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The choice of a genetic marker genotyping platform is important for genomic prediction in
livestock and poultry. High-throughput sequencing can produce more genetic markers,
but the genotype quality is lower than that obtained with single nucleotide polymorphism
(SNP) chips. The aim of this study was to compare the accuracy of genomic prediction
between high-throughput sequencing and SNP chips in broilers. In this study, we
developed a new SNP marker screening method, the pre-marker-selection (PMS)
method, to determine whether an SNP marker can be used for genomic prediction. We
also compared a method which preselection marker based results from genome-wide
association studies (GWAS). With the two methods, we analysed body weight at the12th

week (BW) and feed conversion ratio (FCR) in a local broiler population. A total of 395 birds
were selected from the F2 generation of the population, and 10X specific-locus amplified
fragment sequencing (SLAF-seq) and the Illumina Chicken 60K SNP Beadchip were used
for genotyping. The genomic best linear unbiased prediction method (GBLUP) was used
to predict the genomic breeding values. The accuracy of genomic prediction was
validated by the leave-one-out cross-validation method. Without SNP marker
screening, the accuracies of the genomic estimated breeding value (GEBV) of BW and
FCR were 0.509 and 0.249, respectively, when using SLAF-seq, and the accuracies were
0.516 and 0.232, respectively, when using the SNP chip. With SNP marker screening by
the PMS method, the accuracies of GEBV of the two traits were 0.671 and 0.499,
respectively, when using SLAF-seq, and 0.605 and 0.422, respectively, when using the
SNP chip. Our SNPmarker screening method led to an increase of prediction accuracy by
0.089–0.250. With SNP marker screening by the GWAS method, the accuracies of
genomic prediction for the two traits were also improved, but the gains of accuracy were
less than the gains with PMS method for all traits. The results from this study indicate that
our PMS method can improve the accuracy of GEBV, and that more accurate genomic
prediction can be obtained from an increased number of genomic markers when using
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high-throughput sequencing in local broiler populations. Due to its lower genotyping cost,
high-throughput sequencing could be a good alternative to SNP chips for genomic
prediction in breeding programmes of local broiler populations.
Keywords: genomic prediction, high-throughput sequencing, marker screening method, feed conversion
ratio, chickens
INTRODUCTION

Genomic prediction is a new generation breeding technology,
and it has been widely implemented in animal and plant
breeding (Meuwissen et al., 2001; Su et al., 2016; Wang et al.,
2019). Genomic prediction, which uses information from
markers throughout the whole genome, can achieve accurate
early selection, especially for those traits that are difficult or
costly to measure, such as sex-limited traits and slaughter traits.
Many studies have shown the advantages of genomic prediction
in poultry (Sitzenstock et al., 2013; Wolc et al., 2013; Wolc et al.,
2015; Zhang et al., 2017; Liu et al., 2019). However, the high cost
of genome marker genotyping limits the application of genomic
prediction in poultry. With the development of low-cost and
high-throughput sequencing, various marker genotyping
platforms have provided alternatives to chip-based genotyping.

The choice of marker genotyping platform is a key factor
affecting the accuracy of genomic estimated breeding values
(GEBV) (Tan et al., 2017; Wang et al., 2019; Whalen et al., 2019).
Single nucleotide polymorphism (SNP) chips are currently the most
common choice in livestock and poultry (Wolc et al., 2011; Wang
et al., 2013; Zhang et al., 2017). Recently, with the development of
high-throughput sequencing technology, reduced-representation
genome sequencing (RRGS) has been developed. RRGS uses
restriction endonucleases to digest genomic DNA and then
sequence the digested fragments, such as restriction site associated
DNA (RAD) (Baird et al., 2008), genotyping-by-sequencing (GBS)
(Elshire et al., 2011; Wang et al., 2017), and specific-locus amplified
fragment sequencing (SLAF-seq) (Sun et al., 2013).

RRGS can produce a large number of genomic markers at a
low price and thus be used as an alternative genotyping platform,
but the genotype quality of the markers is lower than that
obtained with SNP chips (Gorjanc et al., 2015). In animal
breeding, the application of RRGS in genomic prediction has
attracted great attention and led to many studies (Tan et al.,
2017; Wang et al., 2019; Whalen et al., 2019). Gorjanc et al.
(Gorjanc et al., 2015) used simulation data to show that the use of
GBS for genotyping has great potential for genomic selection in
livestock populations. Tan et al. (2017) used GBS for genotyping
in a Duroc boar population, and the accuracy of genomic
prediction for teat number was 0.435, but this study did not
compare their results to those from SNP chips.

There are many local broiler poultry breeds with unique
characteristics around the world, such as Chinese yellow
feather chickens and French Label Rouge chickens. Compared
to SNP chips, a sequencing approach can obtain genetic
variations specific to local breeds and, thus, may achieve higher
accuracy than SNP chips.
2

The accuracy of genomic prediction does not increase
dramatically as the number of markers increases exponentially
(Heidaritabar et al., 2016; Ni et al., 2017). Heidaritabar et al.
(Heidaritabar et al., 2016) compared the differences of the
accuracy of genomic prediction for the number of eggs
between whole genome sequencing data and 60K gene chip
data in a commercial white layers line. It was found that the
accuracy of genomic prediction from the sequencing data was
only increased by ~1%. Most of the important economic traits
are quantitative traits that are controlled by multiple genes. We
believe that not all SNP sites have an effect on traits, and the
number of markers that affect traits is limited. Thus, sequencing
data can increase the number of associated markers and
introduces a large number of unimportant markers that are
not related to the traits of interest, which interferes with the
estimation of breeding values. Therefore, selecting effective
markers for genomic prediction is expected to improve the
prediction accuracy. How to select markers from high-
throughput sequencing data for genomic prediction is an
important issue.

The aim of this study was to: (1) propose a novel method to
screen markers for genomic prediction, and (2) compare the
accuracy of genomic prediction between high-throughput
sequencing and SNP chips in broilers.
MATERIALS AND METHODS

Data
The broiler population used in the current study was established
by crossing the “High Quality chicken Line A” (HQLA) with the
Huiyang Beard chicken (HB)(Sheng et al., 2013). The HQLA line
has been under selection for growth traits and high meat quality
tailored to Chinese tastes for more than 10 generations. The HB
line is a Chinese indigenous breed with the characteristics of slow
growth and high meat quality. In this study, 395 individuals
(212♂+ 183♀) were selected from 8 half-sib families of 511 F2
birds, which originated from 20 F0 ancestors (6♂+ 14♀), and
GBS with 10X specific-locus amplified fragment sequencing
(SLAF-seq) (Sun et al., 2013) and the Illumina Chicken 60K
SNP Beadchip (Groenen et al., 2011) were used for genotyping.
Twenty-eight autosomes and a sex chromosome (chrZ) were
extracted for the further analyses. To ensure the integrity of the
SNP marker coverage in the sequencing data, only the markers
covering more than 70% of the genotype were retained. Then, the
marker data were edited by deleting markers with a minor allele
frequency (MAF) lower than 0.01. After quality control, 121,132
SLAF-seq markers and 46,690 chip markers were obtained,
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respectively. Missing genotypes were ignored for preselection of
markers and were replaced by the expected genotype score (i.e. 0
after centering) for Gmatrix program, and the average number of
missing genotypes per individual were 6,233 and 232 for the
SLAF-seq and chip data, respectively.

As shown in Table 1, two of the most important traits in
broilers were analysed, namely body weight at the 12th week
(BW) and the feed conversion ratio (FCR). Body weight and feed
intake were measured during the period from the beginning of
the 7th to the end of the 12th week (42 d). FCR was calculated as
the ratio of average daily feed intake to average daily gain, as
described in Liu et al. (2017). Corrected phenotypic values (yc),
instead of original observations (y), were used as response
variables to calculate the difference between phenotypes of the
two homozygous genotypes and to predict breeding values using
SNP markers. The reason for using yc as response variables was
to reduce noise by removing fixed effects which could be
estimated much more accurately using a larger dataset, rather
than using only genotyped animals with the two genotyping
platforms. The fixed effects were estimated using linear least
squares regression including sex (two levels) and batch (six
levels), and yc = y – sex effect – batch effect.

Statistical Models
SNP Marker Screening Method
In this study, we provide a newmethod, the pre-marker-selection
(PMS) method, to screen informative markers for genomic
prediction based on the difference between phenotypes of the
two homozygous genotypes at the marker with the data of the
reference population, and the marks which have no homozygote
or only have one homozygote will be deleted. The model is

d = �xA1A1
− �xA2A2

�� ��,

where d is absolute value of the difference between phenotypes of
the two homozygous genotypes A1A1 and A2A2; �xA1A1

and �xA2A2

are the mean of corrected phenotypic values of the genotypes
A1A1 and A2A2, respectively.

To generalize the PMS method, a transformation was applied,
d′ = d/max (d). After transformation, d ′ was in the interval [0,1].
To explore the suitable cutoff value with PMS method, four
different d ′ value cutoffs (0.001, 0.01, 0.05, 0.1) were set to prune
markers of genome data, the peak value of genomic prediction
accuracy were on the cutoff value of 0.05, the summary of this
preselection is presented in Tables 2 and 3. In the current study,
all SNP markers with d′ greater than 0.05 were retained in leave-
one-out cross-validation method.

In this study, genome-wide association studies (GWAS) using
single marker regression was also used as a control method to
Frontiers in Genetics | www.frontiersin.org 3
preselect marker. The markers were selected based on the p
values from GWAS results with the data of the reference
population. The GWAS model is

y = 1m + xq + e

where y is the vector of corrected phenotypic values of body
weight at the 12th week and FCR, m is the intercept, q is the effect
of the marker in the model, which is treated as a fixed regression
of observation on genotype, x is a vector containing genotypes of
the marker with 0 for A1A1, 1 for A1A2 and 2 for A2A2, and e is a
vector of random deviates, which is assumed that e eN(0, Is 2

e )
To explore the suitable cutoff value with GWAS method,

three different cutoff p values (0.001, 0.01, 0.1) were set to prune
markers of genome data, the peak value of genomic prediction
were on the cutoff value of 0.01, the summary of this preselection
is presented in Tables 4 and 5. In the current study, all SNP
markers with p value less than 0.01 were retained in leave-one-
out cross-validation method.

Genomic Prediction Model
In the current study, breeding values were estimated using a
genomic best linear unbiased prediction model (GBLUP). The
GBLUP model is

y = 1m + Zg + e

where the definitions of y and m are the same as above, g is the
vector of genomic breeding values to be estimated, Z is the
incidence matrix of g, and e is the vector of random residuals. It
is assumed that g eN(0,Gs 2

g ) and e eN(0, Is2
e ), where G is the

additive genomic relationship matrix based on SNP markers
(Vanraden, 2008), G=MM′/S2pi(1−pi), the coefficients of the ith
column in the M matrix are (0–2pi) for genotype A1A1, (1–2pi)
for A1A2, and (2–2pi) for A2A2, where pi is the allele frequency of
A2 at locus i, and s 2

g is the genomic additive genetic variance.

Cross-Validation Method
To eliminate all problems associated with the random
partitioning variation with n-fold cross-validation, the accuracy
of genomic prediction was verified by leave-one-out cross-
validation method (Allen, 1971). All 395 individuals were used
for pre-evaluation of the cutoff values of the SNP marker
TABLE 1 | Number of observations (N), mean, standard deviation (SD), minimum
value (Min), and maximum value (Max) for body weight (BW) at 12th week and
feed conversion ratio (FCR) during the period from 7th to 12th week.

Trait N Mean SD Min Max

BW 395 2034 360 927 3250
FCR 390 3.56 0.39 2.83 6.29
TABLE 2 | No. of single nucleotide polymorphism (SNP) markers after preselection
using the premarker-selection (PMS) method with different cutoff values.

Cutoff
Value1

Seq-BW2 Chip-BW Seq-FCR Chip-FCR

0 121,132 46,690 12,1132 46,690
0.001 113,423 36,598 111,550 36,423
0.01 98,380 32,333 80,450 30,892
0.05 43,959 15,748 10,976 11,506
0.1 13,423 5,000 1,706 3,118
0.2 2,689 930 202 527
February 20
20 | Volume 11 |
1Cutoff value of 0 indicates the scenario of using all SNPmarkers without preselection, and
the others were cutoff values indicate the use of the PMS method.
2BW , body weight at the 12th week, FCR , feed conversion ratio; Seq, High-throughput
sequencing markers; Chip, Chip markers.
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screening methods. For each leave-one-out validation, the used
to preselect markers with PMS and GWAS methods were in line
with the reference population of leave-one-out validation, i.e., the
leave-out individual was excluded from the data for preselecting
marker. For example, for BW, the validation repeated 395 times,
and each time one bird was masked in preselection the SNP
markers and then the bird was also masked in the leave-one-out
cross-validation. In this study, the accuracy of prediction was
defined as the correlation between the predicted and corrected
phenotypic value (yc), the differences between the correlations
were analysed by a bootstrapped paired t-test (Efron, 1979), the
sample was repeat 1,000 times. Unbiasedness of the GEBV was
measured using the regression of yc on GEBV. The regression
will not differ significantly from one if GEBV is an unbiased
estimate of true breeding value (Su et al., 2012).
Frontiers in Genetics | www.frontiersin.org 4
The G matrix was calculated using Gmatrix package (https://
dmu.ghpc.au.dk/DMU). The variance and covariance
components were estimated using restricted maximum
likelihood (REML) based on the mixed() function of
“mixedFunction.R”, and leave-one-out cross-validations were
performed with “mixedCV.R”. The R codes “mixedFunction.R”
and “mixedCV.R” can be downloaded from the website in (Xu,
2017). The bootstrapped paired t-tests were performed with
sample() and t.test() functions in R (https://www.r-project.org/).
RESULTS

Distribution of Genomic Markers in the
SLAF-seq and SNP Chip
As shown in Figure 1, in the scenarios using all high-throughput
sequencing markers (Sep-ALL) and all chip markers (Chip-ALL)
without preselection, the uniformity of the number of genomic
markers in MAF intervals was lower for SNPs obtained with
SLAF-seq than for those obtained with the SNP chip. The
coefficient of variation for the SNP markers in the MAF
intervals, which was calculated as the ratio of the standard
deviation to the mean, was 0.355 for SLAF-seq and 0.154 for
the SNP chip.

All 395 individuals were used for assessing cutoff values in
preselection of markers. As shown in Tables 2 and 3, with the
PMS method, after unimportant markers were removed, the
numbers of SNP markers obtained with the two genotyping
platforms were both drastically reduced. The accuracies of
genomic prediction with preselection of marker by all the
cutoff values were higher than the accuracies using all markers.
The peak values of genomic prediction accuracy were in the
scenario with cutoff value of 0.1 for BW and 0.05 for FCR,
respectively. As shown in Tables 4 and 5, with the GWAS
method, after unimportant markers were removed, the number
of SNP markers were greater reduced. The peak values of
genomic prediction accuracy were in the scenario with cutoff
value of 0.01 for the two traits.

Using SLAF-seq markers preselected by PMS method with
best cutoff values, the number of SNPs was reduced from 121,132
to 13,423 for BW and 10,976 for FCR, respectively. As shown in
Figures 2 and 3, the selected markers were mainly concentrated
in the range of MAF from 0.05 to 0.25 for BW and FCR.

Using the SNP chip markers preselected by with PMS method
with the best cutoff values, the number of markers was reduced
from 46,690 to 15,748 and 11,506 for BW and FCR at the peak
value of genomic prediction, respectively. As shown in Figures 2
and 3, the selected markers were mainly concentrated in the
range of MAF from 0.1 to 0.3 for BW and FCR.

Accuracy of Genomic Prediction Using the
Two Genotyping Platforms
Without preselection of markers, the estimates of heritability for
BW were 0.703 ± 0.087 using SLAF-seq and 0.634 ± 0.076 using
the SNP chip. The estimates of heritability for FCR were 0.265 ±
0.099 and 0.266 ± 0.093, respectively.
TABLE 3 | Accuracy of genomic prediction using the markers preselected by
premarker-selection (PMS) method with different cutoff values.

Cutoff
Value1

Seq-BW2 Chip-BW Seq-FCR Chip-FCR

0 0.509 0.516 0.247 0.231
0.001 0.515 0.520 0.263 0.243
0.01 0.558 0.538 0.380 0.296
0.05 0.674 0.607 0.496 0.422
0.1 0.697 0.628 0.377 0.416
0.2 0.577 0.535 0.279 0.273
1Cutoff value of 0 indicates the scenario of using all single nucleotide polymorphism (SNP)
markers without preselection, and the others were cutoff values indicate the use of the
PMS method.
2BW, body weight at the 12th week; FCR, feed conversion ratio; Seq, High-throughput
sequencing markers; Chip, Chip markers.
TABLE 4 | No. of single nucleotide polymorphism (SNP) markers with
preselection using genome-wide association studies (GWAS) method for
preevaluation the cutoff value.

Cutoff
Value1

Seq-BW2 Chip-BW Seq-FCR Chip-FCR

1 12,1132 46,690 12,1132 46,690
0.1 7,647 13,401 5,439 2,362
0.01 1,998 817 1,742 345
0.001 1,252 133 1,316 111
1Cutoff value of 1 indicates the scenario of using all SNP markers without preselection.
2BW, body weight at the 12th week, FCR, feed conversion ratio; Seq, High-throughput
sequencing markers; Chip, Chip markers.
TABLE 5 | Accuracy of genomic prediction using the markers preselected by
genome-wide association studies (GWAS) method with different cutoff values.

Cutoff
Value1

Seq-BW2 Chip-BW Seq-FCR Chip-FCR

1 0.509 0.516 0.247 0.231
0.1 0.566 0.561 0.357 0.419
0.01 0.573 0.596 0.345 0.449
0.001 0.487 0.545 0.249 0.395
1Cutoff value of 1 indicates the scenario of using all single nucleotide polymorphism (SNP)
markers without preselection.
2BW, body weight at the 12th week, FCR, feed conversion ratio; Seq, High-throughput
sequencing markers; Chip, Chip markers.
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As shown in Table 6, without marker screening, the genomic
prediction model did not benefit from the increased number of
genomic markers obtained by high-throughput sequencing, and the
accuracy of genomic prediction using SLAF-seq was not always
higher than the accuracy using the SNP chip. For BW, the accuracy
of genomic prediction using SLAF-seq was lower than that using the
SNP chip, and the difference between themwas 0.007 (P < 0.05). For
FCR, the accuracy of genomic prediction using sequencing was
0.017 higher than that using the gene chip (P < 0.05).

With the PMSmethod, the accuracy of genomic prediction for the
two traits was improved, regardless of whether SLAF-seq or the SNP
chip was used. When using SLAF-seq, the accuracy of genomic
Frontiers in Genetics | www.frontiersin.org 5
prediction was increased by 0.162 for BW and 0.250 for FCR, and the
gains were significant (P < 0.05). Using the SNP chip, the accuracy of
genomic prediction was increased by 0.089 for BW and 0.190 for FCR
and the gains were also significant (P < 0.05). In addition, the
accuracy of genomic prediction using SLAF-seq was higher than
that using the SNP-chip by 0.066 for BW and 0.077 for FCR. As
shown in Table 7, when the PMSmethod was applied, the regression
coefficients for the two genotyping platforms were similar, genomic
predictions for FCR had a slightly larger bias than those for BW.

As shown in Table 6, with marker screening by the GWAS
method, the accuracy of genomic prediction for the two traits was
also improved, but the gains of accuracy were less than the gains
FIGURE 1 | The distribution of genomic markers in the different intervals of minor allele frequency (MAF) without preselection. Chip-ALL, the scenario using all high-
throughput sequencing markers without preselection; Sep-ALL, the scenario using all chip markers without preselection.
FIGURE 2 | The distribution of genomic markers preselected by the premarker-selection (PMS) method for body weight in the different intervals of minor allele
frequency (MAF). Chip-PMS, the scenario using high-throughput sequencing markers preselected by the PMS method; Sep-PMS, the scenario using chip markers
preselected by the PMS method.
February 2020 | Volume 11 | Article 108
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with PMSmethod for all traits. When using SLAF-seq, the accuracy
of genomic prediction was increased by 0.098 for BW and 0.068 for
FCR, and the gains were significant (P < 0.05). When using the SNP
chip, the accuracy of genomic prediction was increased by 0.083 for
BW and 0.020 for FCR and the gains were also significant (P < 0.05).
DISCUSSION

In this study, the genomic prediction of growth and feed efficiency
traits in a small broiler chicken population was compared between
Frontiers in Genetics | www.frontiersin.org 6
high-throughput sequencing and SNP chip platforms. The results
showed that when markers were not screened, the use of high-
throughput sequencing data did not result in a higher accuracy
than the use of chip data. Our method for marker screening,
improved the accuracy of genomic prediction for both genotyping
platforms, and high-throughput sequencing achieved higher
accuracy for both traits.

With the rapid decline in the price of high-throughput
sequencing, its application in genomic selection has received a
high level of attention (Meuwissen and Goddard, 2010; Gorjanc
et al., 2015; Iheshiulor et al., 2016). Meuwissen and Goddard (2010)
FIGURE 3 | The distribution of genomic markers preselected by the premarker-selection (PMS) method for feed conversion ratio in the different intervals of minor
allele frequency (MAF). Chip-PMS, the scenario using high-throughput sequencing markers preselected by the PMS method; Sep-PMS, the scenario using chip
markers preselected by the PMS method.
TABLE 6 | Accuracy of genomic prediction for body weight and feed conversion ratio using markers preselected with the best cutoff value.

Scenario1 Seq-BW2 Chip-BW Seq-FCR Chip-FCR

SPMS a0.671
A ± 0.035 a0.605

B ± 0.043 a0.499
A ± 0.035 b0.422

B ± 0.038
SGWAS b0.606

A ± 0.037 b0.599
B ± 0.040 b0.428

B ± 0.033 a0.456
A ± 0.036

SALL c0.509
B ± 0.052 c0.516

A ± 0.053 c0.249
A ± 0.050 c0.232

B ± 0.050
February 2020 | Volume
1SPMS, the scenario using single nucleotide polymorphism (SNP) markers preselected by the premarker-selection (PMS) method with the cutoff value of 0.05; SGWAS, the scenario using
SNP markers preselected by the GWAS method with the cutoff value of 0.01; SALL, the scenario using all SNP markers without preselection.
2BW, body weight at the 12th week, FCR, feed conversion ratio; Seq, High-throughput sequencing markers; Chip, Chip markers.
A-BWithin a row, estimates without a common capital letters of the superscript for the same trait differ significantly (P < 0.05) according to the bootstrapped paired t-test.
a-cWithin a column, estimates without a common lowcase letters of subscript differ significantly (P < 0.05) according to the bootstrapped paired t-test.
TABLE 7 | Unbiasedness of genomic prediction for body weight and feed conversion ratio using markers preselected with the best cutoff value.

Scenario1 Seq-BW2 Chip-BW Seq-FCR Chip-FCR

SPMS 1.046 ± 0.060 1.002 ± 0.074 0.948 ± 0.143 0.939 ± 0.128
SGWAS 0.994 ± 0.067 0.980 ± 0.073 0.896 ± 0.145 0.907 ± 0.130
SALL 1.025 ± 0.100 1.001 ± 0.100 1.015 ± 0.181 0.926 ± 0.169
1

1SPMS, the scenario using single nucleotide polymorphism (SNP) markers preselected by the premarker-selection (PMS) method with the cutoff value of 0.05; SGWAS, the scenario using
SNP markers preselected by the genome-wide association studies (GWAS) method with the cutoff value of 0.01; SALL, the scenario using all SNP markers without preselection.
2BW, body weight at the 12th week, FCR, feed conversion ratio; Seq, High-throughput sequencing markers; Chip, Chip markers.
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used simulation data to study the accuracy of genomic selection
based on high-throughput sequencing. The results showed that
when using sequencing data, the accuracies of prediction of genetic
values were 40% increased relative to the use of dense 30K SNP
chips. Iheshiulor et al. (2016) showed that the accuracy of genomic
selection using sequencing data can be increased by up to 92% in a
simulation study. However, when using real data, researchers can
hardly achieve such attractive results (Heidaritabar et al., 2016; Ni
et al., 2017; Elbasyoni et al., 2018). In plant breeding, Elbasyoni et
al. (2018) studied four traits in a winter wheat population and
showed that high-throughput sequencing could achieve only
comparable or even better accuracy than an SNP chip. In a
commercial brown layer line, Ni et al. (2017) compared genomic
predictions for three egg-laying traits using genome-wide
sequencing and a 336K SNP chip and reported that little or no
benefit was gained when using all sequencing SNPs for
genomic prediction.

To improve the accuracy of genomic prediction, some previous
studies tried to add causative mutations to chip data (Meuwissen
and Goddard, 2010; Brøndum et al., 2015; Teissier et al., 2018).
Many studies investigated the effect on the reliability of genomic
prediction when a small number of important variants obtained
from single marker GWAS or SNP annotation based on whole
genome sequence data were added to the regular 54K SNP chip data
(Van Binsbergen et al., 2015; Ma et al., 2019). In the current study,
the SNPmarkers obtained by sequencing were twice as abundant as
those of the SNP chip, but the prediction accuracy was not increased
when all of the markers were used for genomic prediction. One of
possible reasons is that the sequencing data increase the number of
associated markers but also contribute a large number of
unimportant markers that are not related to the traits of interest,
which may interfere with the estimation of breeding values.
Therefore, we proposed a new method to select effective markers;
using our method for screening markers, the sequencing data had
higher accuracy of genomic prediction than the SNP chip data for
all traits.

The SNP markers farther from the causative mutations may
negatively affect the accuracy of genomic prediction. As
mentioned above, many previous studies (Zhang et al., 2014;
Zhang et al., 2015; Van Den Berg et al., 2016; Ye et al., 2019) have
shown that preselected markers from genomic data can improve
genomic prediction. However, Ye et al. also performed genomic
prediction using markers preselected from imputed whole-
genome sequencing (WGS) data based on the p value of
GWAS as a control method, and the results showed that using
preselected variants resulted in almost no increase for most traits
and even increased the bias of the predictions (Ye et al., 2019).
The authors argued that one of the possible reasons could be the
difficulty of detecting causal variants based on GWAS due to the
large number of variants and the high LD between variants. In
our study, we provided a method to select SNP markers based on
the difference between phenotypes associated with two allelic
homozygous genotypes, GWAS method to select markers was
also performed as a comparison. Our results showed that when
screening markers with the two methods, the accuracies of
genomic prediction for the two traits were improved, and the
Frontiers in Genetics | www.frontiersin.org 7
gains of accuracy with PMS method were larger than the gains
with GWAS method for all traits. Whether the PMS method can
improve the accuracy of genomic prediction in different
populations needs further verification.

The cost of genotyping is an important factor limiting its
application in poultry breeding. With the continuous
development of sequencing technology, the reduced price of
sequencing may have advantages in regard to the cost of
genotyping. De Donato et al. showed that the cost of
sequencing data for the same number of markers is
approximately 1/3 that of the SNP chip (De Donato et al.,
2013). Among the major livestock and poultry breeds, the
chicken genome is more advantageous with regard to the cost
of sequencing. The genome of the chicken is only 1043.19 Mb
(https://www.ncbi.nlm.nih.gov/genome), which is less than 1/2
the size of the genomes of cattle (2716 Mb) and pigs (2548 Mb),
which means that chickens can achieve the same density of
genome coverage at a lower cost. In addition, sequencing
technology can flexibly select the depth of sequencing for a
single sample, which can further reduce the cost of genotyping.

Local breeds usually have characteristic traits that are
preferred by local people, allow the birds to adapt well to the
local environment, and usually exist in the form of small
populations with a small effective population size. Druet et al.
showed that the accuracy of genomic prediction depends largely
on the coverage of key genes affecting target traits by genotyping
platforms (Druet et al., 2014). However, the markers of
conventional SNP chips may not cover all of the genetic
variation of specific traits in the local breeds, which may limit
the efficiency of genomic prediction for these traits. High-
throughput sequencing, such as SLAF-seq, can improve the
accuracy of genomic prediction by optimizing the selection of
suitable restriction enzymes to cover large fragments of specific
mutation regions for local breeds and to select the sequencing
depth of each individual, which has great potential for genomic
prediction in local breeds breeding.
CONCLUSIONS

The results from this study indicate that with our PMS marker
screening method, the accuracy of genomic prediction obtained
using high-throughput sequencing, such as SLAF-seq, is higher
than the accuracy obtained using SNP chips in local broiler
populations. With accurate prediction and a low cost, the PMS
method is a promising method for the use of high-throughput
sequencing data for genomic prediction in breeding programmes
of local broiler populations.
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