
Frontiers in Genetics | www.frontiersin.org

Edited by:
Yanjie Wei,

Shenzhen Institutes of Advanced
Technology (CAS), China

Reviewed by:
Pu-Feng Du,

Tianjin University, China
Wang-Ren Qiu,

Jingdezhen Ceramic Institute, China
Weiguo Liu,

Shandong University, China

*Correspondence:
Haihe Shi

haiheshi@jxnu.edu.cn

Specialty section:
This article was submitted to

Bioinformatics and
Computational Biology,
a section of the journal
Frontiers in Genetics

Received: 13 November 2019
Accepted: 29 January 2020

Published: 27 February 2020

Citation:
Shi H and Zhang X (2020)

Component-Based Design and
Assembly of Heuristic Multiple

Sequence Alignment Algorithms.
Front. Genet. 11:105.

doi: 10.3389/fgene.2020.00105

ORIGINAL RESEARCH
published: 27 February 2020

doi: 10.3389/fgene.2020.00105
Component-Based Design and
Assembly of Heuristic Multiple
Sequence Alignment Algorithms
Haihe Shi* and Xuchu Zhang

School of Computer and Information Engineering, Jiangxi Normal University, Nanchang, China

In recent years, there has been an explosive increase in the amount of bioinformatics data
produced, but data are not information. The purpose of bioinformatics research is to
obtain information with biological significance from large amounts of data. Multiple
sequence alignment is widely used in sequence homology detection, protein secondary
and tertiary structure prediction, phylogenetic tree analysis, and other fields. Existing
research mainly focuses on the specific steps of the algorithm or on specific problems,
and there is a lack of high-level abstract domain algorithm frameworks. As a result,
multiple sequence alignment algorithms are complex, redundant, and difficult to
understand, and it is not easy for users to select the appropriate algorithm, which may
lead to computing errors. Here, through in-depth study and analysis of the heuristic
multiple sequence alignment algorithm (HMSAA) domain, a domain-feature model and an
interactive model of HMSAA components have been established according to the
generative programming method. With the support of the PAR (partition and recur)
platform, the HMSAA algorithm component library is formalized and a specific alignment
algorithm is assembled, thus improving the reliability of algorithm assembly. This work
provides a valuable theoretical reference for the applications of other biological sequence
analysis algorithms.

Keywords: heuristic multiple sequence alignment algorithms, feature model, generative programming, component
interaction model, partition and recur platform
INTRODUCTION

Since the beginning of the 21st century, with the development of high-throughput sequencing
technology, gene sequencing has become much cheaper and more efficient, enabling the
development of various genome projects. Since the implementation of the Human Genome
Project (Collins et al., 1998), the amount of bioinformatics data being produced has grown
explosively, with genome sequencing data doubling every 4–5 months. At the same time,
bioinformatics (Zhang, 2000), a new interdisciplinary subject, has developed rapidly.
Bioinformatics covers all aspects of the acquisition, processing, storage, distribution, analysis, and
interpretation of biological information. It integrates tools from mathematics, computer science,
and biology to clarify and understand the biological significance of large amounts of data (Hogeweg
and Searls, 2011). One of the major problems faced by bioinformatics today is how to process the
February 2020 | Volume 11 | Article 1051

https://www.frontiersin.org/articles/10.3389/fgene.2020.00105/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.00105/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.00105/full
https://loop.frontiersin.org/people/769886/overview
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:haiheshi@jxnu.edu.cn
https://doi.org/10.3389/fgene.2020.00105
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00105
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00105&domain=pdf&date_stamp=2020-02-27

Shi and Zhang Design and Assembly of HMSAA
data generated by genetic engineering. Data are not information;
data need to be mined using systematic scientific methods to find
biologically relevant information.

Sequence alignment is a fundamental method to study
biological sequence data in bioinformatics (Mount, 2005). The
theoretical basis of sequence alignment is the chemistry in biology,
that is, if the similarity between two biological sequences reaches a
threshold, it is considered that they have similar functions and
structures as well as evolutionary relationships. By comparing an
unknown biological sequence with a known functional structure,
and identifying similar regions between them, the homology
between the species can be judged, and the biological
information contained in the unknown sequence can be
revealed. According to the number of sequences to be aligned,
sequence alignment can be divided into pairwise and multiple
sequence alignment. The standard solution for pairwise sequence
alignment is to use a dynamic programming algorithm to find the
optimal solution. The classical algorithm is the Needleman-
Wunsch (Needleman and Wunsch, 1970) algorithm, which is
used to solve the global pairwise sequence alignment problem; the
more biologically significant local alignment problem can be
solved by the Smith-Waterman (Smith and Waterman, 1981)
algorithm. Also, the heuristic-based BLAST (Altschul et al., 1990)
algorithm is widely used in similarity sequence searches of gene
databases. Theoretically, the dynamic programming approach to
pairwise sequence alignment can be used for multiple sequence
alignment problems. A two-dimensional dynamic programming
matrix is extended to the three-dimensional or multi-dimensional
case, where the dimension of the matrix reflects the number of
sequences to be compared. This method is only suitable for
multiple sequence alignments with few dimensions, otherwise it
will be a great challenge with respect to computer resources. It has
been proved that the multiple sequence alignment problem based
on the SP (sum of pairs) metric is NP (Wang and Jiang, 1994), and
multiple sequence alignment uses a heuristic algorithm. Here, we
mainly focus on the heuristic multiple sequence alignment
algorithm (HMSAA) domain.

HMSAAs include progressive alignment (Feng and Doolittle,
1987) and iterative alignment (Wang and Li, 2004); this paper
mainly considers the progressive alignment method. The
progressive multiple sequence alignment algorithm was
proposed by Feng and Doolittle in 1987. Thompson and
Higgins implemented the progressive multiple sequence
alignment algorithm and proposed the ClustalW (Thompson
et al., 1994) algorithm. Subsequently, Notredame et al. (2000)
proposed the T-Coffee (tree-based consistency objective function
for alignment evaluation) algorithm; the latter two algorithms
are the most commonly used progressive multiple sequence
alignment algorithms. The HAlign (Zou et al., 2015) algorithm
is a progressive alignment algorithm based on central star
alignment. Clustal Omega (Sievers et al., 2011) is a completely
rewritten and revised version of the widely used Clustal series of
programs for multiple sequence alignment. The main
improvement over ClustalW algorithm is the use of the mBed
algorithm to generate guide trees of any size and the use of
HHalign Package based on the idea of hidden Markov model in
Frontiers in Genetics | www.frontiersin.org 2
the last step of Profile alignment. The main disadvantage of the
progressive multiple sequence alignment algorithm is its
principle of “once vacant, always vacant.” The errors generated
in the alignment will always affect the sequence alignment
process, which may lead to a suboptimal result and reduce the
accuracy of the algorithm. The basic idea of the progressive
alignment algorithm is that there is an evolutionary relationship
between the multiple sequences that are aligned; after
determining the evolutionary order of the sequences, they are
gradually aligned along the evolutionary order until all sequences
are aligned. This means that before proceeding to the progressive
alignment, it is necessary to find the evolutionary relationship
between the sequences. At present, optimization of the
progressive alignment algorithm usually focuses on the step of
confirming the evolutionary relationship (Zhang et al., 2005;
Huo and Xiao, 2007). In order to speed up sequence alignment
when the scale of the alignment is large, parallel computing may
be combined with progressive alignment (Hung et al., 2015). The
basic idea of iterative alignment is first to improve the multiple
sequence alignment based on an algorithm that can generate
alignments, through a series of iterations, until the alignment
results no longer improve or have reached the maximum number
of iterations. This paper mainly considers the combination of
iterative alignment and progressive alignment. Such algorithms,
which include MultAlin (Corpet, 1988) and Muscle (Edgar,
2004), have improved robustness and wider application scope.

At present, most research on sequence alignment algorithms
focuses on the optimization of specific steps of a particular
algorithm. The optimization effect on different sequences will
be different, and the diversity and complexity of sequence
alignment algorithms may make it difficult for users to select
an algorithm appropriate to the characteristics of a given
sequence, resulting in unnecessary computing errors in
practice. On the other hand, it may be difficult for users to
understand the structure of a sequence alignment algorithm,
which may affect its correct use and to some extent affect the
accuracy of the sequence analysis. The specificity and low
abstraction of a sequence alignment algorithm reduce its
reusability and maintainability. Therefore, it is necessary to
study sequence alignment algorithms at the domain level.
Concerns on algorithm families will be helpful for extracting
the commonality and variability of different algorithms and for
the formal development of sequence alignment algorithms.

In this work, the generative programming method is used to
design an abstract generic algorithm component library, after
which a specific alignment algorithm for the HMSAA domain is
assembled, thus improving the reliability and reusability of the
algorithms. First, domain analysis of HMSAA is carried out, the
common domain features and variability features are identified,
and a domain feature model of HMSAA is established.
Furthermore, relationships among features are analyzed and an
interaction model of algorithm components is designed and
constructed. Finally, using a generic abstract programming
language, Apla, the domain components are formally
implemented and a high abstract component library is built on
top of Apla.
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
RELATED METHODOLOGY
AND TECHNOLOGY

Generative Programming
Software reuse is considered to be one of the solutions to the
“software crisis.” High-quality software reuse can improve the
efficiency and quality of software development and ultimately
result in the construction of an industrialization pipeline to
develop software. Generative programming (Czarnecki and
Eisenecker, 2000) is the use of components and the creation of
software products in an automated manner. Implementation
consists of two steps. First, the current software development
model is transformed into the development of the software
system family. Then, a generator is used to automatically
assemble the components. Through domain analysis of the
software system family, generative programming constructs a
domain model of the system family and further develops the
domain design and domain based on this model. New software
development in the same field is based on the established domain
model, and the reusable components are selected for assembly
and implementation. It is not the development of software.

A domain model based on generative programming includes a
problem space, a solution space, and domain-specific configuration
knowledge for mapping between the two. The problem space is
used to represent the requirements of the customization system,
and is mainly for use by application programmers and customers.
The solution space includes the implementation components
required for the system family implementation and the
combination, dependencies, and interactions among
implementation components. Domain-specific configuration
knowledge is mainly used to separate the problem space and
solution space, which not only reduces the redundancy and
coupling of the implementation components but also improves
their composability and reusability. The composition of such a
generative domain model is shown in Figure 1.
Frontiers in Genetics | www.frontiersin.org 3
Domain Modeling
Domain modeling requires the identification and modeling of key
concepts (Lee et al., 2002). Feature engineering (Turner et al.,
1998) considers features to be first-order entities that traverse the
software life cycle and span the problem space and solution space,
and reduce the difference in demand awareness between users and
software developers through features. Features in FODA (feature-
oriented domain analysis) (Kang et al., 1990) are considered to be
user-visible, significant, and distinctive aspects, qualities,
characteristics, etc., in a software system. Features are the
domain knowledge accumulated by users and experts from
long-term practice in a domain. Feature modeling is an activity
that models the commonality and variability of features and the
relationships among them. Zhang and Mei (2003) proposed a
feature-oriented domain modeling (FODM) method that
considered the features of services, functions, behavioral
characteristics, etc. This was based on service analysis activities,
functional analysis activities, and behavioral characteristics
analysis in combination with domain terminology analysis,
commonality and variability analysis, interactive process
analysis, and quality demand analysis concurrently, with
continuous retrospective refinement to finally obtain the feature
model. The domain modeling process is illustrated in Figure 2.

Partition and Recur Method
PAR (Xue, 1993; Xue, 1997; Xue, 1998; Shi and Xue, 2009; Xue,
2016) (partition and recur) is a formal development method
based on partition and recursion, containing an algorithm design
language (Radl; recurrence-based algorithm design language), an
abstract generic programming language (Apla), and a unified
algorithm design and proof method, as well as a series of
generation systems (the PAR platform).

The Apla language can be used to directly write programs
using abstract data types and abstract procedures. It has the
advantages of concise and rigorous mathematical language, and
FIGURE 1 | Composition of generative domain model.
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
its high level of abstraction makes it suitable for describing
abstract algorithmic programs.

The generic programming mechanisms supported by Apla
include type parameterization, subroutine parameterization, and
user-defined generic abstract data types (ADT). 1) Apla
introduces the keyword sometype to define the type variable,
the type parameter, the parameter return value type of the
procedure function, and the basic type of the combined data
type. The type is used as a parameter to implement the
general ization of the program. 2) Apla subroutine
parameterization includes procedure parameterization and
function parameterization. In a subroutine, the keywords proc
and func are used to declare procedure parameters and function
parameters, and the procedure or function is used as a parameter
list. 3) As well as the predefined ADT in Apla, users can create
custom ADT to make the language more flexible and the
program description more powerful. These custom operations
include the definition and the implementation of ADT. The ADT
definition contains the operation name, the operation type, the
parameters of the operation, etc. The ADT implementation gives
the specific implementation methods of these operations, and
define, ADT, enddef, implement, endimp, and other keywords are
used to describe the custom ADT. In addition, the PAR platform
supports the transformation of Apla into an executable high-
level programming language such as C++ or Java.
HEURISTIC MULTIPLE SEQUENCE
ALIGNMENT ALGORITHM MODELING

In this section, the FODM method is used to construct the
feature model according to the service, function, and behavior
characteristics in the HMSAA domain. Heuristic multiple
sequence alignment operations are core services in the domain.
Frontiers in Genetics | www.frontiersin.org 4
The sequence legality check (seq_check), heuristic alignment
mode selection (heur_mode), pairwise sequence alignment
operation (psa), distance matrix (dist_matrix), result output
(result_op), progressive alignment (prog_align), and iterative
alignment (iter_align) are the main functions in the domain.
Progressive alignment and iterative alignment are sub-functions
of heuristic alignment mode selection. Sequence legality check,
heuristic alignment mode selection, and alignment result output
are mandatory, where as function, pairwise sequence alignment
operation, and distance matrix are optional. For progressive
alignments, the progressive alignment mode (prog_align_mode)
is a behavioral feature that has the following three values: the
phylogenetic tree (phy_tree), the extended library (expan_lib),
and the center alignment. For pairwise sequence alignment
operations, the pairwise sequence alignment mode (psa_mode)
is a behavioral feature that has two values, fast alignment (k-mer)
and dynamic programming alignment (dp). According to the
above analysis, a feature model was constructed for the domain,
as shown in Figure 3.
DESIGN AND IMPLEMENTATION
OF HEURISTIC MULTIPLE SEQUENCE
ALIGNMENT ALGORITHM COMPONENTS

Interaction of Algorithm Components
in Heuristic Multiple Sequence Alignment
Algorithm Domain
According to the feature model described in the previous section,
in order to achieve a complete library of algorithm components,
it is necessary to further analyze the interaction modes among
different algorithm components. The interactions of algorithm
components involve constraints and dependencies between
FIGURE 2 | Feature modeling process.
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
features. Therefore, this section describes an interaction model of
algorithm components in the HMSAA domain according to their
interaction modes.

Through the establishment of the HMSAA feature model, it
can be concluded that the algorithm consists of four main
process features, i.e., heuristic alignment mode selection,
progressive alignment, iterative alignment, and result output.
In addition, the input of the algorithms in this domain consists of
Frontiers in Genetics | www.frontiersin.org 5
sequences of biological information, including DNA, RNA, and
protein sequences. Before the implementation of the algorithm,
the legality of the sequence information needs to be checked, for
example, a DNA sequence can only contain four letters, A, T, C,
and G. The main components in this domain are sequence
legality checking, heuristic alignment mode selection,
progressive alignment, iterative alignment, and result output.
Other features and data structures in the feature model are used
FIGURE 4 | Algorithm components interaction model.
FIGURE 3 | Feature model of heuristic multiple sequence alignment algorithm (HMSAA).
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
as auxiliary components, and the interaction model of
components is established according to the dependencies
between them, as shown in Figure 4.

The nodes connected by solid lines are the basic components
that must be included in the HMSAA domain, namely, the three
mandatory features and two sub-features selected by the heuristic
mode. The solid line arrow denotes the execution priority of the
component from high to low along the direction of the arrow.

Dotted and underlined arrows represent the data, structures,
and associated operations required in the assembly of the
algorithm components. For example, the establishment of an
extended library requires the information of alignment in psa.
The dotted arrow indicates the interaction between the two
components during the execution of the algorithm. For
example, before an iterative alignment, a progressive alignment
should be carried out. By setting the number of iterations and the
iterative method, the result of the progressive alignment is
iterated until there is no further change or the maximum
number of iterations has been reached.

In summary, the above interaction model includes most
mainstream HMSAAs, including the progressive alignment
algorithm based on tree and central alignment, the progressive
alignment algorithm based on a compatible optimization
objective function to form an expanded library, and the
multiple sequence alignment algorithm combining iteration
and progress. Here we just outline simple formal specification
description of two components below for examples.

1 seq_check component

|[in a[][]: Array[][]; out bl: Boolean]|
AQ: bio-sequences.
AR: if bl is true, the legality check is passed;
false is the opposite.

2 prog_align component

|[in heur_mode: ADT; phy_tree: ADT; a[][]:
Array[][] out b[][]: Array[][]]|
AQ: phy_tree component, the sequence to be
aligned, heur_mode component.
AR: alignment of multiple sequences.

Here in and out in the front of pre-condition AQ are two key
words defined in PAR platform and are used to denote the input
and output respectively; array, Boolean, etc., are the predefined
types in PAR platform, and AR stands for post-condition
of algorithm.

Apla Formal Implementation
In this section, we make use of the advantages of Apla, including
high-level abstraction, strong support for ADT, and easy
correctness verification, and formally implement the HMSAA
model. Here, only the implementation of the tree-based
progressive alignment algorithm is illustrated.

1 seq_check component
Frontiers in Genetics | www.frontiersin.org 6
Check whether the sequence group meets the biological
definition. For example, the character set of the DNA sequence
is {A, T, C, G}.

procedure seq_check(a[]:array[String]);

2 Penalty component

We designed the penalty model as an ADT, using an affine
penalty model, where sometype is a keyword in the Apla language
that defines the type variable. GapOpen, GapExtend, and score
represent the penalty points of open vacancy, extended vacancy,
and non-vacancy, respectively.

define ADT penaltyMatrix(sometypeelem);
GapOpen : Integer;
GapExtend : Integer;
score:array[array[Integer]];
enddef.

3 heur_mode component

The Heur_mode component is defined as an ADT that selects
the operation mode of multiple sequence alignment and defines
the data structure and information required for alignment. The
setPenaltyMatrix, setGapOpen, and setGapExtend functions are to
set penalty matrix, open vacancy penalty, and extend vacancy
penalty, respectively. The generic procedure tree_prog_align sets
the alignment mode to one designated by the user. The useLib
means to select the expan-lib component, useFullPW denotes the
use of the conventional dynamic programming pairwise sequence
alignment algorithm, useIter represents the iteration, and
treeAlgorithm is the algorithm to generate the phylogenetic tree.

define ADTheur_mode(sometypeelem);
f u n c t i o n s e t P e n a l t y M a t r i x (p m :
penaltyMatrix):Array[Array[Integer]];
functionsetGapOpen(gapOpen: Integer):
Integer;
function setGapExtend(gapExtend:
Integer): Integer;
procedureprog_align(useLib: bool;
u s e F u l l P W : b o o l ; u s e I t e r : b o o l ;
treeAlgorithm : String)
enddef.

4 dist_matrix component

The dist_matrix is defined as an ADT that calculates the
distance matrix element and returns it using the score of the
pairwise alignment, and the pairwise sequence alignment
operation is defined as the generic parameter. The function
getDist is used to get the data from the distance matrix. Proc
psa is described in detail in reference (Shi and Zhou, 2019).

define ADT dist_matrix (sometypeelem);
function calDistMat (proc psa(…):Array

[Array[Integer]];//.
function getDist (ii: Integer; jj:
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
Integer): Integer;
······
enddef;

5 phy_tree component

Phylotree data structure is defined as an ADT, facilitating
subsequent operations on the tree. The parameters treeMess, left,
and right, respectively, represent the information of the tree node
and the left and right subtrees. The phylotree component is defined
as an ADT that generates a phylogenetic tree using the data in the
distance matrix. The ADT contains the generic procedure
generateTree and takes selAlgorithm as its generic parameter.
The generic procedure can generate phylogenetic trees through
different algorithms. The function calWeight calculates the weight
of each sequence when calculating the score of multiple sequences
alignment, the generic procedure getStepsForMSA is used to
generate the sequence of subsequent multiple sequence
alignments, and the generic procedure readTree is used to read
information from the generated phylogenetic tree.

define ADT phyloTree (sometypeelem);
treeMess: Array[Array[Integer]];
left: Integer[];
right: Integer[];

enddef.
define ADT phy_tree (sometypeelemMatrix);

procedure generateTree(distMat:
e l e m M a t r i x ; s e q N a m e : S t r i n g [] ;
funcselAlgorithm():String;treeName :
String; result: Boolean);

function calWeight (firstSeq: Integer;
lastSeq: Integer; seqsW: Array[Integer]):
Array[Integer];

procedure readTree (seqName: String[];
treeName: String; firstSeq: Integer;
lastSeq: Integer);

p r o c e d u r e g e t S t e p s F o r M S A
(procreadTree; distMat: elemMatrix;
result: Boolean);
······
enddef.

6 prog_align component

The prog_align component is defined as an ADT that includes
the generic procedure multiSeqAlign, which performs
progressive alignment according to the alignment order
obtained from the phylogenetic tree and the sequence weight.

define ADT prog_align (sometypeelem);
procedure multiSeqAlign (seqs: Array

[String]; steps: elem; seqName: String[];
seqW:Array[Integer]; start: Integer);

······
enddef.

7 result_op component
Frontiers in Genetics | www.frontiersin.org 7
The result_op component is defined as an ADT. It is
composed of two generic procedures, multiAlign_op and
phyloTree_op. The multiAlign_op procedure annotates the
results of multiple sequence alignments and outputs them;
pathAlignOutput is the path of the output file. The
phyloTree_op procedure outputs the phylogenetic tree; here,
pathTreeOutput is the path of the output file.

define ADT result_op(sometypeelem)
p r o c e d u r e m u l t i A l i g n _ o p

(pathAlignOutput: String; seqs: Array
[S t r i n g] ; s e q N a m e : S t r i n g [] ;
sometypeprog_align);

procedure phyloTree_op (pathTreeOutput:
S t r i n g ; s e q N a m e : S t r i n g [] ;
sometypephyTree; sometypedistMat);
enddef.
ASSEMBLY OF CLUSTAL ALGORITHM

In this section, a phylogenetic tree-based progressive alignment
algorithm, clustalW, is assembled on top of the HMSAA
component library introduced in previous section. The Apla
program is as follows.

program clustalW;
const/* input sequences*/
var
seqs, seqsName: Array[String];//Seqs is
the sequence to be aligned

//seqsName is the identification name
of the sequence
const pathTreeOutput, pathAlignOutput:
String;
/*omit the initialization of pairwise
sequence alignment*/
ADT pm: new penaltyMatrix ();
ADT psa: new psa (……);
ADT distM: new dist_matrix (psa);
ADT phyloTree: new phylotree ();
ADT tree: new phy_tree (phyloTree;
distM);
ADT msa: new prog_align (tree);
ADT mode: new heur_mode (pm);
var
clustalw: mode; gapOpen, gapExtend:
I n t e g e r ; p e n a l t y : A r r a y [A r r a y
[Integer]];
begin
clustalw.setPenaltyMatrix (penalty);
clustalw.setGapOpen (gapOpen);
clustalw.setGapExtend (gapExtend);
end;
A D T r e s u l t O p : n e w r e s u l t _ o p
();//instantiate and initialize the
required components
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
procedure heur_multiple_sequence_align
(clustalw; psa; distM; tree; msa;
resultOp);
//heuristic multiple sequence alignment
operations
var
NJTree: String; result: Boolean
begin
check (seqs);

clustalw.prog_align (false; true; false;
“NJTree”);

if(clustalw.getUseLib = false)!
if(clustalw.getUseFullPW = true) !
distM.calDistMat (psa);
t r e e . g e n e r a t e T r e e

(clustalw.getTreeAlgorithm;
seqsName; clustalw; distM;
result);

msa.multiSeqAlign (seqs; seqsName;
tree; 0);
resultOp (msa; tree; pathTreeOutput;
pathAlignOutput);

end.
EXPERIMENTS

As the Apla language cannot run directly, in this section we make
use of the PAR platform to transform the Apla algorithm
components into the corresponding C++ components.

ADT algorithm components in Apla containing only data
members are transformed into struct data types in C++, such as
penaltyMatrix and phyloTree. The results are as follows.
Frontiers in Genetics | www.frontiersin.org 8
struct penaltyMatrix
{

int gapOpen;
int gapExtend;
vector < vector < int>> score;

};
struct phyloTree
{

vector < vector < int> > treeMess;
vector < double > leftBranch;
vector < double > rightBranch;

};

ADT components containing data members and member
functions are transformed into classes in C++, such as
dist_matrix and phy_tree. The function body code is long, and
so part of it is omitted here. The partial result of the
transformation is shown in Figure 5.

Generic procedures and functions defined in Apla are
converted into separate class member functions in C++ to
reduce coupling between components. In particular, the calling
functions are converted into indicator functions in C++, and the
generic parameter is converted into the pointer parameter to
implement the polymorphism of the Apla program. After
converting each component into C++, the Apla code for the
heuristic multiple sequence alignment operation is converted
into the main function executed in C++; finally, the clustalW
algorithm program is run through manual assembly of the
components, as shown in Figure 6.

To test the program, we used four pieces of DNA data,
Cyprinus carpio (common carp) alpha-globin, Homo sapiens
(human) alpha globin, Mus musculus (house mouse) alpha-
globin, Capra hircus (goat) alpha-globin. The alignment results
between our algorithm and the other two Clustal algorithms are
shown in Figure 7. Due to the different selected pairwise
FIGURE 5 | Result of ADT transformation.
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
alignment parameters and types, the structure of the
phylogenetic tree is different from that of the ClutsalW
algorithm, and the sequence of alignment has also changed,
but the results remain biologically significant.
SUMMARY AND FUTURE WORK

As a key topic in bioinformatics research, sequence alignment
algorithm and its applications have attracted extensive research
attention. However, there has been no work considering it as a
domain for high-level abstraction to improve the reliability and
the productivity of the algorithms, and to reduce the probability
of suboptimal solutions, errors of the algorithm, etc.

Generative programming and the composition of a generative
domain model are first briefly presented in the paper, and the
FODM method is described. The feature model can be obtained
by taking the characteristics of the service, function, and
behavior characteristics of the domain into account, and
carrying out a series of feature analysis activities.

By using generative programming and feature modeling, the
HMSAA domain has been analyzed, resulting in the following
three algorithm classes: progressive alignment algorithms based
on tree and central alignment; progressive alignment algorithms
based on the compatible optimization objective function to form
an expansion library; and multiple sequence alignment
algorithms based on a combination of iteration and increment.
Through analysis of this domain, general and variable features
have been extracted and mapped to components, and an
Frontiers in Genetics | www.frontiersin.org 9
HMSAA feature model has been established. Moreover, an
interaction model of HMSAA domain components has been
designed based on the relationships among features and formally
implemented using the generic abstract programming language
Apla in support of the PAR platform. An HMSAA component
library has been established, the reliability of which can be
guaranteed owing to the ease of verification with the
Apla language.

It is expected that the formal components could be
automatically or semi-automatically assembled to generate a
specific problem-solving algorithm, thus reducing the errors
resulting from manual algorithm selection for multiple
sequence alignment, and improving the algorithm efficiency,
which will enable assembly of a new, more efficient, multiple
sequence alignment algorithm. Furthermore, the high-level
abstraction of generic components, such as generateTree,
provides a diversity of algorithm components assembly as well
as a good demonstration of the connections between algorithm
features, thus improving the understandability and ease-of-use
of algorithms.

Next, we will release our codes in GitHub. Future work also
include developing a user-friendly visual interface to facilitate
component assembly. Users will be able to generate different
sequence alignment algorithms by selecting different
components via the interface and use XML files to describe the
composition and constraint relations among components,
without any change to the component library. We are
encouraged by the success of algorithm assembly on the
PAR platform.
FIGURE 6 | C++ assembly process of clustalW.
February 2020 | Volume 11 | Article 105

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
The methodology and techniques for HMSAA are not only
applicable to multiple sequence alignment algorithms but also
have theoretical reference significance and practical
application value for other biological sequence analysis
algorithms, such as the assembly algorithm based on
DeBruijn graph structure used in the process of gene
assembly (Li et al., 2010; Peng et al., 2012).We are currently
applying some of these ideas to more problems in the domain
of biological sequence analysis, to implement automatic or
semi-automatic assembly of an algorithm component library
based on the PAR platform. We hope to report on this work in
the near future.
DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.
Frontiers in Genetics | www.frontiersin.org 10
AUTHOR CONTRIBUTIONS

HS instructed the whole research work and revised the paper. XZ
did the codes work and the experiments. All authors read and
approved the final manuscript and are agree to be accountable
for all aspects of the work.
FUNDING

This work was supported by the National Natural Science
Foundation of China under Grant Nos.61662035, 61762049,
and 61862033.
ACKNOWLEDGMENTS

We thank the reviewers of CBC2019 for their helpful comments.
REFERENCES

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic
local alignment search tool. J. Mol. Biol. 215 (3), 403–410. doi: 10.1016/S0022-
2836(05)80360-2

Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., and Walters,
L. R. (1998). New goals for the U.S. Human genome project: 1998-2003. Science
282 (5389), 682–689. doi: 10.1126/science.282.5389.682

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering.
Nucleic Acids Res. 16 (22), 10881–10890. doi: 10.1093/nar/16.22.10881

Czarnecki, K., and Eisenecker, U. (2000). Generative programming: methods, tools,
and applications (New York: ACM Press/Addison-Wesley Publishing Co.).
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 32 (5), 1792–1797. doi: 10.1093/nar/gkh340

Feng, D. F., and Doolittle, R. F. (1987). Progressive sequence alignment as a
prerequisiteto correct phylogenetic trees. J. Mol. Evol. 25 (4), 351–360. doi:
10.1007/bf02603120

Hogeweg, P., and Searls, D. B. (2011). The roots of bioinformatics in theoretical
biology. PLoS Comput. Biol. 7 (3), e1002021. doi: 10.1371/journal.pcbi.1002021

Hung, C. L., Lin, Y. S., Lin, C. Y., Chung, Y. C., and Chung, Y. F. (2015). CUDA
Clustalw: an efficient parallel algorithm for progressive multiple sequence
alignment on multi-GPUs. Comput. Biol. Chem. 58, 62–68. doi: 10.1016/
j.compbiolchem.2015.05.004
FIGURE 7 | Alignment results.
February 2020 | Volume 11 | Article 105

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1126/science.282.5389.682
https://doi.org/10.1093/nar/16.22.10881
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1007/bf02603120
https://doi.org/10.1371/journal.pcbi.1002021
https://doi.org/10.1016/j.compbiolchem.2015.05.004
https://doi.org/10.1016/j.compbiolchem.2015.05.004
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Shi and Zhang Design and Assembly of HMSAA
Huo, H. W., and Xiao, Z. W. (2007). A multiple alignment approach for DNA
sequences based on the maximum weighted path algorithms. J. Softw. 18 (2),
185–195. doi: 10.7666/d.y858982

Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S. (1990). “Feature-
oriented domain analysis (FODA) feasibility study,” in Technical Report CMU/
SEI-90-TR-21. Ed. P. A. Pittsburgh (Software Engineering Institute, Carnegie
Mellon University).

Lee, K., Kang, K. C., and Lee, J. (2002). “Concepts and guidelines of featuremodeling for
product line software engineering,” in International Conference on Software Reuse
(Berlin, Heidelberg: Springer), 62–77. doi: 10.1007/3-540-46020-9_5

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., et al. (2010). De novo assembly
of human genomes with massively parallel short read sequencing. Genome Res.
20 (2), 265–272. doi: 10.1101/gr.097261.109

Mount, D. W. (2005). Bioinformatics Sequence and Genome Analysis. (New York:
Cold Spring Harbor Laboratory Press). doi: 10.1242/jcs.00197

Needleman, S. B., and Wunsch, C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J. Mol. Biol.
48 (3), 443–453. doi: 10.1016/0022-2836(70)90057-4

Notredame, C., Higgins, D. G., and Heringa, J. (2000). T-Coffee: anovel method for
fast and accurate multiple sequence alignment. J. Mol. Biol. 302 (1), 205–217.
doi: 10.1006/jmbi.2000.4042

Peng, Y., Leung, H. C. M., Yiu, S. M., and Chin, F. Y. L. (2012). IDBA-UD: a de novo
assembler for single-cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics 28 (11), 1420–1428. doi: 10.1093/bioinformatics/bts174

Shi, H. H., and Xue, J. Y. (2009). PAR-based formal development of algorithms.
Chin. J. Comput. 32 (5), 982–991. doi: 10.3724/SP.J.1016.2009.00982

Shi, H. H., and Zhou, W. X. (2019). Design and implementation of pairwise
sequence alignment algorithm components based on dynamic programming.
J. Comput. Res. Dev. 56 (9), 1907–1917. doi: 10.7544/issn1000-
1239.2019.20180835

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011).
Fast, scalable generation of high-quality protein multiple sequence alignments
using Clustal Omega. Mol. Syst. Biol. 7, 539. doi: 10.1038/msb.2011.75

Smith, T. F., and Waterman, M. S. (1981). Identification of common molecular
subsequences. J. Mol. Biol. 147 (1), 195–197. doi: 10.1016/0022-2836(81)90087-5

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTALW: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (22),
4673–4680. doi: 10.1093/nar/22.22.4673
Frontiers in Genetics | www.frontiersin.org 11
Turner, C. R., Fuggetta, A., Lavazza, L., andWolf, A. L. (1998). “Feature engineering,”
in Proceedings of International Workshop on Software Specification and Design.
(Ise-Shima, Japan), 162–164. doi: 10.1109/IWSSD.1998.667935

Wang, L., and Jiang, T. (1994). On the complexity of multiple sequence alignment.
J. Comput. Biol. 1 (4), 337–348. doi: 10.1089/cmb.1994.1.337

Wang, Y., and Li, K. B. (2004). An adaptive and iterative algorithm for refining
multiple sequence alignment. Comput. Biol. Chem. 28 (2), 141–148. doi:
10.1016/j.compbiolchem.2004.02.001

Xue, J. Y. (1993). Two new strategies for developing loop invariants and their
applications. J. Comput. Sci. Tech. 8 (2), 147–154. doi: 10.1007/BF02939477

Xue, J. Y. (1997). A unified approach for developing efficient algorithmic
programs. J. Comput. Sci. Tech. 12 (4), 314–329. doi: 10.1007/BF02943151

Xue, J. Y. (1998). Formal derivation of graph algorithmic programs using
partition-and-recur. J. Comput. Sci. Tech. 13 (6), 553–561. doi: 10.1007/
bf02946498

Xue, J. Y. (2016). “Genericity in PAR platform,” in International Workshop on
Structured Object-Oriented Formal Language and Method (Cham: Springer),
3–14. doi: 10.1007/978-3-319-31220-0_1

Zhang, W., and Mei, H. (2003). A feature-oriented domain model and its modeling
process. J. Softw. 14 (8), 1345–1356. doi: 10.13328/j.cnki.jos.2003.08.001

Zhang, J., Guo, M. Z., and Wang, Y. D. (2005). A heuristic algorithm for multiple
sequence alignment base on progressive multiple alignment. China J. Bioinf. 3
(4), 171–174. doi: 10.3969/j.issn.1672-5565.2005.04.008

Zhang, Z. T. (2000). The current status and the prospect of bioinformatics. World
Sci. Tech. R. D. 22 (6), 17–20. doi: 10.3969/j.issn.1006-6055.2000.06.004

Zou, Q., Hu, Q., Guo, M., and Wang, G. (2015). HAlign: fast multiple similar
DNA/RNA sequence alignment based on the centre star strategy.
Bioinformatics 31 (15), 2475–2481. doi: 10.1093/bioinformatics/btv177

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Shi and Zhang. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
February 2020 | Volume 11 | Article 105

https://doi.org/10.7666/d.y858982
https://doi.org/10.1007/3-540-46020-9_5
https://doi.org/10.1101/gr.097261.109
https://doi.org/10.1242/jcs.00197
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1006/jmbi.2000.4042
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.3724/SP.J.1016.2009.00982
https://doi.org/10.7544/issn1000-1239.2019.20180835
https://doi.org/10.7544/issn1000-1239.2019.20180835
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1109/IWSSD.1998.667935
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1016/j.compbiolchem.2004.02.001
https://doi.org/10.1007/BF02939477
https://doi.org/10.1007/BF02943151
https://doi.org/10.1007/bf02946498
https://doi.org/10.1007/bf02946498
https://doi.org/10.1007/978-3-319-31220-0_1
https://doi.org/10.13328/j.cnki.jos.2003.08.001
https://doi.org/10.3969/j.issn.1672-5565.2005.04.008
https://doi.org/10.3969/j.issn.1006-6055.2000.06.004
https://doi.org/10.1093/bioinformatics/btv177
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Component-Based Design and Assembly of Heuristic Multiple Sequence Alignment Algorithms
	Introduction
	Related Methodology and Technology
	Generative Programming
	Domain Modeling
	Partition and Recur Method

	Heuristic Multiple Sequence Alignment Algorithm Modeling
	Design and Implementation of Heuristic Multiple Sequence Alignment Algorithm Components
	Interaction of Algorithm Components in Heuristic Multiple Sequence Alignment Algorithm Domain
	Apla Formal Implementation

	Assembly of Clustal Algorithm
	Experiments
	Summary and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

