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MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression.
Extensive research has explored the role of miRNAs in the risk for type 2 diabetes (T2D)
and coronary heart disease (CHD) using single-omics data, but much less by leveraging
population-based omics data. Here we aimed to conduct a multi-omics analysis to identify
miRNAs associated with cardiometabolic risk factors and diseases. First, we used publicly
available summary statistics from large-scale genome-wide association studies to find
genetic variants in miRNA-related sequences associated with various cardiometabolic
traits, including lipid and obesity-related traits, glycemic indices, blood pressure, and
disease prevalence of T2D and CHD. Then, we used DNA methylation and miRNA
expression data from participants of the Rotterdam Study to further investigate the link
between associated miRNAs and cardiometabolic traits. After correcting for multiple
testing, 180 genetic variants annotated to 67 independent miRNAs were associated with
the studied traits. Alterations in DNA methylation levels of CpG sites annotated to 38 of
these miRNAs were associated with the same trait(s). Moreover, we found that plasma
expression levels of 8 of the 67 identifiedmiRNAs were also associated with the same trait.
Integrating the results of different omics data showed miR-10b-5p, miR-148a-3p, miR-
125b-5p, and miR-100-5p to be strongly linked to lipid traits. Collectively, our multi-omics
analysis revealed multiple miRNAs that could be considered as potential biomarkers for
early diagnosis and progression of cardiometabolic diseases.

Keywords: cardiometabolic traits, microRNA, multi-omics data, GWAS, EWAS
INTRODUCTION

Type 2 diabetes mellitus (T2D) is a complex metabolic disease that is characterized by insulin
resistance and impairment of insulin secretion, which leads to hyperglycemia. The presence of T2D
leads to a two- to four-fold increase risk of developing coronary heart disease (CHD) (Kannel and
Mcgee, 1979), which is among the leading causes of morbidity and mortality worldwide (Roth
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et al., 2018). Many risk factors are identified as mediators of these
diseases, including hypertension, dyslipidemia, central adiposity
and elevated blood glucose, which are together known as
cardiometabolic traits (Wilson et al., 2005). Despite substantial
advances in diagnosis and widely prescribed drugs for these
diseases, their rate continue to increase worldwide, emphasizing
the need for deeper insights into underlying mechanisms and
innovative therapeutic strategies. Cardiometabolic traits and
diseases have underlying genetic components and many loci
have been discovered through large-scale genome- and
epigenome-wide association studies (Peloso et al., 2014; De
Rosa et al., 2018). However, most of the identified genetic
variants do not affect protein sequences, but are thought to
affect gene regulation. One of the potential regulatory
mechanisms involved might be microRNAs (miRNAs).

MiRNAs represent a class of small non-coding RNAs, which
function as post-transcriptional regulators of gene expression via
targeting the 3’ untranslated region of target transcripts
(Friedman et al., 2009). Over the past years, miRNAs have
emerged as key regulators of biological processes underlying
T2D and CHD. In this context, aberrant expression and function
of miRNAs, such as miR-33, miR-208, miR-133, and miR-124,
have been shown to be associated with lipid metabolism, insulin
secretion, myocardial infarction and T2D (Stauffer et al., 2013;
Rotllan et al., 2016; Wang et al., 2017). Most of the disease-
associated miRNAs have been discovered in cells originated from
tissue of interest in small number of samples or animal studies.
But advances in high-throughput technologies make it possible
to study miRNAs in a population-based manner. In particular
cell-derived vesicles, known as exosomes, release miRNAs in the
blood stream that are very stable and can be used as biomarkers
for disease (Grasedieck et al., 2012).

Similar to other regulatory RNA molecules, the function and
expression of miRNAs can be affected by genetic variants. Single-
nucleotide polymorphisms (SNPs) can occur at various stages of
the miRNA biogenesis including precursor- and mature miRNA
sequences (Gong et al., 2012) as well as within regulatory
elements, such as promoter regions (de Rie et al., 2017). Also,
DNA methylation can control transcription, which have been
reported to be associated with the expression level of miRNAs
(Huan et al., 2019). In this context, epigenome-wide association
studies (EWAS) have shown that altered DNA methylation
within miRNA promoters is associated with miRNAs
expression levels and therewith modify disease risk (Aure et al.,
2013). However, previous studies are mainly based on single
omics data or small sample size (de Candia et al., 2017; Hijmans
et al., 2018). As each type of omics data provides associations that
can be useful for detecting development or progression of
disease, integrating different omics layers can limit passive
correlations and provide a more comprehensive view of the
disease biology.

In this study, we applied a multi-omics approach to identify
miRNAs associated with cardiometabolic traits. First, we
identified genetic variants in miRNA sequences and their
potential regulatory regions associated with different
cardiometabolic risk factors and diseases using genetic
Frontiers in Genetics | www.frontiersin.org 2
association data from the available genome-wide association
studies (GWAS). We then integrated population-based DNA
methylation and miRNA expression data from the Rotterdam
Study to link omics layers, strengthening the association of the
identified miRNAs with cardiometabolic traits. We envision that
the identified miRNAs could be considered as potential
biomarkers for early diagnosis of cardiometabolic diseases.
MATERIAL AND METHODS

A graphical overview of the multi-omics approach used in this
study is illustrated in Figure 1.

Retrieval of SNPs in miRNA-Related
Regions
The primary transcripts of miRNAs for the processing to mature
miRNAs are approximately 3–4kb in length (Saini et al., 2007).
We collected the genomic position of all human miRNAs
employing the miRBase database (v21) (Kozomara and
Griffiths-Jones, 2014), ProMiR II (Nam et al., 2006), and
FANTOM5 (de Rie et al., 2017). Using dbSNP database
(Sherry et al., 2001), we extracted 18,545 SNPs located in
+/-2kb of the precursor miRNA sequences (pre-miRNA) of
1,554 known miRNAs. Of these, 2,420 SNPs are located in pre-
and mature sequences of miRNAs. Genetic variants have been
found to alter miRNA expression and are known as miRNA
expression quantitative trait loci (miR-eQTLs). To this end, we
included 5,528 miR-eQTLs that change the expression of 221
mature miRNA using data from the Framingham Heart Study
(FHS) (Huan et al., 2015) and from the Ottawa Hospital Bariatric
Centre (Nikpay et al., 2019). The FHS focused on cis-miR-
eQTLs, of which the majority was located 300–500kb away
from their target miRNA. Nikpay et al. (2019) investigated
both cis-miR-eQTLs and trans-miR-eQTLs, however, they
reported similar to the FHS that most cis-miR-eQTLs were
distal regulators of the miRNAs. There were 83 miR-eQTLs
overlapping with the SNPs in +/-2kb of the precursor miRNA
sequence. Altogether, 23,990 unique SNPs were included in
our analysis.

The genomic location of miRNAs can be discriminated
among intergenic and intragenic. Roughly half of the known
miRNAs are found to be transcribed from intergenic regions of
the genome, suggesting that these miRNAs are transcribed under
independent control of regulatory elements (Liu et al., 2018). The
intragenic miRNAs are embedded within sequences of protein-
coding genes, including intronic and exonic regions. If the
intragenic miRNA and its host gene share the same promoter,
the miRNA is likely to be co-expressed with the host gene (Lutter
et al., 2010). Here, the genomic location of the identified miRNAs
was obtained using miRIAD (Hinske et al., 2014).

Genome-Wide Association Studies of
Cardiometabolic Traits
Cardiometabolic risk factors and diseases in this study were
classified into four specific trait groups based on their shared
February 2020 | Volume 11 | Article 110
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pathophysiology and underlying pathways. These include (i)
Anthropometric traits: body mass index (BMI), waist to hip
ratio (WHR) and waist circumference (WC); (ii) Glycemic traits:
fasting glucose (FG), glucose 2 hours (G2H), fasting insulin (FI),
proinsulin (Pro-Ins), hemoglobin A1c (HbA1c), homeostatic
model assessment of insulin resistance (HOMA-IR), b-cell
function (HOMA-b), and type 2 diabetes mellitus (T2D); (iii)
Lipid traits: low-density lipoprotein (LDL), high-density
lipoprotein (HDL), total serum cholesterol (TC), and
triglycerides (TG); and (iv) Cardiovascular traits: coronary
artery disease (CAD), diastolic (DBP), and systolic blood
pressure (SBP). To test the association of miRNA-related SNPs
with cardiometabolic traits, we used publicly available GWAS
summary statistics. A description of GWAS meta-analysis data
and corresponding consortia used in this study is provided in
Supplementary Table S1. To obtain the number of independent
SNPs, we used the linkage disequilibrium (LD) based SNP
pruning in PLINK (http://pngu.mgh.harvard.edu/~purcell/
plink/), in which we excluded the SNPs with R2 > 0.7.
Bonferroni correction was used to adjust for multiple testing
based on the number of independent SNPs available in the
GWAS data (HapMap or 1000G project imputed data).

Prioritization of miRNA-Related SNPs
Associated With Cardiometabolic Traits
For miRNA-related SNPs significantly associated with
cardiometabolic traits, we performed in silico analysis to
prioritize the SNPs that are more likely to be functional in
their corresponding loci based on the following criteria: (i)
Frontiers in Genetics | www.frontiersin.org 3
association between the miRNA-related SNP and the
cardiometabolic trait, (ii) association between the miRNA-
related SNP and the expression level of miRNA/miRNA
hosting gene, and (iii) expression of the miRNA in tissues
relevant to cardiometabolic traits. In this regard, regional
association plots were generated (using LocusZoom web tool,
Version 1.1) to visualize the physical position and evaluate the
association of the cardiometabolic traits with the miRNA-related
SNP and its proxy SNPs (R2 > 0.8) in the corresponding locus: (i)
To explore whether the SNP is associated with the expression of
related miRNA or miRNA hosting genes in relevant tissues (e.g.,
adipose tissue, liver, pancreas, muscle and blood), we used eQTL
data from GTEx Portal (https://www.gtexportal.org/home/), (ii)
we used two online databases; miRmine and Human miRNA
tissue atlas (Ludwig et al., 2016; Panwar et al., 2017) to test where
a miRNA is expressed in tissues relevant to cardiometabolic traits
(e.g., adipose tissue, liver, pancreas, muscle, and blood), (iii) the
Vienna RNAfold algorithm was used to check miRNA secondary
structure and free energy changes with wild-type and mutant
alleles of SNPs located in miRNA sequences (Lorenz et al., 2011).

Determination of Methylation Quantitative
Trait Loci (me-QTLs)
To determine if the identified SNPs have an effect on the
methylation levels of CpG sites (me-QTLs), we used data of a
recent me-QTL study performed in five cohorts, including the
RS, with a total of 3,841 individuals (Bonder et al., 2017). We
incorporated both cis-me-QTLs and trans-me-QTLs. Where cis-
me-QTLs were defined as the effect of SNPs on the methylation
FIGURE 1 | Overview of the multi-omics layers used in this study.
February 2020 | Volume 11 | Article 110

http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/
https://www.gtexportal.org/home/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Mens et al. MicroRNAs Associated With Cardiometabolic Traits
levels of a CpG sites no further than 250kb apart, trans-me-QTLs
were defined as the effect of distal SNPs on the CpG methylation
levels. Details on the me-QTL mapping are described elsewhere
(Bonder et al., 2017). We tested if the cardiometabolic-associated
SNPs found in the current study were identified as me-QTLs.

DNA Methylation Analysis in the
Rotterdam Study
The Rotterdam Study (RS) is a large prospective population-
based cohort study conducted among middle-aged and elderly
people in the suburb Ommoord in Rotterdam, the Netherlands.
In 1989, 7,983 inhabitants aged 55 and older were recruited in
the first cohort (RS-I) (78% of 10,215 invitees). In 2000, the RS
was extended with a second cohort of 3,011 participants that
moved to Ommoord or turned 55 years old (RS-II). In 2006, the
third cohort (RS-III) was initiated in which inhabitants aged 45-
54 years were invited and included 3,932 participants. A detailed
description of RS can be found elsewhere (Ikram et al., 2017). In
the current study, we used DNA methylation data from a
random subset (n = 717) of the third visit of RS-II (RS-II-3)
and second visit of RS-III (RS-III-2) and a random subset (n =
721) of the first visit of RS-III (RS-III-1). There was no overlap in
participants. The RS has been approved by the institutional
review board (Medical Ethics Committee) of the Erasmus
Medical Center and by the review board of The Netherlands
Ministry of Health, Welfare and Sports. All participants gave
written consent before participation in the study. Participant
characteristics are presented in Supplementary Table S2.

DNA was extracted from whole peripheral blood using
standardized salting out methods, of which 500ng was bisulfite
treated using the Zymo EZ-96 DNA methylation kit (Zymo
Research, Irvine, CA, USA). Bisulfite converted DNA was
hybridized to the Illumina Human 450K array (Illumina, San
Diego, CA, USA), according to manufacturer’s protocol. Data
preprocessing was performed using an R programming pipeline
based on the pipeline developed by Touleimat and Tost
(Touleimat and Tost, 2012). The genome coordinates provided
by Illumina (GRCh37/hg19) were used to identify independent
loci. We extracted 12,939 unique CpGs located in +/-2kb of the
pre-miRNA sequences using the Illumina450K array annotation
file as provided by Illumina (Sandoval et al., 2011). Among these,
12,617 CpGs were located in the regulatory region of 1,269
miRNAs and 450 CpGs were located in the pre- and mature
sequence of 391 miRNAs. We tested the association of these
CpGs with different cardiometabolic traits using linear mixed
models. Data collection on these traits in the RS is described in
Supplementary Methods. The models were adjusted for age,
gender, current smoking, blood cell counts (monocytes,
granulocytes, lymphocytes) as fixed effects and technical
covariates as random effects. Models were further adjusted for
covariates per group as follows: (i) for Anthropometric traits we
adjusted WC and WHR for BMI, (ii) for Glycemic traits we
adjusted for BMI and diabetic medication, (iii) for Lipid traits
we adjusted for BMI and lipid medication, and (iv) for
Cardiovascular traits we adjusted for BMI, blood pressure
Frontiers in Genetics | www.frontiersin.org 4
lowering medication and lipid medication. A candidate-based
approach was used to sought overlap between identified
miRNAs. A nominal p-value of <0.05 was found to be significant.

Determination of miR-eQTMs
To identify association between the methylation level of CpGs
and the expression of miRNAs (miR-eQTMs), we used miR-
eQTM data from a recent study (Huan et al., 2019). The latter
study analyzed associations of expression levels of 283 miRNAs
with methylation of CpGs from 3,565 individuals, in which they
identified 227 miR-eQTMs at FDR < 0.01. We tested if any of the
cardiometabolic-associated CpGs in the current study was
among the identified miR-eQTM (Huan et al., 2019).

MiRNA Expression Profiling in the
Rotterdam Study
We performed miRNA expression analysis in 2,000 RS
participants, including a random subset (n = 1,000) of the
fourth visit of RS-I (RS-I-4) and a random subset (n = 1,000)
of the second visit of RS-II (RS-II-2). Plasma miRNA levels were
determined using the HTG EdgeSeq miRNA Whole
Transcriptome Assay (WTA), which measures the expression
of 2,083 mature human miRNAs (HTG Molecular Diagnostics,
Tuscon, AZ, USA) and using the Illumina NextSeq 500
sequencer (Illumina, San Diego, CA, USA). The WTA
characterizes miRNA expression patterns, and measures the
expression of 13 housekeeping genes, that allows flexibility in
data normalization and analysis. Quantification of miRNA
expression was based on counts per million (CPM). Log2
transformation of CPM was used as standardization and
adjustment for total reads within each sample. MiRNAs with
Log2 CPM < 1.0 were indicated as not expressed in the samples.
The lower limit of quantification (LLOQ) was used to select well-
expressed miRNAs. The LLOQ level was based on a monotonic
decreasing spline curve fit between the means and standard
deviations of all miRNAs. In our definition well-expressed
miRNA levels in plasma were those with >50% values above
LLOQ. Out of the 2,083 measured miRNAs, 591 miRNAs were
expressed at good levels in plasma.

The miRNAs significantly associated with cardiometabolic
traits, in the genetic association studies, were tested for the
association of their plasma expression levels with the same
cardiometabolic trait(s). Linear models were used to test the
association between available continuous traits in the RS (incl.
BMI, WC, WHR, FG, HDL, TC, SBD, and DBP) and miRNA
expression. Additionally, we used binomial models to test the
association between disease prevalence (incl. T2D and CHD) and
miRNA expression. We used the cardiometabolic traits as
dependent variable and plasma miRNAs level as explanatory
variable, adjusting for age, gender and current smoking. Models
were further adjusted for covariates per group as follows: (i) for
Anthropometric traits we adjusted WC and WHR for BMI, (ii)
for Glycemic traits we adjusted for BMI and diabetic medication,
(iii) for Lipid traits we adjusted for BMI and lipid medication,
and (iv) for Cardiovascular traits we adjusted for BMI, blood
February 2020 | Volume 11 | Article 110
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pressure lowering medication and lipid medication. A candidate-
based approach was used to sought overlap between identified
miRNAs. A nominal p-value of <0.05 was found to be significant.

In addition, we extracted strongly validated target genes, defined
as being validated by western blot and/or luciferase reporter assay, of
the identified miRNAs from the miRTarBase database (Chou et al.,
2018). Next, we extracted SNPs in these target genes and tested their
associations with cardiometabolic traits using summary statistics of
previously mentioned GWAS data.
RESULTS

Association of miRNA-SNPs With
Cardiometabolic Traits and Diseases
Out of 23,990 miRNA-related SNPs, 2,358 independent SNPs
were present in the GWAS data based on HapMap and 8,652
independent SNPs were present in the 1000G project. Bonferroni
correction was used to set the significance threshold, at
p-value <2.12×10-5 (0.05/2,358) for GWAS with HapMap
imputed data and p-value < 5.78×10-6 (0.05/8,652) for GWAS
with 1000 Genomes project imputed data. Of these, 180 SNPs
annotated to 67 miRNAs passed the significance threshold to be
associated with at least one cardiometabolic trait (Table 1). Out
of the 180 identified SNPs, 89 SNPs were located in +/-2kb of 57
primary miRNA transcripts (Supplementary Table S3) and 92
SNPs were among the previously reported miR-eQTLs of 15
mature miRNAs (Supplementary Table S4). Manhattan plots
illustrated in Figure 2 present the miRNA-annotated genetic
variants associated with lipid traits and the prevalence of T2D
and CHD. Table 2 shows the top miRNA-related SNPs
associated with cardiometabolic traits, which were annotated to
20 miRNAs.

In order to prioritize miRNA-related SNPs based on potential
functionality in relation to the associated cardiometabolic traits,
we created regional association plots to visualize the LD of
miRNA SNP with the top SNP in the corresponding locus
(Figure 3). We found three top SNPs in their loci, including
rs7117842 associated with TC (p = 2.48×10-15, b = v0.029) and
located ~512kb upstream of miR-100-5p/miR-125b-5p (Figure
3A), rs1997243 associated with TC (p = 2.72×10-10, b = 0.033)
and located ~21kb upstream of miR-339-3p (Figure 3B), and
rs7607369 associated with BMI (p = 1.10×10-7, b = -0.016) and
located ~11.7kb upstream of miR-26b-5p (Figure 3C). These
three SNPs were previously identified as miR-eQTLs that change
the expression levels of related miRNAs in blood (Huan et al.,
2015). In addition, rs4722551 located ~2kb upstream of miR-
148a shows the strongest association with LDL (p = 3.95×10-14,
b = 0.039) on the Chr7p15.2 locus (Figure 3D).

Moreover, rs174561 has previously been reported by (Nikpay
et al., 2019) to change the expression of miR-1908-5p. We found
this SNP, located in the coding sequence of miR-1908-5p, to be
associated with lipid traits (LDL, HDL, TC, and TG), and
rs11614913, located in the coding sequence of miR-196a2-3p,
Frontiers in Genetics | www.frontiersin.org 5
TABLE 1 | Description of genome-wide association studies (GWAS) of
cardiometabolic traits and associated miRNA single-nucleotide polymorphisms
(SNPs).

Phenotype Consortium SNPs
in

+/-2kb
miR*

SNPs
in

miR-
seq*

SNPs
in

miR-
QTL*

Associated
miR loci†

Anthropometric
traits
Body-mass index GIANT (Locke

et al., 2015)
9 0 9 7

Waist to hip ratio GIANT (Shungin
et al., 2015)

2 1 1 4

Waist
circumference

GIANT (Shungin
et al., 2015)

10 0 1 8

Glycemic traits
Glucose fasting MAGIC (Manning

et al., 2012)
3 0 1 4

Glucose after 2h MAGIC (Saxena
et al., 2010)

0 0 0 0

Insulin fasting MAGIC (Manning
et al., 2012)

1 0 2 2

Proinsulin MAGIC
(Strawbridge et al.,
2011)

3 0 4 3

HbA1c MAGIC (Wheeler
et al., 2017)

1 0 15 4

HOMA-IR MAGIC (Dupuis
et al., 2010)

0 0 0 0

HOMA-b MAGIC (Dupuis
et al., 2010)

0 0 0 0

Type 2 diabetes DIAGRAM (Scott
et al., 2017)

12 0 1 8

Lipid traits
LDL GLGC (Willer

et al., 2013)
22 1 20 11

HDL GLGC (Willer
et al., 2013)

12 1 23 9

Total cholesterol GLGC (Willer
et al., 2013)

26 1 40 13

Triglyceride GLGC (Willer
et al., 2013)

8 1 27 7

Cardiovascular
traits
CAD CARDIoGRM

plusC4D (Nikpay
et al., 2015)

10 0 2 4

DBP ICBP (International
Consortium for
Blood Pressure
Genome-Wide
Association et al.,
2011)

3 0 – 2

SBP ICBP (International
Consortium for
Blood Pressure
Genome-Wide
Association et al.,
2011)

2 0 – 2
F
ebruary 2
020 | Vo
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Shown are SNPs located within +/-2kb of primary miRNA transcripts, pre- and mature
miRNA sequences, miRNA-eQTL SNPs.
*Number of SNPs that passed the significance threshold (p-value < 2.12x10-5 for SNPs
imputed with HapMap and p-value < 5.78x10-6 for SNPs imputed with 1000G).
†Number of independent loci.
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FIGURE 2 | Manhattan plots showing the association of miRNA-SNPs with T2D, CAD, and lipid traits. The association miRNA-related SNPs and cardiometabolic
traits were examined using the publicly available GWAS data. We reported the most significantly associated miRNA of each SNP loci. The horizontal red line indicates
the study significance threshold. (A) Manhattan plot showing the association of miRNA-SNPs with T2D in which 12 SNPs in 8 miRNAs passed the significant
threshold. (B) Manhattan plot showing the association of miRNA-SNPs with CAD in which 13 SNPs in 9 miRNAs passed the significance threshold. (C) Manhattan
plot showing the association of miRNA-SNPs with lipid traits in which 107 SNPs in 36 miRNAs passed the significant threshold. When SNPs were present in more
traits, the most associated SNP was plotted.
TABLE 2 | The top 20 miRNAs with single-nucleotide polymorphisms (SNPs) in related regions association with cardiometabolic traits.

miRNA SNPID Chr. Position Alleles (A/R) Annotated gene Genomic location
miRNA

Associated trait b-coefficient P value

miR-6886† rs17248720 19 11198187 C/T LDLR Intronic LDL 0.226 2.40x10-148

miR-6863† rs13306673 16 56900931 C/T SLC12A3 Intronic HDL 0.098 2.76x10-48

miR-4263† rs2305929 2 28113911 G/A BRE Intronic TG 0.064 1.13x10-44

miR-6773† rs8057119 16 68268836 T/C ESRP2 Intronic HDL 0.072 5.21x10-40

miR-611† rs174538 11 61560081 G/A THEM258 Exonic LDL 0.050 1.07x10-34

miR-1908-5p‡ rs174548 11 61571348 C/G FADS1 Exonic LDL 0.047 2.29x10-31

miR-10b-5p/126-5p‡ rs532436 9 136149830 A/G ABO Exonic/Intronic LDL 0.079 4.02x10-30

miR-4721† rs4788099 16 28763228 G/A TUMF Exonic BMI 0.031 1.09x10-24

miR-4531† rs6509170 19 45159636 C/A LOC107985305 Intronic LDL 0.127 1.54x10-22

miR-199a-1† rs11085748 19 10927540 T/C DNM2 Intronic LDL 0.055 1.46x10-19

miR-4999† rs7254882 19 8359822 C/T MIR4999 Intergenic HDL 0.033 6.66x10-18

miR-4639† rs3757354 6 16127407 C/T MYLIP Intronic LDL 0.038 2.09x10-17

miR-640† rs1000237 19 19518316 T/A GATAD2A Intronic TG 0.033 1.61x10-16

miR-3161† rs79837139 11 48000780 C/T PTPRJ Intronic HDL 0.062 2.99x10-16

miR-100-5p/125b-5p‡ rs7117842 11 122663796 C/T UBASH3B Intergenic/Intergenic TC 0.029 2.48x10-15

miR-148a† rs4722551 7 25991826 C/T MIR148A Intergenic LDL 0.039 3.95x10-14

miR-139† rs11605042 11 72700619 A/G ARAP1 Intronic Pro-Ins -0.053 5.24x10-13

miR-3941† rs71486610 10 124134803 C/G PLEKHA1 Intronic T2D -0.081 3.30x10-11

miR-6745† rs901750 11 47209472 A/G PACSIN3 Intronic HDL 0.024 3.95x10-11

miR-196a-2-3p* rs11614913 12 53991815 C/T MIR196A2 Intergenic WHR 0.029 6.90x10-11
Frontiers in Genetics | ww
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*SNP located in pre- and mature miRNA sequence.
†SNP located within +/- 2kb of primary miRNA transcript.
‡miR-eQTL SNP.
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to be associated with WHR. These two variants have previously
been reported to be associated with lipid traits and WHR and
have been suggested to change the miRNA structure and
expression (Ghanbari et al., 2015). We also found a suggestive
association between rs58834075, located in the pre-miR-656
sequence (T > C, Chr14:101066756) and T2D (p = 6.30×10-5,
b = -0.170). The miRNA secondary structure and free energy
changes of both wild-type and mutant alleles of these three SNPs
Frontiers in Genetics | www.frontiersin.org 7
(rs174561, rs11614913 and rs58834075) are illustrated in
Supplementary Figure S1.

Identification of Methylation Quantitative
Trait Loci (me-QTLs)
We identified 29 cis-me-QTL effects for 47 independent CpGs at
FDR < 0.05 (49 SNP-CpG pairs). Among these, we found 14 cis-me-
QTLs that were associated with both the expression level of 8
FIGURE 3 | Regional plots showing the association of four top miRNA-SNPs with cardiometabolic traits. The most significant SNP in the region, according to P-value, is
represented by a purple diamond, and the degree of linkage disequilibrium of other SNPs in the region to the lead SNP is representative by the color scale shown in the legend.
Genes are illustrated below. The associated miRNA is illustrated with a red box. (A) Regional plot showing the association of rs7117842 located ~512kb upstream of miR-100-
5p/125b-5p with TC, LDL and HDL on the Chr11q24.1 locus. (B) Regional plot showing the association of rs1997243 located ~21kb upstream of the primary transcript of miR-
339-3p with TC and HDL on the Chr7p22.3 locus. (C) Regional plot showing the association of rs7607369 located ~11.7kb upstream of the primary transcript of miR-26b-5p
with BMI and TG on the Chr2q35 locus. (D) Regional plot showing the association of rs472551 located ~2kb upstream of the primary transcript of miR-148a with LDL, TG, and
TC on the Chr7p15.2 locus.
TABLE 3 | Identified me-QTLs with cardiometabolic-associated CpGs.

miRNA SNPID CpG Cis†/Trans miR-eQTL SNP* SNP associated with
cardiometabolic trait

CpG associated with
cardiometabolic trait

miR-611 rs174538 cg16150798 Cis – FG, LDL, HDL, TG, TC WC
miR-588 rs9388486 cg20229609 Cis – T2D SBP, DBP
miR-1908-5p rs174548 cg03921599 Cis √ FG, HbA1c, LDL, HDL, TG, TC LDL, TC
miR-199a-1 rs3786719 cg02907064 Cis – LDL, TC LDL
miR-6745 rs901750 cg00724111 Cis – HDL FI, SBP, DBP
miR-8073 rs3809346 cg22382805 Cis – CAD FI
miR-653, miR-489 rs2528521 cg06934092 Cis – BMI FG, FI, TC
miR-8073 rs3809346 cg19700260 Cis – CAD DBP
February 2020 | V
Shown are 7 me-QTLs associated with methylation levels of 8 cardiometabolic-associated CpG sites.
*miR-eQTL SNP is associated to change the expression of miRNA level.
†SNP and CpG are located not further away than 250kb.
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miRNAs and the methylation level of 26 CpGs (Supplementary
Table S5). In total there were 7 cis-me-QTLs (for 8 CpGs) that were
associatedwith a cardiometabolic trait in the current study (Table 3).
Furthermore, 4 trans-me-QTL effects for 21 independent CpGswere
found at FDR < 0.05 (27 SNP-CpG pairs) (Supplementary Table
S5). Two out of the four trans-me-QTL were miR-eQTL SNPs
(rs174548 for miR-1908-5p and rs1997243 for miR-339-3p). None
of the associated CpGs in transwere found in the current study to be
associated with cardiometabolic traits.

Testing DNA Methylation and Expression
of miRNAs Associated With
Cardiometabolic Traits
To access the relationship between miRNAs and cardiometabolic
traits in other omics layers, we performed a candidate-based test
to check whether the 67 identified miRNAs, with SNPs
associated with cardiometabolic traits, show also association
between DNA methylation and miRNA expression with
cardiometabolic traits. Using DNA methylation data from
1,438 RS participants, we found 278 CpG sites annotated to 64
out of the 67 miRNAs, to be associated with any cardiometabolic
trait (Supplementary Table S6). By integrating our DNA
methylation results with the GWAS data, we observed an
overlap of 38 miRNAs (79 CpGs) that had both a SNP and a
CpG associated with the same trait (Supplementary Table S7).
The CpG site showing the most significant association was
cg15616915 which is located in the regulatory region of miR-
26b and is positively associated with TG (p = 1.59×10-4, b =
0.009). We found 16 cardiometabolic-associated CpGs that are
annotated to more than one miRNA. For example, cg03722243
associated with BMI (p = 1.55×10-3, b = 0.001) is annotated to
miR-489 and miR-653, which are clustered on chromosome 7. In
addition, cg15334028 associated with WC, HDL, LDL, and TG is
annotated to three miRNAs (miR-638, miR-6793, and miR-
4748) on chromosome 19.

We identified two CpGs that are associated with the
expression level of miRNAs (miR-eQTM) at FDR < 0.01. The
most significant cis-miR-eQTM, cg26363555 has been reported
to be negatively associated with both miR-125b-5p (~2kb
downstream) and miR-100-5p (~50kb upstream) expression
levels (Huan et al., 2019). The CpG cg26363555 was positively
associated with FG (b = 0.012) and DBP (b = 2.00x10-4) and
negatively associated with HDL (b = -0.004) in the RS. In
addition, cg03891346 has been reported to be negatively
associated with the expression level of miR-100-5p (~53kb
downstream) (Huan et al., 2019). This CpG, which is also
annotated to MIR125B1, was positively associated with WC
(b = 5.00x10-4) in the RS.

Next, we tested whether the 67 identified miRNAs show
differential expression in plasma in relation to the associated
cardiometabolic trait(s). Of the 67 miRNAs, we could only test the
association of 28 mature miRNAs that were well-expressed in
plasma and of which the phenotype of interest was available in the
RS. Of these, plasma levels of 22miRNAs were nominally associated
Frontiers in Genetics | www.frontiersin.org 8
with at least one cardiometabolic traits (Supplementary Table S8).
Furthermore, out of the 67 miRNAs, we found 12 differently
expressed mature miRNAs to be associated with the same trait
(Table 4). Plasma levels of miR-126-3p, miR-126-5p, miR-10b-5p,
miR-148a-3p, miR-199a-1-3p, miR-199a-1-5p, miR-125b-5p, and
miR-100-5p were positively associated with serum TC levels. In
contrast, miR-6886 was negatively associated with serum TC levels.
A negative association between miR-126-5p and miR-126-3p and
CHD was found. Furthermore, we observed a negative association
between miR-4681 levels and WC. An overview of the number of
associated miRNAs using different omics data is illustrated in
Figure 4.

Furthermore, out of 22 miRNAs that were associated with at
least one cardiometabolic trait, we found validated target genes
for 14 miRNAs. We tested the association between these target
genes and cardiometabolic traits using summary statistics GWAS
data. After correcting for multiple testing, based on the number
of tested SNPs in the target genes of a miRNA, we found 24
unique target genes for 9 of the 14 miRNAs to be associated with
cardiometabolic traits (Supplementary Table S9).

Finally, we sought overlapping miRNAs that were associated
with the same cardiometabolic trait in the three different omics
analyses (Supplementary Table S10). Since not all related
phenotypes were available within the RS and not all miRNAs
were expressed, we tested 64 miRNAs that had DNAmethylation
sites and 22 mature miRNAs that were available for miRNA
expression analyses using the RS. We found five miRNAs,
including miR-10b-5p, miR-148a-3p, miR-100-5p, miR-125b-
5p, and miR-6886 that had at least one CpG and of which the
expression was also associated with the same cardiometabolic
trait. After prioritization based on the suggested criteria for
potential functionality, miR-10b-5p, miR-148a-3p, miR-125b-
5p, and miR-100-5p were highlighted as the most likely miRNAs
involved in the pathogenesis of risk factors for T2D and CHD
(Table 5).
TABLE 4 | Plasma expression levels of miRNAs associated with cardiometabolic
traits.

miRNA b-coefficient P value Associated trait

miR-126-3p 0.379 1.09x10-14 TC†

miR-10b-5p 0.352 3.30x10-11 TC†

miR-126-5p 0.258 3.75x10-11 TC†

miR-148a-3p 0.189 8.01x10-06 TC†

miR-199a-1-3p 0.171 3.38x10-05 TC†

miR-125b-5p 0.159 2.43x10-03 TC†

miR-100-5p 0.141 3.15x10-03 TC†

miR-6886-3p -0.083 9.49x10-03 TC†

miR-126-5p -0.365 1.24x10-02 CHD‡

miR-4681 -0.440 2.13x10-02 WC*
miR-199a-1-5p 0.074 3.38x10-02 TC†

miR-126-3p -0.385 3.54x10-02 CHD‡
Febru
ary 2020 | Volum
Model 1: adjusted for: age, gender, current smoking.
*Model 1 + BMI.
†Model 1 + BMI, lipid medication.
‡Model 1 + BMI, blood pressure lowering medication, lipid medication.
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DISCUSSION

In this study, we integrated different population-based omics
data (including genetics, epigenetics and miRNA expression) to
identify miRNAs associated with cardiometabolic traits. Genetic
variants related to 67 miRNAs were associated with the studied
traits. Alterations in DNA methylation of CpG sites annotated to
38 of these miRNAs and plasma expression levels of 8 of them
were also associated with the same trait. In principle, the
association between a miRNA and trait of interest in more
than two layers of omics may strengthen its potential to play a
role in the disease underlying mechanisms. In this context, we
sought to identify overlap between miRNAs that were associated
with the same cardiometabolic trait across different approaches.
This integration analysis revealed the correlation between four
miRNAs (miR-10b-5p, miR-148a-3p, miR-125b-5p, and miR-
100-5p) and lipid traits.

MiR-10b-5p is a highly conserved miRNA across multiple
species and is located inside the homeobox D cluster on
chromosome 2. A recent study showed a mediating role for
miR-10b between obesity and primary breast cancer (Meerson
et al., 2019). Moreover, previous research in mice found a
negative regulatory role of miR-10b on cholesterol efflux via
targeting the ATP binding cassette transporter gene (ABCA1)
(Wang et al., 2012). MiR-10b has been also shown to be involved
in the progression of atherosclerosis, which is a major cause of
cardiovascular disease (Wang D. et al., 2018). We found a genetic
variant (rs532436;A > G) annotated to the Alpha 1-3-N-
acetylgalactosaminyltransferase (ABO) gene to be positively
associated with LDL, TC, CAD, and T2D. The ABO gene has
been linked to cholesterol absorption and cardiovascular disease
(Silbernagel et al., 2013). Rs532436, located on chromosome 9,
has been reported as trans-miR-eQTL for miR-10b-5p (Nikpay
et al., 2019). In this study, we further showed that a CpG site
(cg25820279) annotated to Homeobox D3 (HOXD3), is located
in the regulatory region of miR-10b and is associated with total
cholesterol levels in serum. In addition, the expression level of
miR-10b-5p in plasma showed a positive association with total
Frontiers in Genetics | www.frontiersin.org 9
cholesterol levels, which further support the crucial role of miR-
10b-5p in lipid metabolism.

MiR-148a-3p has been shown to control the LDL uptake and
cholesterol efflux through affecting the expression of low-density
lipoprotein receptor (LDLR) (Goedeke et al., 2015). Moreover, in
vivo studies in mouse models have confirmed that miR-148a-3p
is upregulated in adipogenesis and highly expressed in liver tissue
(Gailhouste et al., 2013). We found rs4722551, located ~2kb
upstream of miR-148a, associated with LDL, TC and TG. It has
been suggested previously that a large part of regulatory elements
such as promoter regions are located within +/-2kb of pre-
miRNAs (Saini et al., 2007). Rs4722551 has previously been
reported to be positively associated with serum lipid levels via
cis-miR-eQTL in liver tissue (Wagschal et al., 2015). Our findings
may shed light on the mechanism that associates the rs4722551
risk allele (T > C) with an increased miR-148a-3p expression,
which is subsequently associated with higher serum cholesterol
levels. Furthermore, our results showed a CpG site (cg18188200)
in the regulatory region of miR-148a to be associated with LDL,
TC, and TG and demonstrated that the plasma expression level
of miR-148a-3p is also associated with total serum cholesterol
levels. These data are in line with the findings from previous
studies reporting a functional role for miR-148a-3p in lipid
metabolism confirmed by various in vivo and in vitro
validation experiments (Goedeke et al., 2015; Wagschal
et al., 2015).

We found strong associations of rs7117842, located ~512kb
upstream of miR-100-5p/125b-5p, with TC, LDL, and HDL,
suggesting these two miRNAs to play a role in lipid metabolism.
The SNP has been previously shown to be negatively associated
with the expression levels of miR-100-5p and miR-125b-5p in
blood (Huan et al., 2015). In our analysis, plasma expression
levels of miR-100-5p and miR-125b-5p are positively associated
with TC. These findings could be interpreted in a way that
carrying the risk allele of rs7117842 (T > C) is associated with
decreased expression of miR-100-5p/125b-5p, which is
associated with a reduced increase of total serum cholesterol
levels. In addition, cg26363555, located in the promoter region of
FIGURE 4 | Overview of miRNAs associated with cardiometabolic traits by integrating three omics layers.
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miR-125b-5p, was previously reported to act as miR-eQTM by
changing the expression levels of both miR-100-5p and miR-
125b-5p (Huan et al., 2019). We found cg26363555 associated
with HDL in the RS. In addition, cg03891346 annotated to
MIR125B1 was reported to be associated with the expression
level of miR-100-5p (Huan et al., 2019). Our DNA methylation
analysis results showed the association between cg03891346 and
waist circumference in the RS. Our findings are partly in line
with previous research investigating the role of miR-125b-5p on
adipogenesis where it is observed that miR-125b-5p
downregulates the anti-adipogenic gene MMP11 in human,
indicating that miR-125b-5p via MMP11 positively regulate
adipogenesis (Rockstroh et al., 2016). Conversely, the same
study demonstrated a direct effect of reduction in fat
accumulation through overexpression of miR-125b-5p
(Rockstroh et al., 2016). In addition to the role of miR-125b-
5p on lipid metabolism in human, its regulatory role has been
investigated in other organisms including zebrafish and mice.
Over-expression of miR-125b in zebrafish is linked to lipid
metabolism in brain, heart and liver tissue (Wang X. et al.,
2018). This study observed that overexpression of miR-125b
inhibits osteoblastic differentiation and promotes fat synthesis.
Moreover, the expression of miR-125b is activated by estrogen
via ERa in vitro and in vivo in mice, in which they demonstrated
that miR-125b can limit fat accumulation in liver tissue (Zhang
et al., 2015). These contradictory findings may implicate that
miR-125b-5p plays an important role in lipid metabolism via a
complex molecular cascade. However, the role of miR-100-5p in
regard to lipid metabolism and cardiovascular disease yet to be
further investigated. Since miR-100-5p and miR-125b-5p are
located in the same locus on chromosome 11, it could be possible
that miR-125b-5p is the driving miRNA in relation to the
associated lipid traits. Future research is warranted to confirm
the regulatory role of miR-100-5p in lipid metabolism.

The main strengths of this study include the use of robust data
from the large-scaleGWASstudies andmulti-omics implementation
of a large sample size in the Rotterdam Study, which indicates with
moreconfidence thatmiRNAsare involved in thepathophysiologyof
cardiometabolicdiseases.Ourstudy,however,doesnot comewithout
limitations.First, our studydesign isbasedonassociations rather than
causations, therefore this approach does not prove that the identified
miRNAs play a causal role in the studied traits. To test for causal
inferences between miRNAs and disease risk, future studies should
test mediating effects and incorporate functional follow-up
experiments. Furthermore, our study design was based on a cross-
sectional approach, which means that individuals included in this
study were not free of CHD or T2D. In regard to test whether the
identifiedmiRNAs are associated with the risk of developing disease,
future longitudinal studies are warranted. Another limited factor is
thatwewere unable to link all identifiedmiRNAswith epigenetic and
expression analyses in the RS, since not all phenotypic data were
available for each trait of interest norwere allmiRNAswell-expressed
in plasma. In addition, different sub cohorts of the RS were used for
DNA methylation and miRNA expression analysis due to the
availability of data. DNA methylation and miRNA signatures are
dynamic over time and could have yield in confounding results. The
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challenge of this multi-omics approach includes the intra-individual
variation and thereby lack of generalizability between datasets.
However, the sub cohorts of RS-II and RS-III are extensions of the
RS-Icohort.Previousepigenetic (DNAmethylation)studiesusingthe
RS data showed that the results are replicated after additional
adjustment for sub cohort (Ligthart et al., 2016; Braun et al., 2017;
Nano et al., 2017). This may indicate that the intra-individual
differences between variables in these RS sub cohorts have not
significantly affected by exposing to different environmental factors.
Yet in anoptimal settingone shouldapply themulti-omics analysis in
the same individuals and the same timeframe. Furthermore, we used
whole blood to determine DNA methylation and plasma to check
expression levels of miRNAs, which are not the most relevant tissue
for cardiometabolic traits. This could have resulted in overlooking
some of the miRNAs, but the found associations are comparable
because both analyses were performed in the same tissue. In an
optimal setting one should examine the observed associations using
next-generation sequencing covering all miRNAs in target tissues
(e.g., adipose tissue, heart, pancreas and liver). Such infrastructure is
not yet available in large epidemiologic studies with validated clinical
data.However, for the use ofmiRNAs as targets for early diagnosis or
progression of T2D and CHD, bloodmight be a very good test tissue
since it is a non-invasive method for biomarker measurements in
clinical diagnosis. In addition, regarding potential missed
cardiometabolic-associated SNPs, our study could have benefited
fromdenser genotypingmethods including1000Genomesproject or
the Haplotype Reference Consortium (HRC).
CONCLUSION

In this study, we systematically examined the association ofmiRNAs
with cardiometabolic risk factors and diseases using population-
based genetic, DNA methylation and miRNA expression data. By
integrating these omics data we found several cardiometabolic-
associated miRNAs, such as miR-10b-5p, miR-148a-3p, miR-
125b-5p, and miR-100-5p involved in lipid metabolism, that can
be viewed as potential biomarkers for early diagnosis or progression
of T2D and CHD. Future experimental studies are warranted to
elucidate pathways underlying the link between these miRNAs and
cardiometabolic risk factors such as dyslipidemia, central adiposity
and elevated blood glucose levels.
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