

OPEN ACCESS

Approved by:

Frontiers in Genetics Editorial Office, Frontiers Media SA, Switzerland

> *Correspondence: Pål A. Olsvik pal.a.olsvik@nord.no

[†]Present address:

Pål A. Olsvik, Nord University, Bodø, Norway Sam J. Penglase, School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia Ståle Ellingsen, University of Bergen, Bergen, Norway

Specialty section:

This article was submitted to Toxicogenomics, a section of the journal Frontiers in Genetics

Received: 29 January 2020 Accepted: 29 January 2020 Published: 12 February 2020

Citation:

Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, d'Auriac MA and Ellingsen S (2020) Corrigendum: Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front. Genet. 11:107. doi: 10.3389/fgene.2020.00107

Corrigendum: Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos

Pål A. Olsvik^{1*†}, Paul Whatmore¹, Sam J. Penglase^{1†}, Kaja H. Skjærven¹, Marc Anglès d'Auriac² and Ståle Ellingsen^{1†}

¹ Institute of Marine Research, Bergen, Norway, ² Norwegian Institute for Water Research, Oslo, Norway

Keywords: zebrafish embryos, bisphenol A, behavior, gene expression, DNA methylation, epigenetics

A Corrigendum on

Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos

by Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M and Ellingsen S (2019). Front. Genet. 10:184. doi: 10.3389/fgene.2019.00184

In the original article, there was a mistake in **Table 1** as published. Due to a copy-paste error, the accession numbers, PCR primers, and amplicon sizes given for two of the RT-qPCR assays, *mapk1* and *casp3a*, were wrong. Also, the accession number for *dnmt1* was incorrect. The corrected **Table 1** appears below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Copyright © 2020 Olsvik, Whatmore, Penglase, Skjærven, d'Auriac and Ellingsen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

1

TABLE 1 | PCR primers, accession numbers, amplicon sizes, and PCR efficiencies.

Gene symbol	Gene name	Potential marker for	Accession no.	Forward primer	Reverse primer	Amplicon size (bp)	PCR efficiency
dnmt1	DNA (cytosine-5-)- methyltransferase 1	DNA methylation	NM_131189	GGGCTACCAGTGCACCTTTG	GATGATAGCTCTGCGTCGAGTC	76	1.91
dnmt3aa	DNA (cytosine-5-)- methyltransferase 3A	DNA methylation	NM_001018134	GGCGCCTGTTCTTTGAGTTT	TCACTGACCCCCATTGCAA	112	1.91
dnmt3b	DNA (cytosine-5-)- methyltransferase 3B	DNA methylation	NM_001020476	AGGTTTGGAACCTCCCGAAA	TGCGCACAGGTAACAAATGG	115	1.94
cbs	Cystathionine- beta-synthase	Transsulfuration	NM_001111232	CTTTGCCCTGGTGGTTCATG	ACCACTCCAAACACCATTTGC	81	2.00
mgmt	O-6- methylguanine- DNA methyltransferase	DNA repair	NM_001256243	TCCACCCTGTTGTCCTGTCA	GATGTAAGGCAGGCAGAGGAA	117	2.03
pgrmc1	Progesterone receptor membrane component 1	Glucose/Energy metabolism	NM_001007392	TTTTCACGTCGCCACTGAAC	CTCCTCAACCGGGCCATAGT	104	1.90
cyp1a1	Cytochrome P450 family 1 subfamily A member 1	Detoxification	AF210727	GGTGTTGGTTTCGGTTTGG	GGCATCCCGGTGAACTTTAA	114	1.99
vtg1	Vitellogenin 1	Endocrine disruption	NM_001044897	GTCATCAATGAGGATCCAAAGGCCA	GCCTCAGCGATCAGTGCACCAT	209	1.91
esr1*	Estrogen receptor 1	Endocrine disruption	NM_152959	AAACACAGCCGGCCCTACAC	GCCAAGAGCTCTCCAACAAC	157	2.12
esr2a*	Estrogen receptor 2a	Endocrine disruption	NM_180966	TGATCAGCTGGGCCAAGAAG	GATTAACGGAGCGCCACATC	123	2.00**
ar	Androgen receptor	Endocrine disruption	NM_001083123	GGATGAGGTCGGAGCAGTTC	GGCTCAATGGCCTCCAGAAT	117	2.03
cyp19a2	Cytochrome P450 family 19 subfamily A member 2	Endocrine disruption	AF406756	GAGCGGGCAGGACATAGTGT	GCTTGGGCTCAATCACTCTCA	89	2.10
fos	Fos proto- oncogene	Cell proliferation, differentiation and transcription regulation	NM_205569	GGGTATTACCCGCTCAACCA	CAAGTCCGGGCATGAAGAGA	102	2.02
mapk1	Mitogen- activated protein kinase 1	Cell proliferation, differentiation and survival	NM_182888	TACATCGGAGGAGGCGCTTA	GCTCAAACGGGCTGATCTTC	94	1.99
casp3a eef1a1	Caspase 3A Eukaryotic translation elongation factor 1 alpha 1	Apoptosis Refgen	NM_131877 AY422992	CCCAGATGGTCGTGAAAGGAT AGACAACCCCAAGGCTCTCA	TGAACCATGAGCCGGTCATT CTCATGTCACGCACAGCAAA	107 126	2.07 2.06
uba52	Ubiquitin A-52 residue ribosomal protein fusion product 1	Refgen	NM_001037113	CGAGCCTTCTCCCGTCAGT	TTGTTGGTGTGTCCGCACTT	126	2.08
actb	Beta-actin	Refgen	AF057040	CGAGCAGGAGATGGGAACC	CAACGGAAACGCTCATTGC	102	2.08

*PCR primers obtained from Sawyer et al. [93]. **PCR efficiency set to 2.00.