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Basmati is considered a unique varietal group of rice (Oryza sativa L.) because of its aroma
and superior grain quality. Previous genetic analyses of rice showed that most of the
Basmati varieties are classified into the aromatic group. Despite various efforts, genomic
relationship of Basmati rice with other varietal groups and genomic variation in Basmati
rice are yet to be understood. In the present study, we resequenced the whole genome of
three traditional Basmati varieties at a coverage of more than 25X using lllumina
HiSeq2500 and mapped the obtained sequences to the reference genome sequences
of Nipponbare (japonica rice), Kasalath (aus rice), and Zhenshan 97 (indica rice).
Comparison of these sequences revealed common single nucleotide polymorphisms
(SNPs) in the genic regions of three Basmati varieties. Analysis of these SNPs revealed
that Basmati varieties showed fewer sequence variations compared with the aus group
than with the japonica and indica groups. Gene ontology (GO) enrichment analysis
indicated that SNPs were present in genes with various biological, molecular, and
cellular functions. Additionally, functional annotation of the Basmati mutated gene
cluster shared by Nipponbare, Kasalath, and Zhenshan 97 was found to be associated
with the metabolic process involved in the cellular aromatic compound, suggesting that
aroma is an important specific genomic feature of Basmati varieties. Furthermore, 30
traditional Basmati varieties were classified into three different groups, aromatic (22
varieties), aus (four varieties), and indica (four varieties), based on genome-wide SNPs.
All 22 aromatic Basmati varieties harbored the fragrant-inducing Badh2 allele. We also
performed comparative analysis of 13 key agronomic and grain quality traits of Basmati
rice and other rice varieties. Three traits including length-to-width ratio of grain (L/W ratio),
panicle length (PL), and amylose content (AC) showed significant (P < 0.05 and P < 0.01)
differences between the aromatic and indica/aus groups. Comparative analysis of
genome structure, based on genome sequence variation and GO analysis, revealed
that the Basmati genome was derived mostly from the aus and japonica groups. Overall,
whole-genome sequence data and genetic diversity information obtained in this study will
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serve as an important resource for molecular breeding and genetic analysis of

Basmati varieties.

Keywords: Basmati rice, aromatic, SNPs, NGS, gene ontology

INTRODUCTION

Rice (Oryza sativa L.) is an important cereal crop and represents the
staple food of more than half of the global population (Wangand Li,
2005). O. sativa is classified into two distinct subspecies, japonica
and indica (Kato, 1928), and into five groups including indica, aus,
aromatic, temperate japonica, and tropical japonica (Garris et al,
2005). O. sativa was domesticated more than 10,000 years ago from
Asian wild rice species, O. rufipogon and O. nivara (Kovach et al.,
2007; Sang and Ge, 2007; Chen et al., 2019). Both japonica and
indica rice have undergone significant phenotypic changes
compared with O. rufipogon (proto-japonica) and O. nivara
(proto-indica), respectively, and have expanded their
geographical distribution during domestication (Fuller et al., 2010).

Basmati rice is considered a unique varietal group because of its
aroma and superior grain quality (Ahuja et al., 1995; Siddiq et al,,
2012). These unique varietal group occupies a special status among
the consumers due to its unique quality traits such as extra-long
slender grain, lengthwise excessive kernel elongation upon cooking,
soft and fluffy texture after cooking, and aroma. Therefore, Basmati
varieties are designated as the most highly produced and
economically successful group (Civan et al, 2019). The term
Basmati is derived from two Sanskrit words, “Vas” meaning
“aroma” and “matup” meaning “possessing.” The combination of
the two Sanskrit words, “Vaasmati,” is pronounced as “Basmati”
(Siddiq et al, 2012). Studies suggest that Basmati rice varieties
represent the aromatic group from indica and japonica subspecies
(Glaszmann, 1987; Garris et al., 2005).

From the decades, less attention has given at the origin of
Basmati group. This is mainly due to the conflicting phylogenetic
relationships were observed among Basmati and other rice groups
(Choi et al,, 2017). Furthermore, genome-wide polymorphism
analysis in Asian cultivated rice showed that Basmati rice varieties
share a close phylogenetic relationship with japonica varieties
(Huang et al., 2012; Wang et al,, 2018). Recent findings of Choi
et al. (2018) and Civan et al. (2019) providing more evidence that
Basmati genome was genetically close to japonica and aus rice.
However, these studies were carried out using single Basmati
genome, which has limited information on Basmati genome
variation. Although some progresses have been made in
understanding of origin of Basmati genome, further study is
needed to identify the Basmati-specific genome features and
genome variation by assembling the traditional Basmati varieties
compared with japonica, indica, and aus groups. Next-generation
sequencing (NGS) technologies are important for genomic
analysis and molecular breeding (Chen et al., 2014), and enable
the identification of functional genomic variation, and unique
SNPs, and insertion-deletion polymorphisms (InDels) across the
genome, which offer an exciting opportunity to genetic diversity
studies in the crop plants (Jimenez et al., 2013; Serba et al., 2019).

In Basmati rice, molecular mapping and cloning of the fgr gene,
which encodes betaine aldehyde dehydrogenase homologue 2
(Badh2), revealed an 8-bp deletion and three single nucleotide
polymorphisms (SNPs) in the 7th exon, resulting in the fragrant
trait (Bradbury et al., 2005). Haplotype analysis of the Badh2 gene
showed that the 8-bp deletion in the majority of fragrant Basmati
varieties causes a loss-of-function mutation, which enhances the
biosynthesis of 2-acetyl-1-pyroline (2-AP); this haplotype is
identical to the ancestral japonica haplotypes, suggesting that
introgression between japonica accessions and Basmati varieties is
responsible for the fragrant trait in Basmati rice (Kovach et al.,
2009). A recent study by Daygon et al. (2017) reported that four
other amine heterocycles: 6-methyl, 5-0x0-2,3,4,5-
tetrahydropyridine (6M50TP), 2-acetylpyrrole, pyrrole, and 1-
pyrroline, that correlate strongly with the production of 2AP, and
are present in consistent proportions in a collection of recombinant
inbred lines derived from Basmati-type rice, and these compounds
were also co-localized with a single QTL that harbors the fgr gene.
Although genetic basis of fragrant trait in Basmati rice seems to be
complicated, most researchers proposed that grain aroma in
Basmati rice is controlled by a single recessive gene (Badh2)
(Bradbury et al.,, 2005; Kovach et al, 2009). However, some
researchers also think that fragrant trait in Basmati rice is
controlled by major and minor-effective genes (Daygon et al,
2017), and by several QTLs (Amarawathi et al., 2008; Pachauri
etal,, 2014; Vemireddy et al., 2015). Overall, the molecular genetic
mechanism of fragrant trait is not clearly understood, more studies
is needed on the functional allelic variation of aroma gene and
number of genes controlling the grain aroma in Basmati rice.

In this study, we analyzed the differences between Basmati
rice genome vs. indica, japonica, and aus rice genomes through
whole-genome sequencing and marker analysis. The main
objective is to identify the genomic features and genetic
variation in Basmati rice that can be utilized for genetic studies
and marker development for breeding. We also identified unique
SNPs and Indel marker sets, and evaluated the key agronomic
and grain quality traits of Basmati rice with other rice groups for
varietal improvement.

MATERIALS AND METHODS

Plant Materials

A total of 60 rice varieties belonging to indica, aus, aromatic,
temperate japonica, and tropical japonica groups were used in
this study (Table 1). Among the 60 rice varieties, seeds of 30
traditional Basmati varieties [International Rice GenBank
Collection (IRGC) designated] were obtained from the
International Rice Research Institute (IRRI), while the other 30
rice varieties were from the Crop Molecular Breeding Lab, Seoul
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TABLE 1 | List of rice varieties used in this study.

TABLE 1 | Continued

No. Varieties Origin Accession Subgroup® Badh2
no. ? allele®
1 Nipponbare Japan 981704 Temperate WT
Japonica
2 Koshihikari Japan 981581 Temperate WT
Japonica
3 Yukara Japan 981584 Temperate WT
Japonica
4 llpoumbyeo South 981585 Temperate WT
Korea japonica
5 Jinheungbyeo South 981576 Temperate WT
Korea Japonica
6 Dongjinbyeo South 981626 Temperate WT
Korea Japonica
7 Hopumbyeo South 980403 Temperate WT
Korea Japonica
8 Tong 88-7 South 980609 Temperate WT
Korea Japonica
9 MS 11 Philippines 981589 Temperate WT
Japonica
10  Samnambyeo South 981579 Tropical WT
Korea Japonica
11 Malagkit Philippines 961354 Admixture WT
Sinaguing
12 B581A6 Philippines 921648 Tropical WT
Japonica
13  CP-SLO USA 970083 Tropical WT
Japonica
14 Azucena Philippines 971155 Tropical WT
Japonica
15 Reket Abang Indonesia 260004 Tropical WT
Japonica
16 Dawn USA 981564 Tropical WT
Japonica
17 Milyang 23 South 981599 Indica WT
Korea
18  Dasanbyeo South 981598 Indica WT
Korea
19  Taichung Native Taiwan 981570 Indica WT
1
20 IR64 Philippines 981566 Indica WT
21 IR72 Philippines 18053 Indica WT
22  Chinsurah Boro  Bangladesh 851453 Aus WT
2
23  Dular India 980384 Aus WT
24 Bina Dhan 10 Bangladesh 961192 Indlica WT
25 IR24 Philippines 18049 Indlica WT
26 IR8 Philippines 981596 Indica WT
27 Minghui 63 China 981601 Indica WT
28 N22 India 970030 Aus WT
29 Swarna India 961181 Indica WT
30 Basmati Dhan Nepal IRGC 23814  Aromatic badh2.1
31  Dheradun Nepal IRGC 23861 Aus WT
Basmati
32 Basmati Nahan  Pakistan IRGC 27786 Aromatic badh2.1
381
33 Basmati Sufaid  Pakistan IRGC 27791 Aromatic badh2.1
100
34  Basmati 140 Pakistan IRGC 27813  Aus WT
35 Basmati 370 Pakistan IRGC 27820 Aromatic badh2.1
36 Basmati 372 Pakistan IRGC 27823 Aromatic badh2.1
37 Basmati 377 Pakistan IRGC 27829 Aromatic badh2.1
38  Deraduni Pakistan IRGC 27907 Aromatic badh2.1
Basmati 321
(Continued)

No. Varieties Origin Accession Subgroup® Badh2
no. ? allele®

39 Kamoh Basmati Pakistan IRGC 28000 Aromatic badh2.1
392

40  Sathi Basmati Pakistan IRGC 28230 Aromatic badh2.1

41  Basmati Sal India IRGC 52411 Aus WT

42  Basmati Kunar  Afghanistan IRGC 58272 Aromatic badh2.1

43 Basmati Kunduz Afghanistan IRGC 58273 Indica WT

44 Basmati Nepal IRGC 58879 Aromatic badh2.1
Anpjhutte

45  Basmati Gola Nepal IRGC 58880 Aromatic badh2.1

46 Basmati Lamo Nepal IRGC 58881 Aromatic badh2.1

47  Basmati Masino  Nepal IRGC 58883 Indica WT

48  Basmati Nokhi Nepal IRGC 58884 Indica WT

49 Basmati Pahade Nepal IRGC 58885 Aromatic badh2.1

50 Basmati Red Nepal IRGC 58886 Aromatic badh2.1

51 Basmati White Nepal IRGC 58887 Aromatic badh2.1

52 Basmati Uzarka  Nepal IRGC 58888 Aromatic badh2.1

53 Kalo Basmati Nepal IRGC 59054 Aromatic badh2.1

54  Rato Basmati Nepal IRGC 59205 Aromatic badh2.1

55 BasmatiMwea  Kenya IRGC 61183 Aromatic badh2.1

56  Dahrdun India IRGC 67705 Indica WT
Basmati

57  Basmatiya India IRGC 67734 Aus WT

58  Pakistani India IRGC 67746 Aromatic badh2.1
Basmati

59 Karnal Basmati  Pakistan IRGC 76362 Aromatic badh2.1

60 Kasalath India 980341 Indica WT

2IRGC, International Rice GenBank Collection.

PSubgroup was determined based on 190 SNP markers.

°Badh2 genotype was determined based on the fgr-specific InDel marker developed by
Sakthivel et al. (2009) and WT indicates wild type allele.

National University. Among the 30 traditional Basmati varieties,
Basmati 370, Rato Basmati, and Dahrdun Basmati were selected
for whole-genome resequencing, based on their geo-location
(Figure 1). Seeds from each accession were surface sterilized
and sown in pots containing wet soil. The pots were placed in an
experimental greenhouse for 30 days. Then, 30-day-old seedlings
were transplanted in an experimental field at Seoul
National University.

Genome Sequencing

Supplementary Figure 1 provides an overview of the work plan
used in this study. To perform whole-genome resequencing,
shotgun DNA libraries were prepared from high molecular
weight genomic DNA of three traditional Basmati varieties using
the NEXTflex™ Rapid DNA-Seq kit (Bioo Scientific Corporation,
Austin, TX, USA). Then, the libraries were used for cluster
generation and sequenced for 250 cycles on the Illumina
HiSeq2500 platform (Illumina, San Diego, CA, USA), according
to the manufacturer’s instructions, at the National Instrumentation
Center for Environmental Management (NICEM) of Seoul
National University.

Mapping and SNP Discovery

Raw sequence reads were subjected to quality trimming using
FastQC v0.11.3 (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), and reads with a Phred quality (Q) score <20
were discarded. Adapter trimming was carried out by using
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Basmati 370

Dahrdun Basmati

Rato Basmati

FIGURE 1 | Phenotypic comparison of Basmati 370, Dahrdun Basmati, and Rato Basmati. (A) Plant phenotype. (B) Spikelet and mature grain.

Trimmomatic (http://www.usadellab.org/cms/?page=
trimmomatic). The clean reads were mapped to the reference
genomes of the temperate japonica cultivar Nipponbare (Os-
Nipponbare-Reference-IRGSP-1.0; Kawahara et al., 2013), indica
cultivar Zhenshan 97 (Os-Zhenshan 97-Reference; Zhang et al.,
2016), and aus cultivar Kasalath (Os-Kasalath-Reference; Sakai
et al., 2014) using the Burrows-Wheeler Aligner (BWA)
program (Li and Durbin, 2010). The alignment results were
merged and converted into binary alignment map (BAM) files
(Barnett et al., 2011). The BAM files were used to calculate the
sequencing depth and to identify SNPs and InDels using the
GATK program, with default parameters (McKenna et al., 2010).

Genomic Analysis

The genic and intergenic distribution of SNPs and InDels was
determined relative to Nipponbare, Zhenshan 97, and Kasalath
reference genomes. The distribution of genic SNPs and InDels
common to the three Basmati genomes were presented using
Circos (Krzywinski et al., 2009).

In silico analysis was performed to identify Basmati-specific
SNPs and InDels using resequencing data of 54 diverse rice
varieties in the Crop Molecular Breeding Lab, Seoul National
University database (unpublished data) and Rice Variation Map
v2.0 public database (http://ricevarmap.ncpgr.cn/v2/). InDel in
nine traditional Basmati varieties and 11 indica, aus, and
japonica check varieties were verified by gel electrophoresis,
based on in silico analysis, using primers designed with
Primer-3 (http://bioinfo.ut.ee/primer3-0.4.0/).

GO Analysis

The annotated Nipponbare, Zhenshan 97, and Kasalath
reference genes were classified based on the pattern of
common SNPs in the three Basmati genomes. Functional
annotation of genes was investigated with “Oryza sativa” as the
background species. GO analysis was performed using the
BLAST2GO software (www.blast2go.com) (Conesa et al,
2005). Whole-genome orthologous gene comparison,
annotation, and clustering were performed using the
Orthovenn program (Wang et al., 2015).

DNA Extraction and Genome-Wide SNP
Marker Analysis

Genomic DNA was isolated from the leaf tissues of plants at the
3-4 leaf stage using the modified cetyltrimethylammonium
bromide (CTAB) method (McCouch et al.,, 1988). DNA
concentration and quality were determined using the
NanoDrop spectrophotometer (Thermo Scientific, Wilmington,
NC, USA).

On the basis of differences in DNA sequences between indica
and japonica genomes, 190 subspecies-specific SNP markers,
representing all 12 rice chromosomes, were developed in the
Crop Molecular Breeding Lab, Seoul National University
(unpublished data). SNP genotyping was conducted on
Fluidigm 96.96 Dynamic Arrays using the BioMark HD
System (Fluidigm Corp, San Francisco, CA), according to the
manufacturer’s instructions, and genotypes were determined
using the Fluidigm SNP Genotyping Analysis software.
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Phylogenetic and Population Structure
Analyses

Phylogenetic analysis was performed using PowerMarker v3.25
(Liu and Muse, 2005). Cavalli-Sforza and Edwards (1967) genetic
distance was used to construct an unweighted pair group method
with an arithmetic average (UPGMA) dendrogram, which was
visualized in Molecular Evolutionary Genetics Analysis 7
(MEGA7) (Kumar et al.,, 2016). The population structure of 60
rice varieties was determined using a model-based approach
available in the STRUCTURE 2.3.4 software (Falush et al., 2003).
The number of genetically distinct populations (K) was adjusted
from 1 to 10, and the model was repeated three times for each K.
The burn in-period was adjusted with 100,000 iterations,
followed by 100,000 Markov Chain Monte Carlo (MCMC) per
run. The best K value was determined based on delta K (AK)
using the Evanno method in the web-based python program,
STRUCTURE HARVESTER (Earl and Vonholdt, 2012).

Badh2 Marker Analysis

All 60 rice varieties were classified as badh2.1 and wild Badh2 allele
harboring genotypes by PCR-based genotyping of the Badh2 InDel
marker using the forward primer 5-TGTTTTCTGTT
AGGTTGCATT-3" and reverse primer 5-ATCCACAGAAA
TTTGGAAAC-3" (Sakthivel et al., 2009). PCR was conducted
using the following conditions: initial denaturation at 94°C for
2 min, followed by 35 cycles of denaturation at 95°C for 20 s,
annealing at 54°C for 30 s, and extension at 72°C for 30 s, and a final
extension at 72°C for 1 min. The amplified products were separated
by electrophoresis on 3.5% agarose gel.

Agronomic and Grain Quality Trait Analyses

Passport data on 13 agronomic and grain quality traits of 30
traditional Basmati varieties, including days to heading (DH), leaf
width (LW), days to maturity (DM), culm length (CL), culm
number (CN), culm diameter (CD), grain length (GL), grain
width (GW), length-to-width ratio of grain (L/W ratio), 1,000
grain weight (KGW), panicle length (PL), spikelet fertility count
(SEC), and amylose content (AC), were obtained from Genesys
(https://www.genesys-pgr.org). Cluster analysis and Student’s ¢-test
were performed using SPSS 16.0 (https://www.ibm.com/analytics/
spss-statistics-software).

RESULTS

Basmati Genome Sequencing
High-throughput sequencing of three traditional Basmati
varieties was performed to facilitate downstream analysis. A

total of 43,024,210 reads were generated from Basmati 370;
43,263,296 reads from Dahrdun Basmati; and 44,099,730 reads
from Rato Basmati, each corresponding to more than 10 GB
read length, and more than 90% of these reads were clean reads
(Table 2). The clean reads were mapped to the reference
genomes of Nipponbare (japonica rice), Zhenshan 97 (indica
rice), and Kasalath (aus rice). The mapping results indicated that
all genomes were sequenced at a depth ranging from 26.02X to
30.75X, with more than 90% coverage.

The number of SNPs in each Basmati variety were determined
relative to each reference genome. Compared with Nipponbare, we
identified 1,544,399 SNPs in Basmati 370; 2,105,019 SNPs in
Dahrdun Basmati; and 1,229,155 SNPs in Rato Basmati.
Similarly, comparison with the Kasalath reference genome
revealed 1,453,259 SNPs in Basmati 370; 1,336,541 in Dahrdun
Basmati; and 1,627,481 SNPs in Rato Basmati, whereas comparison
with the Zhenshan 97 reference genome revealed 1,409,129 SNPs in
Basmati 370; 793,929 SNPs in Dahrdun Basmati; and 1,659,254
SNPs in Rato Basmati. Thus, Dahrdun Basmati showed the highest
number of SNPs compared with Nipponbare and the lowest
number of SNPs compared with Zhenshan 97 (Table 3).

In comparison with the Nipponbare reference genome,
relatively high numbers of SNPs were detected on chromosomes
1, 3, 6, and 11 in Basmati genomes, while the lowest numbers of
SNPs were detected on chromosomes 9 and 5. Compared with
Kasalath, Basmati varieties showed a high proportion of SNPs on
chromosomes 1, 2, 3, 6, and 7, and the lowest numbers of SNPs on
chromosome 10. Compared with Zhenshan 97, we found a high
proportion SNPs on chromosomes 1,2, 6,and 7 in Basmati varieties
and lower SNP numbers on chromosomes 5 and 9. The distribution
of SNPs on all 12 chromosomes of the three Basmati varieties in
comparison with all three reference genomes is summarized in
Supplementary Table 1.

Furthermore, we also determined the number of SNPs and
InDels in each Basmati variety against the three reference genomes.
Accordingly, in Supplementary Table 2. In comparison with
Nipponbare, InDels were abundant on chromosomes 3 and 6 in
Basmati varieties, while the number of SNPs was the highest on
chromosome 1. In comparison with Kasalath and Zhenshan 97
reference genomes, chromosomes 1, 2, and 3 of Basmati varieties
contained a high proportion of InDels, while chromosomes 1, 2, and
6 showed the highest number of substitutions.

Distribution of Common SNPs and InDels
in Genic Regions

Common SNPs in genic regions, functional SNPs [non-
synonymous SNPs and SNPs in untranslated regions (UTRs)],

TABLE 2 | Data generated from whole-genome resequencing of three Basmati varieties.

Varieties Raw reads Clean reads Coverage (%)
Read number Read length (bp) Read number Read length (bp)

Basmati 370 43,568,684 10,935,739,684 43,024,210 10,117,316,665 92.52

Dahrdun Basmati 43,936,332 11,028,019,332 43,263,296 9,971,121,538 90.42

Rato Basmati 44,616,386 11,198,712,886 44,099,730 10,236,348,518 91.41
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Dahrdun Basmati

Rato Basmati

and InDels (5-30 bp) in genic regions were identified by
comparing all three Basmati genomes with all three reference
genomes. The total number of common SNPs identified in
Basmati varieties were 52,204 compared with Nipponbare;
19,207 compared with Kasalath; and 73,219 compared with
Zhenshan 97. The extracted common SNPs were plotted
within the Nipponbare (Figure 2A), Kasalath (Figure 2B), and
Zhenshan 97 (Figure 2C) reference genomes.

In addition, in silico analysis using resequencing data of 54
varieties revealed 20 novel unique SNPs in genic regions of the
Basmati genomes. These unique SNPs were also confirmed using
the public rice database (http://ricevarmap.ncpgr.cn/v2/).
Additionally, we identified 11 unique InDels in the Basmati
genomes. The unique SNPs and InDels, and the functions of
genes containing these polymorphisms, are listed in
Supplementary Table 3. PCR amplification of 289 bp
fragments using gene-specific primers (forward primer, 5'-
CTGTTTATACGTAGTACGGGTTG-3'; reverse primer, 5’'-
TGTTTGTAGGGGGATGCAAT-3’), which confirmed that the
25 bp insertion in the intron of the gene involved in seed
development regulation (Os10g0139300; IRGSP-1.0; position:
2,425,049 bp) was only specific to the Basmati and aus groups,
and could be discriminated among 20 rice varieties
(Supplementary Figure 2). We further examined the
spatiotemporal expression pattern of OsI0g0139300 in the
RiceXpro database (Sato et al, 2011); this gene showed high
expression in the embryo and endosperm after flowering,
indicating a possible role in seed development during ripening.

GO Analysis of Basmati Varieties

We investigated the functions of genes containing common
SNPs and InDels among the three Basmati genomes via GO
analysis. Genes were assigned to three categories, namely,
biological process (BP), molecular function (MF), and cellular
component (CC). The major GO associations were found in
metabolic process, cellular process, biological regulation for BP
terms (Figure 3A). For the MF terms, binding and catalytic
activity (Figure 3B). Whereas, cell, cell part, and membrane were
associated with CC terms (Figure 3C).

Furthermore, we analyzed genome-wide orthologous clusters
of genes from Basmati varieties using common SNPs by
comparison with Nipponbare, Zhenshan 97, and Kasalath
reference genomes. The analysis revealed 5,395 orthologous
clusters based on protein sequences of the three reference
genomes (Figure 4A). The Venn diagram showed that 1,132
gene clusters were shared by all three reference genomes,
suggesting their conservation in the lineage after speciation
(Figure 4B). Additionally, 348, 354, and 51 clusters specific to
Nipponbare, Zhenshan 97, and Kasalath reference genomes,
respectively, were identified. Additionally, cluster analysis of
the mutated genes in the three Basmati varieties revealed 4,415
clusters in comparison with Nipponbare; 2,721 clusters in
comparison with Kasalath; and 4,033 clusters in comparison
with Zhenshan 97 reference genomes. The presence of 2,721
clusters in comparison with Kasalath suggests that Basmati
varieties show less genetic variation compared with the
aus group.
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FIGURE 2 | Circos plots showing the distribution pattern of SNPs and InDels in the genic regions of three Basmati varieties. (A-C) Distribution of SNPs and InDels
in Basmati varieties in comparison with Nipponbare (A), Kasalath (B), and Zhenshan 97 (C) reference genomes. The outermost circle represents 12 chromosomes of
the rice genome. The second circle from the outside represents common SNPs. The third circle from the outside represents functional SNPs. The innermost circle

with red bars shows the distribution of InDels ranging in size from 5 to 30 bp.
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FIGURE 3 | Gene ontology (GO) analysis of Basmati genomes in comparison with Zhenshan 97, Kasalath, and Nipponbare genomes. (A-C) GO categories
including biological process (A), molecular function (B), and cellular component (C) are shown.

In phylogenetic studies, the identification of single-copy
orthologs is critical in any species (Creevey et al., 2011).
Orthologous cluster analysis revealed 792 clusters representing
single-copy genes, which were shared by all three reference
genomes, suggesting that the single-copy status of genes was
maintained during evolution after species divergence.

Furthermore, 1,132 gene clusters shared by Nipponbare,
Kasalath, and Zhenshan 97 reference genomes harbored unique
SNPs from all three Basmati varieties, and functional annotation of
the genes harboring these unique SNPs showed that the majority of
these genes were involved in biological regulation, metabolic
process, and cellular process (Figure 5A); binding and catalytic
activity (Figure 5B); and membrane, cell parts, and cellular
component (Figure 5C). We also detected mutated gene clusters
associated with the metabolic process involved in the cellular
aromatic compound (Figure 5A). Further, a total of 35 genes

including Badh2 gene were found to be involved in aromatic
compound biosynthesis based on biological process and
molecular functional annotation. While, genomic regions from
three Basmati varieties compared to Nipponbare reference
genome showed functional variation across the 35 genes involved
in aromatic compound biosynthesis (data not shown). Whereas, in
sillico analysis of 35 genes using Rice Variation Map v2.0 revealed
that only nine genes including Badh2 gene having alternative alleles
in 96 varieties of aromatic group with more than 80% of frequency.

SNP Genotyping and Genetic Relationship

To determine the genetic relationship of 30 traditional Basmati
varieties, including three resequenced Basmati varieties, with rice
varieties belonging to other groups, a total of 60 varieties were
genotyped with two sets of 96-plex indica/japonica SNPs. Two of
these SNP markers were excluded from the analysis because of
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Summary
Species Proteins Clusters Singletons
Nipponbare 10036 4415 4723
Kasalath 4533 2721 1625
Zhenshan97 12508 4033 4231

Size of each list

22075 [
0

Nipponbare i Zhenshang?
Number of elements: specific (1) or shared by 2, 3, ... lists
3 2 1

The species form 5395 clusters, 4642 orthologous clusters (at least
contains two species) and 792 single-copy gene clusters.

FIGURE 4 | Ortho Venn diagram. (A) Venn diagram showing the distribution of shared gene families among Nipponbare, Kasalath, and Zhenshan 97. Specific gene
clusters are indicated within the three reference genomes. (B) Counts of clusters in each genome.
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FIGURE 5 | Functional annotation of 1,132 mutated gene cluster of Basmati genome shared by Nipponbare, Kasalath, and Zhenshan 97 reference genomes.

their low quality. The number of SNP markers, average physical
interval between SNPs per chromosome, and coverage
percentage are summarized in Supplementary Table 4.

All 190 SNP markers were biallelic between indica and japonica
varieties, and the average allele number was 2.12. In addition, the
average value of major allele frequency (MAF) was 0.681, and

almost all SNPs showed no heterozygosity (average heterozygosity
= 0.020). Consistent with these data, the average polymorphic
information content (PIC) was 0.33 (Supplementary Table 5).
The UPGMA dendrogram based on Cavalli-Sforza and Edwards
(1967) genetic distance (Figure 6A) classified all 60 varieties into
two subspecies, indica and japonica. Additionally, the japonica
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FIGURE 6 | Genetic diversity analysis of 60 rice varieties using 190 SNPs. (A) UPGMA dendrogram. The branches are colored according to the subpopulation
assessment in (B) based on K = 6, except for the aromatic group, which is based on K = 3. Gray branches indicate admixture. (B) Population structure analysis
using the STRUCTURE software for K values ranging from 2 to 7. Three varieties used for genomic analysis are highlighted in yellow.
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group showed two distinct subgroups, aromatic and japonica. The
30 Basmati varieties were divided into two groups, indica
(comprising Dahrdun Basmati) and japonica (comprising Rato
Basmati and Basmati 370). To identify the population structure of
all 60 rice varieties, STRUCTURE analysis was carried out. The
value of delta K was maximum at K = 2 (Supplementary Figure 3).
At K = 2, 60 varieties were classified into indica and japonica, as
expected based on marker characteristics; however, more than half
of the varieties in the japonica group showed admixture with indica
ancestry. At K = 3, the aromatic group along with Rato Basmati and
Basmati 370 grouped at the japonica group, and at K = 4, the
aromatic group was divided into two clear subgroups and one
admixed group. All nine varieties, including Rato Basmati, in the
upper yellow subgroup within the aromatic group (Figure 6B),
were from Nepal. At K = 6, five subgroups were evident among the
60 varieties including indica, aus, aromatic, tropical japonica, and
temperate japonica, except one variety, which showed less than 65%
of estimated ancestry derived from any single subgroup (Figure
6B). The results of phylogenetic and population structure analyses
were consistent. Among the 30 traditional Basmati varieties, four
varieties, including Dahrdun Basmati, were classified into the indica
group; four into the aus group; and 22, including Rato Basmati and
Basmati 370, into the aromatic group.

Badh2 Marker Analysis

Among 60 rice varieties, 30 traditional Basmati varieties were
further investigated on the basis of the 8 bp deletion in the Badh2

gene to classified into badh2.1 and wild Badh2 allele harboring
genotypes. PCR-based genotyping of the Badh2 InDel marker
divided the traditional Basmati varieties into two groups: badh2.1
(22 varieties; 95 bp PCR product) and wild Badh2 allele carrying
genotypes (8 varieties; 103 bp PCR product) (Supplementary
Figure 4, Table 1). The remaining 30 non-Basmati rice varieties
were classified in the wild Badh2 allele group (Table 1).

Agronomic and Grain Quality Trait Analysis
The mean performance of 13 agronomic and grain quality traits
of 30 traditional Basmati varieties is presented in Supplementary
Table 6. The coefficient of variation of CN was the highest
(25.49), followed by that of SFC (24.87). Comparison of the
mean performance between aromatic and indica/aus groups
revealed significant differences in only L/W ratio, PL, and AG;
the aromatic group showed significantly longer panicles, longer
and slender grains, and lower AC than the indica/aus group
(Supplementary Table 7).

Next, hierarchical cluster analysis was performed to elucidate the
relationship among the 30 traditional Basmati varieties. These
varieties were divided into two major clusters (I and II), and each
cluster was further divided into three subclusters (Supplementary
Figure 5, Supplementary Table 6). Cluster I contained 20
moderate duration varieties from diverse geographical regions
with superior grain quality. Cluster II consisted of ten late
duration varieties, mostly from Nepal, with poor grain quality;
thus cluster II showed less genetic diversity than cluster I.
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DISCUSSION

Basmati rice varieties, considered a unique varietal group, have
been generally classified into the aromatic group (Glaszmann,
1987; Garris et al, 2005; Civan et al, 2015). Recent findings
suggest that Basmati rice was derived mostly from aus and
japonica varietal groups (Civan et al, 2015). Recently, the
genome assembly of Basmati rice was performed using
“Basmati Surkh 89-15,” an improved cultivar from Pakistan
(Zhao et al., 2018). However, a higher level of introgression
from other rice populations in improved varieties of Basmati
makes it difficult to define the genome structure. A latest preprint
of phylogenomic analysis involving “Basmati 334” proposed
admixture events between Basmati rice, aus, and O. rufipogon;
this study concluded that Basmati rice has a hybrid origin and is
closely related to both japonica and aus rice (Choi et al., 2018).
However, phylogenomic analysis using a single genome cannot
provide detailed information about the Basmati genome
structure, when referring to the entire Basmati group,
irrespective of the Badh2 allele type. Therefore, defining
Basmati-specific genome features is important to understand
the domestication of Asian rice.

In this study, we performed whole-genome resequencing and
analysis of three traditional Basmati varieties. The identification
of genome-wide nucleotide polymorphisms, including SNPs and
InDels, using NGS has gained importance in the rice genome
(Markkandan et al., 2018) and has enabled researchers to identify
genome-specific features in rice varieties. Therefore, we
performed NGS data analysis of Basmati 370, Dahrdun
Basmati, and Rato Basmati to characterize the Basmati genome
in detail. We found that millions of SNPs in all Basmati varieties
in comparison with Nipponbare, Kasalath, and Zhenshan 97
reference genomes (Table 3), thus providing an opportunity to
identify Basmati-specific features. Additionally, the genome-
wide common SNPs and InDels identified in this study would
serve as a useful resource for the development of SNP and InDel
markers for the Basmati genome, specific to japonica, aus, and
indica varietal groups (Figures 2A-C). Similarly, in silico
analysis of the three Basmati rice genomes along with 54 rice
varieties revealed high-quality Basmati-specific features.

Basmati rice varieties showed less genomic variation
compared with the aus group and was phylogenetically close to
the japonica group; these results are consistent with those of
previous studies (Choi et al., 2018; Civan et al, 2019). GO
enrichment analysis also showed less genomic variation
between the Basmati genome and the aus group in terms of
GO categories. Most of the genes assigned to the three GO
categories were mainly involved in metabolic process, cellular
process, binding, catalytic activity, cell, and cell part. This
functional annotation of genes is consistent with previous
findings in rice (Kim et al., 2014; Liu et al.,, 2017).
Additionally, our data showed that the metabolic process
involved in the cellular aromatic compound was associated
with the common mutated gene cluster (Figure 5A) and
further analyses revealed that nine genes including Badh2 gene
having alternative allele’s among aromatic group of rice varieties

with more than 80% of frequency (Supplementary Table 8).
However, possible involvement of these genes except Badh2
remains to be determined for cellular aromatic biosynthesis.

A recent genomic analysis of a population of over 1,000 wild and
cultivated rice accessions using genome-wide polymorphisms
showed that Basmati rice arose from hybridization between
japonica and wild rice related to the aus group (Civan et al,
2019). Similarly, our comparative analysis of genome structure,
based on genomic variation and GO analysis, showed that the
Basmati genome is probably derived mostly from the aus and
japonica groups.

Previously, it was shown that the recessive fgr allele encoding
Badh2 carries an 8 bp deletion and three SNPs in the seventh
exon, resulting in the fragrant trait in Basmati varieties
(Bradbury et al., 2005). Recently, haplotype analysis of the
Badh2 gene and analysis of 2-AP using 242 rice accessions
classified two Basmati varieties harboring the wild Badh2 allele
under the aus and indica groups (Kovach et al., 2009). In this
study, our comparative analysis found that both Basmati 370 and
Rato Basmati carrying the badh2.1 allele was consistent with the
badh2.1 allele reported by Kovach et al. (2009). Further, we
genotyped the Badh2 allele in the 30 Basmati varieties using the
Badh2 InDel maker developed by Sakthivel et al. (2009). The
results indicated that 22 of the 30 traditional Basmati varieties
belonging to the aromatic group carry the fragrant-inducing
badh2.1 allele and are more closely related to the japonica group.
However, eight of the 30 Basmati varieties were harboring the
wild Badh2 allele under the aus and indica groups
(Supplementary Figure 4, Table 1). Thus, the results of Badh2
allele genotyping were consistent with those of phylogenetic
analysis. We propose that classification of these wild Badh2
allele carrying Basmati varieties under the indica and aus
groups might results from either natural selection or human
error during varietal diversification or germplasm collection.

The success of any crop breeding program depends on the
magnitude of genetic variability within the germplasm (Kishor
etal,, 2016). In this study, although efforts were made to evaluate
the agronomic and grain quality traits of 30 traditional Basmati
varieties in the experimental field of Seoul National University,
most of the Basmati varieties failed to flower in the rice growing
season of the temperate region. By contrast, Basmati 370 and a
few other wild Badh2 allele carrying Basmati varieties were
flowered, and their agronomic traits were evaluated for further
studies in temperate regions (data not shown). Furthermore,
agronomic and grain quality trait passport data obtained from
the public database Genesys showed wide variation in most of
the traits among the 30 traditional Basmati varieties
(Supplementary Table 6). These finding are in agreement with
previous genetic diversity studies in Basmati varieties (Lingaiah
etal., 2014; Nirmaladevi et al., 2015). Most of the agronomic and
grain quality traits, except L/W ratio, PL, and AC, did not show
significant differences among Basmati varieties belonging to the
aromatic and indica/aus groups (Supplementary Table 7). AC is
an important factor affecting the palatability and grain quality of
cooked rice (Tian et al., 2009). Rice grains with low AC (12-20%)
are usually glossy, soft, and sticky after cooking, whereas those
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with high AC (> 25%), generally found in Basmati varieties
belonging to the indica group, exhibit a dry texture, remain
separate, and are less tender upon cooking and become hard
upon cooling (Bao et al., 2006).

Hierarchical cluster analysis revealed two major clusters (I
and II) among the 30 traditional Basmati varieties, based on
agronomic and grain quality traits (Supplementary Figure 5).
Cluster I comprised varieties from diverse geographical regions,
with moderate duration and superior grain qualities. By contrast,
cluster IT comprised of varieties with late duration and poor grain
qualities. These findings are in accordance with a previous study
where traditional Basmati varieties with superior agronomic and
grain quality traits were grouped in a separate cluster (Roy et al.,
2012). Accessions in cluster I with superior agronomic and grain
quality could be exploited for the development of improved
Basmati varieties in breeding programs.

In conclusion, our study provides a detailed analysis of the
Basmati genome structure in comparison with indica, japonica, and
aus genomes via whole-genome resequencing and genome-wide
SNP marker analysis. This data will serve as an important resource
for molecular breeding and genetic studies in Basmati rice.
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