green arrows represent positive autocrine regulations, and red blunt arrows represent inhibitions.
The VEGF signaling pathway and the main transcription factors involved in endothelial cell (EC) identity are shown in green, HIF1a is shown in orange, the NOTCH
signaling pathway is shown in light red, FGF2 is shown in turquoise, the TGF signaling pathway is shown in pale magenta-pink, the WNT signaling pathway is shown
in lavender, the PDGF signaling pathway is shown in light cyan-blue, and the main transcription factors involved in EndMT are shown in yellow.
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ETS1(t + 1) = VEGF2(t)∨ FGF2(t)∨ZEB2(t)∨AP1(t) (4)

FGF2(t + 1) = FGF2(t) (5)

FLI1(t + 1) = FLI1(t)∨GATA2(t)∨HIF1a(t) (6)

GATA2(t + 1) = FLI1(t)∨GATA2(t)∨VEGFR2(t) (7)

HIF1a(t + 1) = HIF1a(t) (8)

LEF1 t + 1ð Þ = LEF1 tð Þ∨NRARP tð Þ∨ SMAD2 tð Þ
∨NFkB tð Þ∨CTNNB tð Þ

(9)

NFkB(t + 1) = PDGF _AB(t) (10)

NOTCH(t + 1) = DLL4(t)∧:NRARP(t) (11)

NRARP(t + 1) = NOTCH(t) (12)

NRP1(t + 1) = VEGFA(t)∧ (ETS1(t)∨GATA2(t))∧:NOTCH(t) (13)

PDGF _AB(t + 1) = PDGF _AB(t) (14)

SMAD1(t + 1) = TGFbR(t)∧:SMAD6(t) (15)

SMAD2(t + 1) = TGFbR(t)∧:SMAD6(t)∧NRP1(t) (16)

SMAD6(t + 1) = FLI1(t)∧GATA2(t)∧ (NOTCH(t)∨ SMAD1(t)) (17)

SNAI1 t + 1ð Þ = (HIF1a tð Þ∨ STAT3 tð Þ∨CTNNB tð Þ∨AP1 tð Þ
∨NFkB tð Þ∨ SMAD2 tð Þ)
∧ NOTCH tð Þ∨CTNNB tð Þð Þ
∧:TWIST1 tð Þ∧:SNAI1 tð Þ∧:SNAI2 tð Þ

(18)

SNAI2(t + 1) = :(SNAI1(t)∧GATA2(t))

∧ (SMAD2(t)∨ SNAI2(t)∨TWIST1(t)∨ LEF1(t)∨NOTCH(t))

(19)

STAT3(t + 1) = VEGFR2(t) (20)

TGFb(t + 1) = TGFb(t) (21)

TGFbR(t + 1) = TGFb(t)∧:FGF2(t) (22)

TWIST1(t + 1) = CTNNB(t)∨HIF1a(t) (23)
TABLE 2 | The changes to the update rule components necessary in order to
reach a fixed pattern of molecular activation for each expected cell type or behavior.

Modification Reason or desired effect

In ECs, E47 should be absent so that
TWIST1 inhibits the transcription of SNAI1

Otherwise TWIST1 would activate
SNAI1 in Stalk ECs.

GATA2 must not activate the transcription
of TWIST1 in ECs

Prevents TWIST1, SNAI1 and
SNAI2 activation in Phalanx cells.

Both SNAI1 and GATA2 should be required
to inhibit SNAI2 expression

to preserve SNAI2 expression in
Stalk cells.
TABLE 1 | References that serve as a base for each component of the update
rule.

Molecule References

AP1 Nishita et al. (2010); Sundqvist et al. (2013); Zhao et al. (2014)
CTNNB Wu et al. (2012); Menezes (2014)
DLL4 Niessen et al. (2008); Chang et al. (2011)
ETS1 Murakami et al. (2011); Hollenhorst (2012); Chen et al. (2017); Yalim-

Camci et al. (2019)
FGF2 Murakami et al. (2011); Chen et al. (2012); Ichise et al. (2014); Yang

et al. (2015); Correia et al. (2016)
FLI1 Lelièvre et al. (2002); Pimanda et al. (2007b); Abedin et al. (2014); Oh

et al. (2015); Tsang et al. (2017)
GATA2 Pimanda et al. (2007b); Kanki et al. (2011); Coma et al. (2013)
HIF1a Kumar et al. (2014); Xu et al. (2015); Baldea et al. (2018)
LEF1 Ishitani et al. (2005); Medici et al. (2006); Yun et al. (2007); Phng

et al. (2009)
NFkB Liu et al. (2018)
NOTCH Phng et al. (2009)
NRARP Phng et al. (2009)
NRP1 Teruyama et al. (2001); Coma et al. (2013); Aspalter et al. (2015)
PDGF_AB Liu et al. (2018)
SMAD1 van Meeteren and Ten Dijke (2012); Pardali et al. (2017)
SMAD2 van Meeteren and Ten Dijke (2012); Aspalter et al. (2015); Pardali

et al. (2017)
SMAD6 Ishida et al. (2000); Pimanda et al. (2007a); Mouillesseaux et al.

(2016)
SNAI1 Peiro et al. (2006); Julien et al. (2007); Kokudo et al. (2008); Medici

et al. (2011); Yu et al. (2013); Chen and Gridley (2013b); Menezes
(2014); Frías et al. (2015); Xu et al. (2015); Saitoh et al. (2016); Wang
et al. (2017a); Liu et al. (2018)

SNAI2 Niessen et al. (2008); Lambertini et al. (2010); Casas et al. (2011);
Chen and Gridley (2013b); Cooley et al. (2014); Kumar et al. (2015);
Welch-Reardon et al. (2015); Kobayashi and Ozawa (2018)

STAT3 Chen et al. (2008)
TGFB van Meeteren and Ten Dijke (2012); Pardali et al. (2017)
TGFBR Chen et al. (2012); van Meeteren and Ten Dijke (2012); Pardali et al.

(2017)
TWIST1 Howe et al. (2003); Zhang et al. (2018)
VEGFA Forsythe et al. (1996); Chang et al. (2004); Harper and Bates (2008);

Kumar et al. (2014); Simons et al. (2016); Weinstein et al. (2017)
VEGFR2 Funahashi et al. (2010); Kanki et al. (2011); Murakami et al. (2011);

Abedin et al. (2014); Simons et al. (2016); Weinstein et al. (2017); Liu
et al. (2018)

WNT5b Wu et al. (2012); Menezes (2014); Wang et al. (2017a)
WNT7a Menezes (2014)
ZEB1 Sánchez-Tilló et al. (2011); Wels et al. (2011); Sanchez-Tillo et al.

(2014); Kobayashi and Ozawa (2018)
ZEB2 Takkunen et al. (2006); Katoh and Katoh (2009); Grabitz and Duncan

(2012); Zhao et al. (2014)
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VEGFA t + 1ð Þ = :WNT5b tðð Þ∧:TGFbR tð Þ∧ STAT3 tð Þð

∨HIF1a tð ÞÞÞ∨VEGFA tð Þ

(24)

VEGFR2 t + 1ð Þ = VEGFA tð Þ∧:SNAI1 tð Þ∧:NOTCH tð Þ
∧ FLI1 tð Þ∨GATA2 tð Þ∨ ETS1 tð Þð Þ

(25)

WNT5b(t + 1) = WNT5b(t) (26)

WNT7a(t + 1) = WNT7a(t) (27)

ZEB1(t + 1) = SNAI2(t)∨CTNNB(t)∨ LEF1(t) (28)

ZEB2 t + 1ð Þ = HIF1a tð Þ∨ ETS1 tð Þ∨ SMAD2 tð Þ
∨AP1 tð Þ∨ SNAI1 tð Þ

(29)

Feedback Circuits
The regulatory network, as shown in Figure 2, contains a total of
74 feedback circuits. However, only 11 circuits are functional,
eight of them positive and three negative (Supplementary Table
S1). The three functional negative circuits are of particular
importance because they originate the cyclic behavior in the
dynamical model. Specifically, a) SNAI1 inhibits itself; b)
NOTCH activates NRARP, which in turn inhibits NOTCH;
and c) SMAD1 activates SMAD6, which inhibits SMAD1.
Additionally, the microenvironment is defined by the pattern
of activation of seven source molecules, and since there are
possible microenvironments, the minimum number of attractors
is 128. However, the simulated dynamic behavior results in 444
attractors due to the effect of the functional positive feedback
circuits (Azpeitia et al., 2017; Rozum and Albert, 2018). This is in
qualitative accordance with the large diversity of EC and MC
patterns of molecular activation that has been reported in the
literature (Chi et al., 2003; Ho et al., 2018).

Fixed and Cyclic Patterns of
Molecular Activation
The analysis of the dynamical behavior of the model shows that
the system has 444 attractors, 169 of which are fixed points, 18 are
cyclic attractors of size 2, and 257 are cyclic attractors of size 4.
These attractors correspond to stationary or cyclic patterns of
molecular activation, which in turn can be identified with specific
cell types and cellular states. Using the procedure described in
Section 2.3, these attractors can be identified as belonging to
Endothelial, Mesenchymal, Phalanx, Stalk, and Tip sets, which
intersect each other but that can be dissected into nine disjoint
sets, as shown in Figure 3. The specific active and inactive
molecules for all these sets are shown in Table 3.

The presence or absence of a seven ligands in the extracellular
microenvironment together with the pattern of molecular
activation within the cell define the attractor reached after a
simulation of the dynamic behavior of our model. In order to
illustrate how this process functions, we simulated the behavior
Frontiers in Genetics | www.frontiersin.org 12
of our model cell in an EndMT-inducing extracellular
microenvironment where HIF1 and FGF2 are absent while
DLL4, TGFB, WNT5b, WNT7a, and PDGF_AB are present.
The attractors reached by our model under such conditions are
shown in Table 4. Attractor 1 corresponds to the expected
pattern of expression of a mesenchymal stalk cell. Note that
here, FLI1 and GATA2 are active, and their activity is sustained
by three positive feedback circuits. Attractor 2 represents the
pattern of expression of an EC that competes with its neighbors
to become a tip cell, and cannot fully become a tip cell due to the
paracrine effect of the DLL4 ligand expressed by its neighbors
(Jakobsson et al., 2010). Note that in Attractor 2, in addition to
GATA2 and FLI1, VEGFA is active, and its activity is sustained
by a positive feedback circuit. Attractor 3 represents a
nonendothelial mesenchymal cell where FLI1, GATA2, and
VEGFA are inactive.

Robustness Analysis
The first type of robustness analysis was the evaluation of the
effects on cell types and behaviors caused by the simulation of all
possible single loss and gain-of-function mutations in the model.
These are summarized in Table 5. Observe that only 24 of 58
possible single mutations do not alter the qualitative behavior of
the model, as measured by the type of resulting attractors. The
relative low robustness to gene mutations is likely to be due to the
fact that we only included in our model molecules with an
important biological role. Furthermore, the simulation of the
other single mutations all results in the disappearance of certain
cell types. However, according to our model, each cell type or
FIGURE 3 | A venn diagram of the attractors reached by simulating the
dynamic behavior of our Boolean model. We classified the attractors as
mesenchymal, endothelial, phalanx, stalk, and tip cells, forming nine disjoint
sets that represent the following cell types and behaviors: a) Cell types that are
neither endothelial nor mesenchymal, b) Endothelial cell types that are not
mesenchymal and do not behave as phalanx, stalk or tip cells, c) Endothelial
and nonmesenchymal phalanx cell types, d) Endothelial and nonmesenchymal
stalk cell types, e) Endothelial and mesenchymal stalk cell types, f) Endothelial
and nonmesenchymal tip cell types, g) Mesenchymal and endothelial tip cell
types, h) Endothelial and mesenchymal cell types that do not exhibit tip stalk or
phalanx cell behavior, and i) Mesenchymal only cell types.
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behavior is very robust to single gain- and loss-of-function gene
mutations. Notably, the larger the number of attractors classified
as a cell type or behavior, the larger the robustness of the cell type
is to gene mutations.

As for the robustness of each cell type against noise in the
update rule, in all cases, the original model reached slightly more
attractors than the mean of the 100 000 networks with perturbed
update rules, as shown in Figure 4. Observe that the standard
deviation in the number of attractors for all cell types and
behaviors is relatively large, and therefore the robustness of the
number of attractors that represent each cell type or behavior is
low. The maximum numbers of attractors for each of the cell
types were the following: nECsnMCs 238, EConly 243, Phalanxes
27, nMCStalks 106, MCStalks 216, nMCTips 70, MCTips 149,
MCEConly 129, MCsnECs 237, while the minimum values
reached 0 for all cell types and behaviors.

Regarding the robustness of the components of the update
rule to noise in the activation value, all such components are
sensitive to less than 4.6% of all single bit perturbations that are
the most likely to occur, as shown in Figure 5. Notice that the
components corresponding to ZEB2, LEF1, and ETS1 are under
TABLE 3 | Simulated cell type characteristics: Each cell type is represented by a
group of attractors sorted as explained in Molculear Pattern Identifcation

Cell type Active molecules Inactive molecules Fraction of the
state space

covered by the
trap space

Non-EC and
Non-MC

N.A. AP1, FLI1, GATA2,
HIF1a, NRP1, SMAD2,
SMAD6, SNAI1,
STAT3, VEGFR2,
WNT5b

0.64206%

ECs FLI1, GATA2 SNAI1 97.24696%
ECs only FLI1, GATA2, SNAI2,

ZEB1
CTNNB, HIF1a,
TWIST1, WNT5b,
WNT7a

7.12915%

MCs ETS1, SNAI2,
TWIST1, ZEB1,
ZEB2

SNAI1 87.32046%

MCs only CTNNB, ETS1, LEF1,
SNAI2, TWIST1,
ZEB1, ZEB2

FLI1, GATA2, HIF1a,
NRP1, SMAD2,
SMAD6, SNAI1,
STAT3, VEGFA,
VEGFR2

2.11098%

ECs and
MCs

ETS1, FLI1, GATA2,
SNAI2, TWIST1,
ZEB1, ZEB2

SNAI1 85.20948%

ECs and
MCs only

ETS1, FLI1, GATA2,
SNAI2, TWIST1,
ZEB1, ZEB2

SNAI1 29.79242%

Phalanx FLI1, GATA2 AP1, CTNNB, DLL4,
HIF1a, LEF1, NFkB,
NOTCH, NRARP,
NRP1, PDGF_AB,
SMAD2, SNAI1,
SNAI2, STAT3,
TWIST1, VEGFA,
VEGFR2, WNT5b,
WNT7a, ZEB1

0.00322%

Stalk CTNNB, FLI1,
GATA2, LEF1,
SNAI2, TWIST1,
ZEB1

NRP1, SMAD2, SNAI1,
STAT3, VEGFA,
VEGFR2

26.56887%

Stalk MCs CTNNB, ETS1, FLI1,
GATA2, LEF1,
SNAI2, TWIST1,
ZEB1, ZEB2

NRP1, SMAD2, SNAI1,
STAT3, VEGFA,
VEGFR2

26.43057%

Stalk Non-
MCs

CTNNB, FLI1,
GATA2, LEF1,
SNAI2, TWIST1,
WNT7a, ZEB1

AP1, FGF2, HIF1a,
NRP1, SMAD2, SNAI1,
STAT3, VEGFA,
VEGFR2, WNT5b

0.13830%

Tip ETS1, FLI1, GATA2,
NRP1, STAT3,
VEGFA, VEGFR2,
ZEB2

DLL4, NOTCH,
NRARP, SNAI1

33.7533%

Tip MCs ETS1, FLI1, GATA2,
NRP1, SNAI2,
STAT3, TWIST1,
VEGFA, VEGFR2,
ZEB1, ZEB2

DLL4, NOTCH,
NRARP, SNAI1

28.98649%

Tip Non-
MCs

ETS1, FLI1, GATA2,
NRP1, STAT3,
VEGFA, VEGFR2,
ZEB2

CTNNB, DLL4, HIF1a,
NOTCH, NRARP,
SNAI1, TWIST1,
WNT5b, WNT7a

4.76681%
TABLE 4 | The attractors reached by our model in an endothelial-to-
mesenchymal transition (EndMT)–inducing extracellular microenvironment where
HIF1 and FGF2 are absent while DLL4, TGFB, WNT5b, WNT7a, and PDGF_AB
are present.

Attractor 1 1 1 1 2 2 2 2 3 3 3 3
AP1 1 1 1 1 1 1 1 1 1 1 1 1
CTNNB 1 1 1 1 1 1 1 1 1 1 1 1
DLL4 1 1 1 1 1 1 1 1 1 1 1 1
ETS1 1 1 1 1 1 1 1 1 1 1 1 1
FGF2 0 0 0 0 0 0 0 0 0 0 0 0
FLI1 1 1 1 1 1 1 1 1 0 0 0 0
GATA2 1 1 1 1 1 1 1 1 0 0 0 0
HIF1a 0 0 0 0 0 0 0 0 0 0 0 0
LEF1 1 1 1 1 1 1 1 1 1 1 1 1
NFkB 1 1 1 1 1 1 1 1 1 1 1 1
NOTCH 0 1 1 0 0 0 1 1 0 1 1 0
NRARP 0 0 1 1 1 0 0 1 0 0 1 1
NRP1 0 0 0 0 0 1 1 0 0 0 0 0
PDGF_AB 1 1 1 1 1 1 1 1 1 1 1 1
SMAD1 0 1 1 0 0 0 1 1 1 1 1 1
SMAD2 0 0 0 0 0 0 1 1 0 0 0 0
SMAD6 0 0 1 1 1 0 0 1 0 0 0 0
SNAI1 0 0 0 0 0 0 0 0 0 0 0 0
SNAI2 1 1 1 1 1 1 1 1 1 1 1 1
STAT3 0 0 0 0 0 0 1 1 0 0 0 0
TGFB 1 1 1 1 1 1 1 1 1 1 1 1
TGFBR 1 1 1 1 1 1 1 1 1 1 1 1
TWIST1 1 1 1 1 1 1 1 1 1 1 1 1
VEGFA 0 0 0 0 1 1 1 1 0 0 0 0
VEGFR2 0 0 0 0 0 1 1 0 0 0 0 0
WNT5b 1 1 1 1 1 1 1 1 1 1 1 1
WNT7a 1 1 1 1 1 1 1 1 1 1 1 1
ZEB1 1 1 1 1 1 1 1 1 1 1 1 1
ZEB2 1 1 1 1 1 1 1 1 1 1 1 1
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2%; SNAI1, FLI1, VEGFR2, GATA2, SMAD2, and ZEB1 have a
sensitivity of about 2.5%, while most of the other components
have a sensitivity between 3.4% and 3.5% except for SNAI2 and
VEGFA that have a sensitivity of over 4%. Nonetheless, the
sensitivity of all the components increases as the number of
flipped bits increases (Figure 6). When the activity of 15 nodes is
affected, the components can be grouped by their sensitivity into
5 categories: 1) VEGFA, STAT3, NRARP, FGF2, PDGF_AB,
HIF1a, DLL4, WNT7a, WNT5b, and NFkB, TGFb with a
sensitivity between 49.4% and 52%. 2) TGFBR, TWIST1,
CTNNB, AP1, NOTCH, SMAD1, and SNAI2 with a sensitivity
between 38.1% and 40.55%. 3) SMAD6, and NRP1 with a
sensitivity of 31.1%, and 31.2% respectively. 4) SNAI1,
VEGFR2, SMAD2, ZEB1, GATA2, and FLI1 with a sensitivity
between 17.7% and 22.8%. And 5) ETS1, LEF1, and ZEB2 with a
sensitivity between 5.9% and 11.8%. Note that there exists a trend
that is independent of the number of flipped bits, where the
sensitivity for the components that represent ligands that define
the extracellular microenvironment is high, and the sensitivity of
the components that represent molecules used as cell type
Frontiers in Genetics | www.frontiersin.org 14
markers is low. The very low sensitivity of the components
that represent ETS1, LEF1, and ZEB2 is in accordance with the
importance that of the three transcription factors not only during
EndMT, but also during other cell differentiation processes.
Specifically, ZEB2 is involved in T cell differentiation
(Goossens et al., 2019) and neurological development
(Epifanova et al., 2018). LEF1 is important during osteogenesis
(Li et al., 2018), immune cell regulation (Chae and Bothwell,
2018), and hair follicle development (Abaci et al., 2018). ETS1 is
an important regulator of lymphatic cell differentiation and
physiology (Garrett-Sinha et al., 2016).

Finally, one of the goals of this modeling effort was to
understand the conditions that cause an EC cell to change,
either by behaving differently or by differentiating partially or
fully into a mesenchymal cell. Further, EndMT is a gradual, and
reversible process and therefore we also aimed to fathom the
conditions that cause MEnT. Moreover, the intermediate states
reached through partial-EndMT are important due to their
physiological role during sprouting angiogenesis (Welch-
Reardon et al., 2014), and due to the similarity between
EndMT and EMT; it seems likely that the intermediate states
are also important from a dynamic perspective (Lu et al., 2013; Li
et al., 2016). In order to grasp the conditions that lead to EndMT
and MEnT, for each cyclic or fixed pattern of molecular
activation of our model, we simulated al l possible
p e r t u r b a t i on s i n t h e mo l e cu l e s t h a t a r e e i t h e r
microenviromental signals or the main transcription factors
involved in the regulation of EC identity. Specifically DLL4,
FGF2, FLI1, GATA2, HIF1a, PDGF_AB, TGFb, VEGFA,
WNT5b, and WNT7a. The possible effects of the 1024
perturbations are available for the interested reader as the 81
Supplementary Files in the folder https://github.com/
NathanWeinstein/EndMT/T_Results.zip in the format used to
export R objects, namely,. RData and are summarized in Table 6
which can be interpreted as a cell type or behavior transition
graph (Figure 7).

Model Validation
An exhaustive comparison between the global effect of all
possible single gene mutations in the model and the reported
experimental results are presented in Supplementary Table S2,
and summarized in Table 7. Overall, the behavior of the model is
very good at recovering the effect of a large proportion of the
reported mutants. Notice that several of the discrepancies are
because the model does not incorporate multicellular or
morphological effects, or because the reported effects involve
some molecules not included in the model. This is encouraging
given the qualitative nature of the model. Of the 58 possible
mutations, we successfully simulated the specific effects reported
for 37 (63.8%) of them. Furthermore, the effects of 4 (6.9%)
mutations constitute predictions of our model. 13 (22.4%)
mutations cause multicellular effects that we could not
reproduce using our model. Two mutations (3.45%) cause
morphological changes in the shapes of cells that are also
beyond the scope of our model. 4 (6.9%) mutations affect
molecules that we did not include in the model. 4 (6.9%)
mutations have an effect that was only observed in lymphatic
TABLE 5 | The simulated single gain and loss-of-function mutations that affect
each cell type.

Effect Mutations Robustness

Wild type AP1−, DLL4−, FGF2−, HIF1a−, LEF1
−, NFkB−, NOTCH−, NRARP−,
PDGF_AB−, SMAD1−, SMAD1+,
SMAD2−, SMAD6−, SMAD6+,
SNAI1−, STAT3−, STAT3+, TGFB−,
TGFB+, TGFBR−, TGFBR+, VEGFR2
−, WNT5b−, ZEB1+

41.38%

Loss of nonendothlial and
nonmesenchymal cells

FLI1+, GATA2+, HIF1a+, VEGFR2+,
WNT5b+

91.38%

Loss of nonmesenchymal,
nonphalanx, nontip, and
nonstalk ECs

CTNNB+, FLI1−, GATA2−, HIF1a+,
WNT5b+, WNT7a+

89.66%

Loss of phalanx cells CTNNB+, DLL4+, FLI1−, GATA2−,
HIF1a+, LEF1+, NFkB+, NOTCH+,
NRARP+, NRP1+, PDGF_AB+,
SMAD2+, SNAI1+, SNAI2+, TWIST1
+, VEGFA+, WNT5b+, WNT7a+

68.97%

Loss of nonmesenchymal
stalk cells

AP1+, CTNNB−, ETS1+, FGF2+,
FLI1−, GATA2−, HIF1a+, NRP1+,
SMAD2+, SNAI1+, SNAI2−, VEGFA
+, VEGFR2+, WNT5b+, WNT7a−,
ZEB2+

72.41%

Loss of mesenchymal
stalk cells

CTNNB−, FLI1−, GATA2−, NRP1+,
SNAI1+, SNAI2−, TWIST1−, VEGFA
+, ZEB1−, ZEB2−

82.76%

Loss of nonmesenchymal
tip cells

CTNNB+, DLL4+, ETS1−, FLI1−,
GATA2−, HIF1a+, NOTCH+, NRP1−,
TWIST1+, VEGFA−, WNT5b+,
WNT7a+

79.31%

Loss of mesenchymal tip
cells

DLL4+, ETS1−, FLI1−, GATA2−,
NOTCH+, NRP1−, SNAI2−, TWIST1
−, VEGFA−, ZEB1−, ZEB2−

81.03%

Loss of mesenchymal ECs
that are neither phalanx,
tip nor stalk cells

FLI1−, GATA2−, NRP1+, SNAI2−,
TWIST1−, ZEB1−, ZEB2−

87.93%

Loss of nonendothelial
mesenchymal cells

CTNNB−, FLI1+, GATA2+, HIF1a+,
SNAI2−, TWIST1−, VEGFA+,
VEGFR2+, ZEB1−, ZEB2−

82.76%
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ECs. Some of the reported effect of 7 (12.1%) mutations was not
recovered by the simulated behavior of our model. For two
mutations (3.45%), there are conflicting effects reported in
the literature.

Simulating EC Behavior and Differentiation During
Developmental Processes and the Progression of
Diseases Related to EndMT
During early heart valve formation, embryonic heart cushion
EndMT is triggered by TGF, WNT, and NOTCH signaling and is
inhibited by VEGF signaling (von Gise and Pu, 2012). This
behavior is recovered by the simulated dynamic behavior of our
Frontiers in Genetics | www.frontiersin.org 15
model, (TGFb+, WNT5b+, and NOTCH+ increase the fraction
of mesenchymal attractors, and VEGFA+ prevents full-EndMT).
TGFb2−, ALK1−, ALK5−, SMAD4−, SMAD6+, NOTCH1−,
VEGFA+, CTNNB−, and PDGF_AB− inhibit EndMT, and
cause endocardial cushion hypoplasia. In contrast SMAD6-
causes heart valve hyperplasia by increasing the number of
MCs (von Gise and Pu, 2012). According to the simulated
dynamic behavior of our model, the simulated loss of TGFb,
which represents TGF-b2, and the loss of TGFbR, which
represents all TGF receptors including ALK1 and ALK2,
reduces the fraction of mesenchymal attractors. Further, the
loss of the cofactor SMAD4 can be simulated as the loss of
FIGURE 4 | The robustness of the cell types and behaviors to changes in the update rule: The height of the bars represents the median number of attractors of
each cell type or behavior, the error bars represent one standard deviation over and under the mean respectively, and the red horizontal line segments represent the
number of attractors of each cell type or behavior on our original model.
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both SMAD1 and SMAD2 function and does not affect the
fraction of mesenchymal attractors. The simulated SMAD6 gain
of function mutation also does not affect the fraction of
mesenchymal attractors. Simulated NOTCH loss of function
reduces the fraction of mesenchymal attractors. Moreover,
simulated VEGFA gain of function and CTNNB loss of
function prevent the existence of nonendothelial mesenchymal
Frontiers in Genetics | www.frontiersin.org 16
attractors. Additionally, the simulated loss of PDGF_AB reduces
the fraction of mesenchymal attractors. Lastly, the simulated loss
of SMAD6 function exhibits a slight increase in the fraction of
mesenchymal attractors.

The initial stages of atherosclerosis and vascular calcification
are characterized by neointimal hyperplasia. Local disparity in
shear stress is associated to neointimal lesions. While most
FIGURE 5 | The sensitivity of each component of the update rule: The height of the bars represents the sensitivity of the components of the update rule to
perturbations that affect one node.
FIGURE 6 | The effect of the number of flipped bits on the sensitivity of the update rule components. Note that the components segregate according to their
sensitivity to molecular activation noise into five categories.
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TABLE 6 | The number and the characteristics of the pertubations in the activation state of the molecules DLL4, FGF2, FLI1, GATA2, HIF1a, PDGF_AB, TGFb, VEGFA, WNT5b, and WNT7a that cause cell type or cell
number is bigger than 0, the cell contains the molecules that are active in all perturbations +(), as well as the
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HIF1a, VEGFA)
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HIF1a,
NT5b)
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neointimal cells originate from smooth muscle, some neointimal
cells might arise from ECs that undergo EndMT. ECs that are
exposed to disturbed flow undergo EndMT; conversely, uniform
laminar shear stress hinders EndMT through KLF2, KLF4,
MEK5, and ERK5 (Moonen et al., 2015). Molecularly, ERK5 is
the main mitogen-activated protein kinase (MAPK) involved in
the regulation of cardiovascular development (Nishimoto and
Frontiers in Genetics | www.frontiersin.org 18
Nishida, 2006), and VEGF/MAPK signaling activates the
transcription of several transcription factors from the ETS
family including ets1 and fli1 (Wythe et al. , 2013).
Furthermore, the low shear stress caused by disturbed
nonlaminar flow at the sites where neointimal hyperplasia
occurs leads to a decrease in ets1, and fli1 expression.
Therefore, we can simulate uniform laminar shear stress as the
double gain of function mutation ets1+/fli1+, and a disturbed
nonlaminar flow as the double mutant ets1−/fli1−. The simulated
effect of ets1−/fli1− is the loss of all endothelial attractors, the
number of nonendothelial mesenchymal attractors increases
from 48 to 347, and the fraction of nonendothelial
mesenchymal attractors increases from 0.108 to 0.69. This
behavior can be interpreted as an increase in full EndMT
resulting from nonlaminar flow. Moreover, the simulated effect
of ets1+/fli1+ is the loss of all nonendothelial mesenchymal
attractors as well as an increase in the fraction of mesenchymal
attractors from 0.567 to 0.816. This behavior can be interpreted
as an increase in partial-EndMT and a complete inhibition of full
EndMT. Therefore, according to our model, nonlaminar flow
triggers full EndMT, and uniform laminar shear stress prevents
full EndMT and upregulates angiogenesis-related partial
EndMT. These results are in direct correspondence with the
observed effect of uniform laminar and disturbed nonlaminar
flow (Wragg et al., 2014).

Another important EndMT-related disease is pulmonary
arterial hypertension, which is defined as a sustained pulmonary
arterial pressure of more than 25 mm Hg at rest or more than 30
mm Hg during exercise, with a left ventricular pressure at the end
of the diastole and a mean pulmonary-capillary wedge pressure
lower than 15 mm Hg. The lung tissue of patients affected with
pulmonary arterial hypertension is characterized by increased
medial thickness, intimal fibrosis, plexiform lesions, and
pulmonary arteriolar occlusion (Farber and Loscalzo, 2004).
EndMT is involved in many of the pathological mechanisms
associated with pulmonary arterial hypertension (Kovacic et al.,
2019). At the molecular level, most cases of heritable pulmonary
arterial hypertension involve mutations that affect the bone
morphogenic protein (BMP) branch of the TGF signalling
pathway including ACVRL1(ALK1), BMPRII, ENG, SMAD1,
SMAD4, and SMAD9. Furthermore, BMPRII siRNA increases
the expression of SNAI2 (Hopper et al., 2016). According to our
model, the simulated gain of function mutation for SNAI2
increases the fraction of mesenchymal attractors, which is
consistent with the experimental evidence.

Finally, hypoxia-induced EndMT is another important
mechanism involved in the patophysiology of pulmonary
arterial hypertension. HIF-1a directly binds to the promoter of
TWIST1 and activates its expression (Zhang et al, 2018).
Pulmonary arterial hypertension patients exhibit high levels of
the cytokines IL-1b and TNFa that in the presence of TGFb
induce EndMT in pulmonary arterial ECs in vitro (Good et al.,
2015). IL-1b and TNFa induce EndMT by stabilizing NF-kB
(Sánchez-Duffhues et al., 2018). According to the simulated
dynamic behavior of our model, a gain-of-function mutation
of NF -kB induces EndMT and elevates the expression of ZEB2.
FIGURE 7 | The effect of the perturbations as a state transition graph: The
width of the edges represents the fraction of the perturbations that lead to
that transition, and the color of the edge denotes the original cell type or
behavior.
TABLE 7 | The capacity of our model to simulate the effects of mutations as
reported in the literature.

Successfully simulated CTNNB+, DLL4+, ETS1−, FGF2−, FLI1−, FLI1+,
GATA2−, HIF1a−, HIF1a+, LEF1+, NFkB+, NOTCH1−,
NOTCH+, NRARP+, PDGF_AB−, PDGF_AB+, SMAD6
−, SMAD6+, SNAI1+, SNAI2−, SNAI2+, STAT3−,
TGFb−, TGFb+, TGFbR−, TGFbR+, TWIST1−TWIST1+,
VEGFA−WNT5b−WNT5b+, WNT7a+, ZEB1−, ZEB2−,
ZEB2+.

Affect the likelihood of
transient patterns of
expression

AP1−, NFkB−, STAT3+.

Predictions of our
model

AP1+, GATA2+, SMAD1+, SMAD2+.

Unable to simulate the
multicellular effect

CTNNB−, DLL4−, DLL4−, LEF1−, NRARP−, SMAD6−,
SNAI2−, SNAI2+, VEGFA+, VEGFR2−, VEGFR2+,
WNT7a−, ZEB2−.

Unable to simulate the
morphological cell
change

SNAI1−, SNAI1+

Affects molecules not
included in our model

ETS1+, SNAI2−, SNAI2+, ZEB2+

Some effects were only
observed in lymphatic
ECs

FGF2−, FGF2+, WNT5b−, WNT5b+

Some effects not
simulated

SMAD1−, SMAD2−, STAT3+, TGFbR+, TWIST1+,
VEGFA+, ZEB1+

Conflicting effects
reported in the
literature

NRP1−, NRP1+
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DISCUSSION

The Model as Theoretical Framework
Our model of the molecular regulatory network involved in the
control of EndMT and EC activation integrates a vast amount of
published experimental results. Therefore, our model constitutes
a theoretical framework that summarizes the current knowledge
and allows for the simulation of experiments that explore the
molecular mechanisms involved in the regulation of EndMT
in silico.

Many important questions about EndMT remain
unanswered (Welch-Reardon et al., 2015). While such
questions require a experimental approach to obtain a
conclusive answer, models like the one presented here can
be used to generate hypotheses to direct, or at least restrict, all
the possible venues of experimental inquiry. In this sense, our
model provides an important theoretical framework to
understand the regulatory mechanisms behind EndMT. The
following paragraphs provide testable hypotheses on some key
aspects, according to our model.

Are SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2 all required for
EndMT? According to the dynamic behavior of the model, the
loss of any of the transcription factors SNAI2, TWIST1, ZEB1,
and ZEB2 prevents mesenchymal cell differentiation.
Experimentally, the loss of SNAI2 (Niessen et al., 2008),
TWIST1 (Mammoto et al., 2018), or ZEB1 (Sanchez-Tillo
et al., 2010) prevents EndMT. ZEB2 has many functions in
addition to its role during EndMT, its loss causes severe
neurodevelopmental defects and cardiovascular malformations
(Epifanova et al., 2018), while its specific effect during EndMT
still needs to be elucidated. Conversely, the gain of ZEB2
function is sufficient to trigger EndMT (DaSilva-Arnold et al.,
2018). SNAI1 over-expression can rescue the heart valve defects
caused by the loss of SNAI2 (Niessen et al., 2008). According to
our model, SNAI1 gain-of-function increases the fraction of
mesenchymal attractors. This implies that it can trigger
EndMT under certain circumstances. However, it cannot
replace SNAI2 in fixed or cyclic patterns of expression because
it inhibits its own expression.

Do SNAI1, SNAI2, TWIST1, ZEB1, and ZEB2 work
sequentially, in parallel or in feedback circuits? TWIST1
regulates the transcription of both SNAI1 and SNAI2 (Yu
et al., 2013; Forghanifard et al., 2017), while these two inhibit
each other (Peiro et al., 2006; Chen and Gridley, 2013b). Then,
SNAI1 activates the transcription of ZEB2 (Guaita et al., 2002;
Takkunen et al., 2006), and SNAI2 activates the transcription of
ZEB1 (Wels et al., 2011). The regulatory network presented here
shows that SNAI1 and SNAI2 form part of several other circuits,
including two functional feedback circuits where SNAI1 inhibits
its own expression and SNAI2 activates its own expression.
Furthermore, TWIST1, ZEB1, and ZEB2 appear to work
sequentially with SNAI1 and SNAI2. In this context, our
model contributes to the unraveling of several molecular
circuits relevant for EndMT.

What regulates the expression of EndMT-promoting
transcription factors? According to experimental observations
(Piera-Velazquez and Jimenez, 2019) captured by our model,
Frontiers in Genetics | www.frontiersin.org 19
nonlaminar blood flow, inflammation, as well as TGF, WNT and
NOTCH signaling pathway activity can trigger EndMT. By
contrast, laminar blood flow, hypoxia, and VEGF signaling can
inhibit full EndMT. Other molecular mechanisms that have been
reported to regulate EndMT include the autocrine TGF
activation by ET-1, the most potent known endogenous
vasoconstrictor polypeptide that triggers EndMT. CAV-1, the
main protein component of caveolae, is an important inhibitor of
EndMT, by means of the internalization, trafficking, and
degradation of TGF receptors. H2O2-induced oxidative stress,
NOX2 and NOX4 can induce EndMT via TGF signaling. Fatty
acid oxidation inhibits EndMT by activating SMAD7 and
inhibiting TGF signaling. Hyperglycemia leads to EndMT
through increased phosphorylation of ERK1/2, Angiotensin II
synthesis, miR-200b and miR-328 upregulation, and ROCK1
activation (Piera-Velazquez and Jimenez, 2019). The wide variety
in the patterns of expression that represent each cell type or
behavior prevents the specification of the molecules that regulate
EndMT. However, if the initial cell type or behavior is known,
our model allows the specification of all possible perturbations
that might cause a partial or full EndMT. This information is
available in the Supplementary Files in the folder https://github.
com/NathanWeinstein/EndMT/T_Results.zip in the format used
to export R objects (.RData), and summarized in Table 6 and
Figure 7.

What controls whether cells undergo a full or partial
EndMT? Many of the molecular mechanisms involved in the
regulation of EndMT and angiogenesis remain unknown.
Nevertheless, we know that the activity of several molecules,
including NRP1 (Oh et al., 2002; Matkar et al., 2016), SNAI1
(Sun et al., 2018), SNAI2 (Welch-Reardon et al., 2015),n
WNT5b (Wang et al., 2017a), and WNT7a (Howe et al., 2003;
Pahnke et al., 2016) induce both EC activation and EndMT.
Furthermore, TWIST1 (Mammoto et al., 2018), ZEB1 (Sanchez-
Tillo et al., 2010), and ZEB2 (DaSilva-Arnold et al., 2018)
induce EndMT and are not known to be involved in EC
activation during angiogenesis. Finally, the activity of FGF2
(Ichise et al., 2014; Yang et al., 2015), and VEGFA (Paruchuri
et al., 2006) induce angiogenesis and inhibit full EndMT.
According to our model, all the cases that achieve a full
EndMT with the loss of EC identity require FLI1, GATA2,
HIF1a, as well as VEGFA inactivity. These molecules, as a
group, have not been involved in this process up to now. In this
case, our model serves as a guide to study the role of specific
molecules, while at the same time providing a hypothesis of its
role in the regulatory network.

The Endothelial-to-Mesenchymal
Transition in Medicine
EndMT is necessary during embryonic development for heart
septation and heart valve morphogenesis. During the span of
human life, EndMT is required to maintain heart valve
homeostasis and adapt to hemodynamical changes. EndMT
deregulation is involved in the pathophysiology of vascular
malformation, vascular calcification, pulmonary arterial
hypertension, and organ fibrosis (Medici, 2016; Sánchez-
Duffhues et al., 2018).
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EndMT is critical during the formation of the heart.
Human heart development begins with the aggregation of
splanchnopleuric mesenchyme cells that form part of the
mesoderm into two endocardial tubes in the cardiogenic
area of the embryo. Then, the two endocardial tubes fuse to
form the primitive heart tube, which then begins to beat. After
that, cardiac looping occurs. Next, septation and valve
formation transpires (Moorman et al., 2003). Heart valves
develop from endocardial cushions through two processes: the
deposition of a special kind of ECM called cardiac jelly, and
the arrival of mesenchymal cells that are the precursors to
valve cells. Most cushion mesenchymal cells are derived from
endocardial cells that undergo EndMT, while the rest
originate from epicardium and cardiac neural crest cells that
undergo EMT (MacGrogan et al., 2014). EndMT is also
involved in adult valve homeostasis and disease. Adult heart
valves are covered by a layer of ECs that undergo EndMT to
replenish valve interstitial cells. Further, mechanical stretch-
induced EndMT allows heart valves to adapt to changes in
blood flow within the heart. However, excessive EndMT
causes heart valve dysfunction thorough thickening or
ca lc ificat ion. For instance , excess ive EndMT after
myocardial infraction can lead to mitral valve leaflet
thickening and mitral regurgitation (Bischoff, 2019).

The formation and progression of arteriovenous
malformations and cerebral cavernous malformations
involves EndMT. CCM1, CCM2, and CCM3 loss-of-
function mutations cause the formation of cerebral
cavernous malformations. EC-specific disruption of the
Ccm1 causes TGF-mediated EndMT. Inhibiting TGF
signaling reduces the number and size of vascular lesions
caused by CCM1- deficiency (Maddaluno et al., 2013).
Arteriovenous malformations are shunts that directly
connect the afferent arteries to efferent veins, bypassing the
usual capillary network. In addition to the fact that they take a
large volume of space and prevent normal tissue perfusion, the
nidus of arteriovenous malformations is prone to leaking or
bursting, often causing unbearable pain and serious damage.
ECs within brain arteriovenous malformations in mice
undergo SOX2, and JMJD5-mediated EndMT that can be
suppressed using Pronethalol hydrochloride (Yao et al., 2019).

Fibrosis is a wound healing process that involves the synthesis
and accumulation of ECM proteins. Excessive fibrosis can cause
functional organ failure. Myofibroblasts are the essential cell type
in the pathogenesis of fibrotic disorders. In systemic sclerosis,
cardiac fibrosis, renal fibrosis, idiopathic portal hypertension,
colitis, and inflammatory bowel disease, some myofibroblasts
express EC markers, suggesting that they originate from ECs that
underwent TGF-induced EndMT (Pardali et al., 2017; Sánchez-
Duffhues et al., 2018).

ECs can be found in every major organ in the body, and
thorough EndMT ECs can become MCs that are capable of
differentiating into pericytes, smooth muscle cells, skeletal
muscle cells, cardiomyocytes, myofibroblasts, chondrocytes,
osteocytes, adipocytes, hematopoietic stem cells, and other
organ-specific cell types. Therefore, EndMT has vast potential
Frontiers in Genetics | www.frontiersin.org 20
for tissue engineering and regenerative medicine (Medici, 2016;
Man et al., 2019). Currently, EndMT is harnessed to manage
ECM production and remodeling during cardiovascular tissue
graft engineering (Muylaert et al., 2015).

Beyond a Synchronous BN
Despite the valuable insights provided by a Boolean model
into the molecular mechanisms behind EndMT, it is evident
that the complexity of the biological systems requires the
incorporation of several characteristics. These constitute a set
of improvements that will be incorporated into future versions
of the model. The first improvement would be to convert the
model into a continuous dynamical system, which will allow
us to explore the biological relevance of the cyclic attractors
reached by model, thus eliminating possible methodological
artifacts caused by the synchronous update. Specifically, it is
possible that some cycles found in the Boolean models might
correspond to fixed point attractors with intermediate values
when modeled as a continuous system. Furthermore, another
important improvement would be the explicit modeling of the
three-dimensional shape of the cells by specifying the
cytoskeleton and cellular matrix. This information would
allow the analysis of those signals that trigger EC
cytoskeleton and ECM remodeling. This characteristic is
important to understand the mechanism by which the shear
stress caused by blood flow causes actin fibers within an EC to
align with the flow (Kroon et al., 2017).

Conclusion
We found sufficient information obtained from published
experimental results to assemble a functional model of the
molecular regulatory network involved in EndMT regulation.
Therefore, everything indicates that sufficient main signaling
pathways that regulate EndMT are already characterized. The
next logical step is to unravel the operation of the molecular
regulatory network involved in EndMT control at a systemic
level. The model we describe in the present manuscript
constitutes an initial qualitative analysis in that direction.
EndMT is required for heart valve formation during
embryonic development and is an important component in
the pathophysioloy of cardiovascular and fibrotic diseases.
Understanding how to regulate EndMT has vast applications
in the treatment of disease and regenerative medicine. The
simulated dynamic behavior of our model recovers fixed and
cyclic patterns of molecular activation that correspond to the
main cell types and behaviors involved in EndMT. Further,
the simulated effect of most single gain and loss-of-function
mutations of the molecules included in our model
corresponds to the experimentally observed effect of the
same mutations. Additionally, we used all possible
perturbation patterns for 10 molecules to explore the
conditions that cause EC activation, EndMT, and the reverse
transitions. Based on the results of the perturbation analysis,
we infer that the Phalanx and nonmesenchymal Stalk EC
behaviors can only be reached from a few initial EC
March 2020 | Volume 11 | Article 40
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behaviors, and also that the Tip EC behavior prevents direct
full EndMT. Tip ECs may undergo indirect full EndMT only
by previously transforming into nonphalanx, nonstalk, and
nontip ECs or into mesenchymal stalk cells. Therefore, our
model constitutes a theoretical framework that enables
hypothesis generation, and illuminates and restricts the
possible paths for future experimental EndMT research and
the pharmacological control of EndMT.
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