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High-throughput genome-wide epigenomic assays, such as ChIP-seq, DNase-seq and
ATAC-seq, have profiled a huge number of functional elements across numerous human
tissues/cell types, which provide an unprecedented opportunity to interpret human genome
and disease in context-dependent manner. Colocalization analysis determines whether
genomic features are functionally related to a given search and will facilitate identifying the
underlying biological functions characterizing intricate relationships with queries for genomic
regions. Existing colocalization methods leveraged diverse assumptions and background
models to assess the significance of enrichment, however, they only provided limited and
predefined sets of epigenomic features. Here, we comprehensively collected and integrated
over 44,385 bulk or single-cell epigenomic assays across 53 human tissues/cell types, such
as transcription factor binding, histone modification, open chromatin and transcriptional
event. By classifying these profiles into hierarchy of tissue/cell type, we developed a web
portal, epiCOLOC (http://mulinlab.org/epicoloc or http://mulinlab.tmu.edu.cn/epicoloc), for
users to perform context-dependent colocalization analysis in a convenient way.

Keywords: colocalization, epigenomics and epigenetics, functional annotation analysis, genetic variants, cell type
specific, web server
INTRODUCTION

The epigenome, beyond genome sequence, has been increasingly recognized as key component in
the gene regulation to drive certain biological processes and associate with many human diseases
(Lawrence et al., 2016; Dor and Cedar, 2018; Feinberg, 2018). In the past decades, high-
throughput epigenomic sequencing assays have profiled large numbers of functional elements
across numerous human tissues/cell types, such as histone modification, DNA methylation, open
chromatin, transcription factor binding site (TFBS), etc. The International Human Epigenome
Consortium (IHEC) project (Bujold et al., 2016) have been initialized, across different countries
and consortiums, to coordinate the production of reference maps of human epigenomes for key
cellular states relevant to health and diseases. These unprecedented growths of epigenetic profiles
and following comprehensive analysis of tissue/cell type-specific epigenomes will ultimately lead
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to a better understanding of how human population and
genome function are shaped in response to the environment
(Egtex, 2017).

To facilitate convenient and accurate utilization of increasing
volume of epigenomic data, several commonly-used resources
have uniformly processed raw profiles and made them easily
accessible, including ENCODE (Consortium, 2012), Roadmap
Epigenomics (Roadmap Epigenomics et al., 2015), Blueprint
Epigenome (Stunnenberg et al., 2016) and CistromeDB (Mei
et al., 2017; Zheng et al., 2019). Furthermore, comprehensive
epigenomics accumulation has motivated novel computational
methods of modelling functional elements across many tissues/
cell types, such as ChromHMM (Roadmap Epigenomics et al.,
2015) and Segway (Libbrecht et al., 2019). Therefore, integrating
such large-scale and context-dependent epigenomics features for
novel biological findings is in urgent demand (Dozmorov, 2017;
Cazaly et al., 2019). To this end, colocalization analysis was
frequently used to study the interplay of various functional
elements in different biological processes and conditions,
where potential enrichment of a given genomic/epigenomic
profile in pre-defined dataset could be drawn from the global
perspective (Kanduri et al., 2019). Integrated with large-scale
tissue/cell type-specific epigenomics data, colocalization analysis
provides a powerful avenue to investigate biological relations and
cell type specificities, such as identifying co-occurrence of
transcription regulators (Yan et al., 2013) and inferring causal
tissues/cell types from disease-associated variants identified by
genome-wide association study (GWAS) (Farh et al., 2015).

Many colocalization tools have been developed by
holding diverse assumptions and background models to assess
the significance of enrichment. For instances, GSuite
HyperBrowser is a web-based tool that performs colocalization
analysis using either analytical approaches or Monte Carlo
simulations (Simovski et al., 2017). LOLA utilizes Fisher's exact
test based on universe regions to inspect enrichment and
provides a web-based portal LOLAweb (Sheffield and Bock,
2016; Nagraj et al., 2018). GoShifter (Trynka et al., 2015) and
GARFIELD (Iotchkova et al., 2019), which were implemented
into standalone tools, specifically quantify enrichment of
overlaps between GWAS variants and genomic annotations by
considering linkage disequilibrium (LD). To overcome the
discordant enrichment among exiting methods, Coloc-stats
integrates multiple colocalization analysis tools in a single web
interface (Simovski et al., 2018). This integrated system serves as
a one-stop shop for performing comprehensive colocalization
analysis and asseses the consistency of the conclusions
across seven different methods. However, some critical issues
remain unaddressed. First, existing tools only provide
limited pre-defined sets for genomic features in different
biological domains. Current web-based tools, such as GSuite
HyperBrowser, GenomeRunner (Dozmorov et al., 2016) and
LOLAweb, only incorporate a small number of epigenomic
profi les from ENCODE, Cistrome and other specific
annotation datasets, which restrict the broader applications of
online colocalization analysis. Second, the descriptions of tissue
and cell type information are disordered and only based on free
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text, making current tools unable to properly classify or group
tissues/cell types to inspect the specificity of enrichment.
Therefore, a uniform human tissue/cell-type definition is
needed. Furthermore, the growing volume of epigenomic
profiles on extensive tissues/cell types, collection and
integration of these genomic features require a great effort to
download. Most colocalization web tools are time-consuming for
features intersection and background generation when dealing
with such accumulating data scale. To ease the comprehensive
colocalization analysis for biologists and geneticists, a faster and
versatile online platform would be welcome.

For this study we comprehensively collected and integrated
over 44,385 bulk or single cell epigenomic profiles across 53
human tissues/cell types. By classifying and mapping these
profiles into hierarchy of tissue/cell type, we developed a web
portal, epiCOLOC, for users to perform context-dependent
colocalization analysis in a convenient way. We leveraged a
recent ultrafast genomics search engine, GIGGLE, to identify
and prioritize the enrichment of genomic loci shared between
query features and our pre-defined epigenomic interval files
(Layer et al., 2018). epiCOLOC equips many visualization
functions and is freely available at http://mulinlab.org/epicoloc
or http://mulinlab.tmu.edu.cn/epicoloc.
EPIGENOMIC PROFILES INTEGRATION
AND PROCESSING

Data Collection
We collected human genomic and epigenomic data from various
public resources including ENCODE (Consortium, 2012),
Roadmap Epigenomics (Roadmap Epigenomics et al., 2015),
Cistrome (Mei et al., 2017), ReMap (Cheneby et al., 2018),
ChIP-Atlas (Oki et al., 2018), DeepBlue (Albrecht et al., 2017),
BOCA (Fullard et al., 2018), TCGA (Corces et al., 2018) and
HACER (Wang et al., 2019) (Supplementary Table 3).
According to data sources and corresponding attributes, we
classified collected features into following categories: 1)
Transcriptional regulator, which incorporates ChIP-seq profiles
of large number of transcriptional factors and chromatin
remodelers; 2) Histone modification, which incorporates ChIP-
seq profiles of different histone modifications; 3) Chromatin
accessibility, which contains DNase-seq, ATAC-seq and FAIRE-
seq profiles of open chromatin; We also curated several single cell
ATAC-seq assays in this category; 4) Transcriptional event,
which contains CAGE-seq, GRO-seq and PRO-seq profiles of
nascent transcription signals; 5) Chromatin segmentation, which
introduces tissue/cell type-specific chromatin states predicted by
ChromHMM and Segway (Figure 1A and Supplementary Table
1). In order to improve accuracy and robustness of epiCOLOC
backend database, we removed low-quality profiles according to
the quality control scheme provided in the original resource. For
example, we removed ChIP-seq data not passing two Cistrome
quality metrics, including fraction of reads in peaks, and
sufficient number of peaks with good enrichment. We also
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excluded ENCODE profiles with error audit flags, such as
extremely low read length, not tagged antibody, etc. Current
epiCOLOC database covers 1,631 chromatin markers, which
comprises 88 histone modifications, 1,538 transcriptional
regulators, open chromatin and transcriptional event.

Data Processing
Tissue Organization and Mapping
We mapped cell lines to tissues by accounting for some auxiliary
information from original epigenomic studies and several
standards from GTEx (Consortium et al., 2017), Expression
Atlas (Papatheodorou et al., 2018), Cellosaurus (Bairoch,
2018), ATCC (www.atcc.org), and BRENDA Tissue Ontologies
(www.ebi.ac.uk/ols/ontologies/bto), yielding 53 main human
tissues in total. For some main tissues that contain multiple
well characterized components or some cell lines that cannot
simply map to specific main tissues, we set independent terms in
tissue set and finally generated 137 sub-tissues (Supplementary
Table 2). We then manually mapped tissue/cell type name of
each profile to our uniformly defined tissue set.

Cell Type Mapping
To reduce the complexity of cell type description in our collected
epigenomic profiles, we performed cell type mapping using
Cellosaurus that collected almost all cell line synonyms in a
reference database (Bairoch, 2018). We acquired the Cellosaurus
accession numbers and corresponding synonyms for all recorded
cell lines, and assigned uniform synonyms identifiers to
epigenomic profiles, which greatly reduces the heterogeneity of
cell type descriptions. For cancer cell types mapping, we
Frontiers in Genetics | www.frontiersin.org 3
borrowed DepMap which provides standard terms for over
thousands of cancer cell lines and organoid models (Van Der
Meer et al., 2019). Since DepMap provides Cellosaurus accession
numbers, we were able to easily map cancer cell lines to
consistent reference.

Profile Grouping
Since the epigenomic data were generated by different
laboratories or produced using different protocols, replicates
and analysis methods among collected sources, we sought to
identify profiles describing similar biological processes in each
source. We grouped all collected profiles according to source +
assay type + tissue/cell type + biological target, and assigned
unique group identifiers to them.

Outlier Profiles Removal
To further ensure informative profiles in each group, we
designed a strategy to eliminate potential outlier profiles that
may deviate from underlying biological process of the group
(Supplementary Methods). For each group with at least three
profiles, we first constructed a pair-wise similarity matrix for all
profiles based on GIGGLE combo score (Layer et al., 2018).
Then, hierarchical clustering was used to cluster these profiles
based on Euclidean distance and the optimal number of clusters
was automatically determined by inconsistency coefficient
method (Zahn, 1971). Furthermore, we only retained profiles
within the largest cluster as representatives in this group. For
example, we identified that four outlier profiles among 11 ETS1
ChIP-seq peak profiles in GM12878 cell line, and excluded them
in the colocalization analysis (Figure 1B).
FIGURE 1 | The overview of epiCOLOC design and datasets. (A) The source schema of epiCOLOC data collection. (B) An example to illustrate outlier profiles
removing. (C) The summary of data types in the current version of epiCOLOC.
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epiCOLOC Web Tool Implementation
The current version of epiCOLOC incorporates 44,385 tissue/cell
type-specific functional profiles from 44,364 bulk-cell studies
and 21 single-cell studies after quality control (Supplementary
Table 4). Most of these profiles (89.8%) are derived from ChIP-
seq for transcription regulators and histone modifications, while,
9.5% profiles came from DNase-seq and ATAC-seq for
chromatin accessibility (Figure 1C).

Colocalization Method
To achieve a fast and efficient colocalization based on high
volume epigenomic features, we embedded a genomic feature
search engine, GIGGLE, into epiCOLOC web server (Layer et al.,
2018). GIGGLE uses Fisher's exact test and odds ratio of
“observed” versus “expected” to measure enrichment between
query features and pre-indexed genomic intervals. It also creates
a combination score called GIGGLE combo score, which is the
product of -log10(Fisher's exact test P-value) and log2(odds
ratio). Given thousands of epigenomic profiles in epiCOLOC
database, GIGGLE can significantly reduce the running time
from hours to minutes. For example, epiCOLOC takes about 6
minutes to finish colocalization analysis on transcriptional
regulator profiles of all blood cells for a set of 10k intervals
(randomly generated genomic intervals with varying length). For
each profile group, we calculated median score to represent
group-level enrichment. With the aid of efficient colocalization
strategy, epiCOLOC tries to provide powerful context-specific
epigenomic evidences, leading to novel biological problems
identification, such as “Are two transcription factors (TFs)
colocalized and forming cooperation” or “Are the query
variants/intervals enriched in chromatin open regions of
specific tissues?” or “Are the query variants/intervals overlap
with transcribed enhancers regions more than would be
expected by chance?” More biological examples can be found
in our website http://mulinlab.org/epicoloc/Introduction/
#Biological-examples.

Web Interface and Usage
epiCOLOC was implemented in a web-based tool with built-in
large-scale and context-dependent epigenomic annotations. The
epigenomic profiles were indexed using GIGGLE. The web server
was developed by Python, jQuery, igv.js, amcharts.js and related
JavaScript modules.

Querys
epiCOLOC accepts two types of genomic format: BED-like
format and VCF-like format. Both plain text and uploaded file
of regions of interest (ROIs) or variant positions are well
supported. Uploaded file can be BED or VCF text file or
compressed gzip file (<20Mb).

Options
epiCOLOC provides several options for users to customize
colocalization analysis, including 1) select tissues (53 tissues/
137 sub-tissues); 2) select profile categories (Transcriptional
regulator, Histone modification, Chromatin accessibility,
Transcriptional event, Chromatin segmentation); 3) change
Frontiers in Genetics | www.frontiersin.org 4
human genome assembly (GRCh37 and GRCh38); 4) define
background genome size (3,095,677,412 for GRCh37 and
3,088,269,832 for GRCh38 in default); 5) set maximal
interval length (500bp in default, and ROIs which exceed
maximum length will be removed); 6) set extended length on
both sides (no extension by default); 7) set central window size
(cut the central area of genomic intervals, no central window
by default).

Job Submission
Once submitted, the job will be sent to the backend of the web
server for colocalization analysis. epiCOLOC displays a progress
bar to track the execution status. It allows job retrieval by
searching for the job ID in the home page, or by using a fixed
URL (http://mulinlab.org/epicoloc/<jobid>) to check results
directly, or through email notification.

Results Visualization
We used GIGGLE combo scores to prioritize colocalization
results. Higher combo score indicates better enrichment on a
specific profile, while negative combo scores suggest depleted
enrichment (Supplementary Figure 1). Users can inspect and
visualize the results in four different manners: 1) Prioritization
table, which shows statistics metrics of colocalization including
combo score, Fisher's exact P-value, odds ratio, the number of
overlaps and extra information of enriched profiles (Figure 2A);
2) Tissue-wise pie charts for enrichment and depletion, which
depict the per tissue proportion in all enriched (positive combo
score) or depleted (negative combo score) profiles (Figure 2B).
Users can click the slice of each tissue in the pie chart to see
detailed sub-tissue results; 3) Tissue-wise bar plots, which display
the representative enriched or depleted profiles in each tissue
(Figure 2C). The user can search, scroll, zoom and hover over
the bar plot to get detailed information of enrichment (only assay
IDs for the best profiles in each group are displayed in hover
tooltip). Once the label under the tissue-wise bar plotsis clicked,
cell type-wise bars which depict enrichment patterns for the top
20 enriched cell types appear in a pop-up window. 4) The IGV
dashboard displays relative genomic location for queries
genomic intervals and top five enriched profi les in
colocalization analysis.

Download
epiCOLOC allows users to download colocalization results in csv
format and result figures in png, jpg or pdf formats.
CASE STUDIES AND EVALUATIONS

By integrating large-scale tissue/cell type-specific epigenomic
profiles, epiCOLOC could be used to investigate many biological
questions. Here, we used several examples to demonstrate the
performances and potential usages of epiCOLOC.

To identify potential disease-relevant genomic features and
tissues using GWAS variants, we first performed colocalization
analysis on disease-associated variants for inflammatory bowel
February 2020 | Volume 11 | Article 53
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disease (IBD) (Liu et al., 2015) to test the tissue-specific
enrichment. Using chromatin accessibility features, we found
that IBD GWAS variants (P-value < 5E-8) were significantly
Frontiers in Genetics | www.frontiersin.org 5
enriched in blood tissue, where open chromatin profiles on
monocyte, lymphocyte and granulocyte macrophage progenitor
received highest enrichment scores. (Figure 2, and also see
FIGURE 2 | Results page of epiCOLOC. Colocalization result for IBD GWAS variants in open chromatin regions, (A) Prioritization table. (B) Pie chart that depicts the
number of significant enriched or depleted profiles in each tissue. (C) Bar plots that display ordered combo score, P-value, odds ratio in tissue-wise manner.
February 2020 | Volume 11 | Article 53
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colocalization result from: http://mulinlab.org/epicoloc/results/
bc2fa49a-6dfa-40f1-bb61-1349c9118168). This result was
consistent with GARFIELD results using functional
annotations from ENCODE and Roadmap Epigenomics
(Iotchkova et al., 2019). We then used coronary artery disease
(CAD) GWAS variants (P-value < 5E-8) to perform
colocalization in open chromatin regions (Van Der Harst and
Verweij, 2018). Consistent with GARFIELD reports, we observed
that most of tissues showed similar enrichment patterns, without
distinct tissue specificity at open chromatin (http://mulinlab.org/
epicoloc/results/63b0cd1b-f22f-43dd-9452-fdea114f6c3d).
However, when using fine-mapped CAD variants, we observed
several highly enriched signals in tissues like liver and artery
blood vessel (http://mulinlab.org/epicoloc/results/04bf79a8-
f7cd-4960-913e-5c5c84c05753), implying that the importance
of selecting informative ROIs before colocalization analysis.

Next we sought to demonstrate that whether epiCOLOC
could be used to identify potential cooperative factors for given
TF. Transcription factor 7-like 2 (TCF7L2), a TF in the Wnt-
signaling pathway, has been proven to play a central role in
coordinating the expression of proinsulin and forming mature
insulin (Zhou et al., 2014). TCF7L2 binding sites had been
reported to colocalize with HNF4alpha and FOXA2 in HepG2
cell (Frietze et al., 2012). We hence used TCF7L2 ChIP-seq in
HepG2 to perform colocalization analysis using epiCOLOC. In
our colocalization results, TCF7L2 ChIP-seq peaks were
significantly enriched in EP300, CREM, SP1, FOXA2 and
HNF4alpha ChIP-seq profiles in various tissues/cell types
(http://mulinlab.org/epicoloc/results/d736578a-59a4-4160-a6fe-
1a9c420c4adf). Furthermore, we used two motif finding tools,
PscanChIP (Zambelli et al., 2013) and HOMER (Heinz et al.,
2010), with the same query input to investigated enriched TF
motifs. We found that TF motifs including HNF4alpha, FOXA2,
TCF7, GATA4, FOXP1, FOXA1, FOXK2 and FOXO3 can be
simultaneously identified among two motif finding tools and our
epiCOLOC, which also validates the efficacy of our tool.
DISCUSSION

In this study, we have integrated a comprehensive and tissue/cell
type-specific epigenomics profiles database. With strict pre-
processing, quality control and tissue mapping, we established a
user-friendly web portal, epiCOLOC, which to perform fast and
context-dependent colocalization analysis; and provide a series of
visualization functions to interpret results; and significantly
distinguish between existing web-based tools (Supplementary
Table 5). In the applied examples, we demonstrated the
accuracy and practicality of epiCOLOC in identifying causal
tissues/cell types from GWAS disease-associated variants and
inferring co-occurrence of transcription regulators.

There are some limitations in this work which deserve
optimization in our future works. First, the statistical
assumption of GIGGLE is simple and could be sub-optimal in
several cases. We strongly recommend users to prioritize results by
combo score and set stringent thresholds. As observed from the
Frontiers in Genetics | www.frontiersin.org 6
combo scores distribution when P< = 0.05 using query intervals
that randomly generated in genome (Supplementary Figure 2),
we propose to use an empirical combo score cutoff, 5 for
enrichment and -2 for depletion, as advisable criteria to further
filter enrichment or depletion results. Although GIGGLE can
greatly speed up colocalization analysis, as compared with
GenomeRunner (Dozmorov et al., 2016) and LOLAweb (Nagraj
et al., 2018), it limits the usage of user-specific background of
genomic regions and the analysis of multiple genomic intervals.
Second, although epiCOLOC is applicable to perform
colocalization analysis using genetic variants, but it cannot
account for LD and allele frequency. Third, there are uneven
epigenomic profiles for different tissues/cell types. It may
potentially affect the robustness of colocalization when applying
epiCOLOC to the tissues/cell types having fewer data available,
and it also cannot determine the missing enrichment for tissues/
cell types lacking sufficient data. In addition, single-cell
technologies, such as single-cell ATAC-seq and single-cell ChIP-
seq (Grosselin et al., 2019), have been developed to analyze
genome-wide epigenomic features. Such approaches pave the
way to study the role of epigenetic heterogeneity in many
biological conditions and will be largely incorporated into
epiCOLOC in the next stage. Recently, a novel algorithm named
Augmented Interval List (AIList) (Feng et al., 2019), which
introduces a new data structure and provides a significantly
improved fundamental operation for highly scalable genomic
data analysis. This method together with upcoming large-scale
genomic features will be added in the epiCOLOC future updates.
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