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The RNA polymerase II transcription subunit 12 homolog (MED12) is a member of the
mediator complex, which plays a critical role in RNA transcription. Mutations in MED12
cause X-linked intellectual disability and other anomalies collectively grouped as MED12-
related disorders. While MED12 mutations have been most commonly reported in male
patients, we present the case of a 1-year-old girl with clinical characteristics similar to
MED12-related disorders. To explore the clinical characteristics of the condition and its
possible pathogenesis, we analyzed the patient’s clinical data; genetic testing by whole-
exome sequencing revealed a de novo heterozygous mutation (c.1249-1G > C) in
MED12. Further cDNA experiments revealed that the patient had an abnormal splicing
at the skipping of exon9, which may have produced a truncated protein. qPCR showed
decreased MED12 gene expression level in the patient, and an X-chromosome
inactivation test confirmed a skewed inactivation of the X-chromosome. The
lymphoblast transcription levels of the genes involved in the Gli3-dependent sonic
hedgehog (SHH) signaling pathway, namely, CREB5, BMP4, and NEUROG2, were
found to be significantly elevated compared with those of her parents and sex- and
age-matched controls. Our results support the view that MED12 mutations may
dysregulate the SHH signaling pathway, which may have accounted for the aberrant
craniofacial morphology of our patient.

Keywords: MED12, mutation, X-chromosome inactivation, SHH signaling pathway, craniofacial morphology,
intellectual disability
INTRODUCTION

The RNA polymerase II transcription subunit 12 homolog (MED12) gene-expressed protein is
involved in the formation of a mediator complex (Allen and Taatjes, 2015) that mediates the
transcription of RNA polymerase II and transmits information between RNA polymerase II and the
transcription factors (Conaway et al., 2005). Mutations of the MED12 gene can cause MED12-
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related syndrome, a disease that varies in its clinical
manifestations (Charzewska et al., 2018) and currently has at
least four different subtypes: Opitz-Kaveggia syndrome (FGS1);
Lujan syndrome (LS); Ohdo syndrome, the Maat-Kievit-Brunner
type (OSMKB); and nonspecific intellectual disability (NSID)
(Graham and Schwartz, 2013; Tzschach et al., 2015). As the
MED12 gene is located on the X-chromosome, related syndromes
exhibit X-linked inheritance and—despite the condition’s low
incidence—are thus more common among men (Lesca et al.,
2013). To date, the literature features only six reported variants in
females with a history ofMED12-related syndrome. While no cases
of MED12-related syndrome have been reported in China, we
recently encountered the case of a 1-year-old girl whose clinical
characteristics (delayed development, facial features) were
consistent with those of MED12-related syndromes. Whole-
exome sequencing revealed that the patient had a novel MED12
mutation. Herein, we present the clinical characteristics of this
patient and explore the possible underlying pathogenesis of
the disease.
MATERIALS AND METHODS

Compliance With Ethical Standards
This study was reviewed and approved by the Ethics Committee of
Shanghai Children’s Hospital. Informed consents were obtained
from the parents of the patient and the legal representatives of a sex-
and age-matched control group for using their blood samples for
genetic analysis. Written informed consents to participate in this
study and for publication were provided by the legal representatives
of the participants. The study complied with Chinese bioethics laws
as well as the Helsinki declaration and its later amendments.
Exome Sequencing
The genomic DNA of the patient’s nuclear family was sent for
exome sequencing. The experimental protocols used were similar
to those described in a previous study (Zhang et al., 2018). In
short, genomic DNA was isolated from the patient and her
parents’ blood and was sheared using the Covaris Ultra
Sonicator. Exome capturing was carried out using IDTxGen
Exome Research Panel (IDT, USA), and paired-end sequencing
was performed on Hiseq 2500 platform (Illumina, Inc., CA,
USA) to obtain 150-bp reads. Burrows-Wheeler alignment tool
(BWA, version 0.7.15) software was used to align paired-end
reads to the NCBI human reference genome (GRCh37/hg19).
Samtools (http://samtools.sourceforge.net/) and Pindel analysis
software (http://gmt.genome.wustl.edu/packages/pindel/) were
used to analyze single-nucleotide polymorphisms (SNPs) and
indels relative to the reference sequence. The identified variant
was further annotated and filtered by the Ingenuity Variant
Analysis (https://variants.ingenuity.com). Common variants
were filtered based on their frequencies [minor allele frequency
(MAF) < 0.05]. Nonsynonymous changes were then evaluated
using the SIFT software (http://sift.jcvi.org) and Polyphen
software (http://genetics.bwh.harvard.edu/pph2).
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Agarose Gel Electrophoresis for
DNA Sequencing
After electrophoresis, the region of the gel containing the desired
size range of DNA was excised, and the DNA was subsequently
extracted from the gel and purified for further sequencing. Gel
purified products were sequenced with an ABI 3730XL DNA
Sequencer (Thermo Fisher Scientific, Inc., MA, USA). The
results of sequences were analyzed with DNASTAR software
(http://www.dnastar.com/).

Real-Time Quantitative PCR (qPCR)
Analysis for Transcription Levels of
MED12 Gene and Sonic Hedgehog (SHH)‐
Signaling Genes
Total RNA from the patient and her parents was extracted using
a QIAGEN RNA Preparation Kit (QIAGEN Inc., CO, Germany).
cDNA from these samples was subjected to reverse transcription
and synthesized using a PrimeScript™ Strand cDNA Synthesis
Kit/RT Master Mix (Takara Shuzo Co., Ltd.). Primer (A) was
designed for the MED12 gene, and primers (B)–(D) were
designed for the three SHH signaling genes: CREB5, BMP4,
and NEUROG2. The qPCR primers used in this study are
described in Supplementary Table 1. Real‐time qPCR was
conducted using a SYBR Premix Ex Taq II (Tli RNase H plus)
(Takara Shuzo Co., Ltd) in a LightCycler® 96 Instrument (Roche
lnc., AG Schweiz) according to the manufacturer protocols. The
relative expression of MED12 and the transcription levels of
the SHH signaling genes (BMP4, CREB5, and NEUROG2) in the
patient’s nuclear family were investigated with RT-qPCR, as well
as in a sex- and age-matched control group. Housekeeping gene
B2M was used as a relative quantity. Each dataset for the
transcription levels was generated from triplicate studies, and
the data were presented as mean ± SEM. Statistical analyses of
qPCR data were performed for comparison of the means of
samples using the 2-DDCt method. Asterisks denote statistically
significant differences (Student t test, **P < 0.05, ***P < 0.01).

X-Chromosome Inactivation Pattern
Analysis Based on Human Androgen
Receptor Gene Polymorphism
To test the X-chromosome inactivation pattern of the patient and
her nuclear family, we carried out a methylation-based analysis on
the human androgen receptor (AR) gene (Allen et al., 1992),
according to a reported protocol (Kassim et al., 2004). Briefly,
200 ng of DNA from peripheral blood cells was digested with HpaII
(New England Biolabs, Ipswich, MA, USA) at 37°C overnight
followed by enzymatic inactivation by heating at 95°C for 10
min. To control the quality of the test results, we used digested
and nondigested DNA samples as a pattern to amplify the AR.
Separated PCR amplification was carried out on the digested and
undigested DNA by using primers specific for the methylation
regions of the STR (Short Tandem Repeats) of exon1 in AR. The
PCR conditions were as follows: 95°C for 5 min, 28× (95°C for 30 s,
62°C for 30 s, 72°C for 30 min, and 72°C for 7 min). Sequences of
the oligonucleotides used to amplify the CAG STR of exon1 in the
AR gene were as follows: forward 5′-GCTGTGAAGGTTGC
February 2020 | Volume 11 | Article 129

http://samtools.sourceforge.net/
http://gmt.genome.wustl.edu/packages/pindel/
https://variants.ingenuity.com
http://sift.jcvi.org
http://genetics.bwh.harvard.edu/pph2
http://www.dnastar.com/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. A Novel Splicing Mutation in MED12
TTCCTCAT-3′ and reverse 5′-CGTCCAAGACCTACCG
AGGAGCTT-3′. The fluorescence-labeled PCR products were
denatured at 95°C for 5 min and further analyzed by capillary gel
electrophoresis using Image Lab software. Analysis was performed
with Sub-Cell GT Agarose Gel Electrophoresis Systems (Bio-Rad
Laboratories, Hercules, CA, USA).
RESULTS

Clinical Description
A 1-year-old female patient was brought to the Department of
Neurology, Shanghai Children’s Hospital, with the chief
complaint of a development delay. She was delivered at term
with a birth weight of 3,000 g. There was no history of suffocation
at birth or known problems during pregnancy. The parents were
not close relatives and had no family history of genetic disease.
There was no history of seizures, but the patient had delayed
developmental milestones. She could not sit well or speak simple
words such as “papa.” The occipito-frontal circumference was 47
cm (1 SD+). The area of the anterior fontanel was 2 cm × 2 cm.
The patient had distinctive facial characteristics: a long forehead,
low ear position, prominent nasal bridge, short philtrum, and
repaired cleft lip and palate (Figure 1A). She could raise her head
for a long time; however, she could not sit well or stand up by
herself. Early psychomotor development was delayed compared
with the control group. The girl had generalized hypotonia with
overextended toe joints (Figure 1B). Magnetic resonance
imaging (MRI) showed a thin corpus callosum (Figure 1C);
there were no other abnormalities. Cardiac ultrasonography
showed atrioventricular canal defect, pulmonary stenosis, small
internal diameter of the aortic isthmus, and decreased aortic flow
velocity. Other laboratory investigations, such as liver and kidney
function tests, blood sugar, complete blood count, serum amino
acids, lactic acid, pyruvate, creatine kinase, and urine amino and
organic acids were all within the normal limits. No abnormalities
were found on electroencephalography examination.

Whole-Exome and Sanger Sequencing
The MED12 gene (OMIM: 300188; NM_005120.3) c. 1249-1G >
C novel heterozygous mutation was detected in the whole-blood
genomic DNA of the patient, which was confirmed by Sanger
sequencing. The results showed that the parents have no
variation at this site (Figure 1D). The mutation was present in
the intron at a critical splicing position. The mutation seen was
rare and not reported in the ExAC, ESP, or 1000G databases
(MAF = 0). According to the American College of Medical
Genetics and Genomics (ACMG) standards for interpretation
of sequence variation, the identified novel MED12 mutation was
categorized as pathogenic and might result in the skipping
of exon9.

Skipping of Exon9 in the cDNA of the
MED12 Gene in the Patient
To test whether MED12 c.1249-1G > C heterozygous mutation
results in exon9 skipping, we prepared cDNA samples from the
Frontiers in Genetics | www.frontiersin.org 3
total RNA extracted from this nuclear family. A pair of primers
(Supplementary Table 1) located upstream and downstream of
exon9 of the MED12 gene was synthesized. After the PCR
products were run, the resulting electropherogram revealed
that the patient had two bands, one band like her parents’ and
the other truncated band (Figure 1E). The PCR product strips of
the patient and her parents were purified by gelation and further
sequenced. Analysis of the sequence from the gel purified
product of the patient’s truncated band showed an exon9 skip
when compared with the normal sequence of MED12 gene
(Figure 1F, G). The skipping of exon9 in the MED12 gene was
speculated to result in a truncated protein without function.

The Transcription Levels of MED12
and SHH‐Signaling Genes in the Patient
The results showed that the patient had a significantly lower level
ofMED12 expression than did her parents compared with a sex-
and age-matched control group (Figure 2A). Furthermore, RT-
qPCR was used to ascertain the expression levels of CREB5,
BMP4, and NEUROG2. We found that the patient’s transcription
levels of these SHH signaling genes were significantly higher than
those of her parents and sex- and age-matched controls (Figure
2B; Supplementary Figure 1).

Study Skewed X-Chromosome
Inactivation Pattern in the Patient
Microsatellite PCR products of the AR with and without HpaII
digestion have shown that the number of repeats within the AR
gene determines the size of the allele. In this patient, PCR
products derived from the undigested DNA yielded two peaks
because of the different numbers of CAG repeats of the two
alleles, 275 bp from the father and 285 bp from the mother
(Figure 3). The X-inactivation pattern was considered skewed if
the proportion of the two alleles after digestion was at least 20:80
(Giorgio et al., 2017). The experiment revealed that the patient
had a skewed X-inactivation pattern (18%:82%) with the paternal
allele highly inactivated.
DISCUSSION

Located on the X-chromosome, the human MED12 gene consists
of 45 GC-repeat-rich exons with a span of 25 kb. The product of
the MED12 gene has been implicated in the formation of a
macromolecular complex known as Mediator (Kornberg, 2005),
which primarily assists in the transcription of RNA polymerase II
and transmitting information between RNA polymerase II and
transcription factors (Conaway et al., 2005). Essential for the
maintenance of CDK8 molecular activity, MED12 is considered
an important component of the complex (Yin and Wang, 2014).
These mediator complexes play important regulatory roles in
receptor tyrosine kinases, nuclear receptors, the SHH signaling
pathway, and the Wnt signaling pathways (Rocha et al., 2010), as
well as involved gene expressions in cell growth, homeostasis,
development, and differentiation (Donnio et al., 2017). Mutations
in MED12 can cause diseases with different clinical subtypes.
February 2020 | Volume 11 | Article 129
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Mutations in MED12 at Xq13 causing X-linked intellectual
disability (XLID) called MED12-related disorders, which include
four phenotypes: FGS1, LS, OSMKB, and NSID (Graham and
Schwartz, 2013; Tzschach et al., 2015). FGS1 and LS are two allelic
XLID syndromes, with mutations in the MED12 gene, that share
some overlapping clinical features, such as dysgenesis of the
corpus callosum, macrocephaly, hypotonia, intellectual disability,
and behavioral disturbances (Risheg et al., 2007; Schwartz et al.,
2007). FGS1 is further characterized by absolute or relative
macrocephaly, long forehead, downslanting palpebral fissures,
small and simple ears, constipation and/or anal anomalies,
Frontiers in Genetics | www.frontiersin.org 4
broad thumbs and halluces, and characteristic behavior (Opitz
and Kaveggia, 1974; Clark et al., 2009). LS can be distinguished by
tall stature, long and thin face, hypernasal voice, hyperextensible
digits, high nasal root, and short philtrum (Lujan et al., 1984;
Schwartz et al., 2007). OSMKB differs from other phenotypes by
the facial features such as blepharophimosis, facial coarsening,
thick alae nasi, and triangular face. But common spectrums such
as skeletal, gastrointestinal, and genital urinary anomalies in the
FGS1 and LS are relatively mild or absent in patients with OSMKB
(Verloes et al., 2006; Langley et al., 2015). The clinical phenotypes
of NSID include intellectual disability and behavioral disorder
FIGURE 1 | (A–C) The clinical characteristics of the patient at age 1 were consistent with the phenotype of MED12-related disease: (A) long forehead, low ear
position, prominent nasal bridge, short philtrum, and repaired cleft lip and palate. (B) The hypotonia and the overextension joints of the thumb and toe. (C) Magnetic
resonance imaging (T1- and T2-weighted and T2-fluid attenuated inversion recovery) showed that the corpus callosum was thin. (D) The sequences of genomic
DNA in the patient’s nuclear family with the detection of a novel heterozygous splicing variant of MED12 c.1249-1G > C in a girl patient. (E) PCR results of cDNA
from the patient’s nuclear family. The PCR products of the patient appeared to be two bands: one band like her parents’ and the other truncated band. (F) The
result of the sequences from the gel purified products of the parents and the patient’s normal band. (G) The result of the sequence from the gel purified product of
the patient’s truncated band showed the patient had an exon9 skip when compared with the normal sequence of MED12 gene.
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https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Wang et al. A Novel Splicing Mutation in MED12
without significant dysmorphic features or congenital
malformations characteristic of FGS1 and LS (Bouazzi et al.,
2015; Prontera et al., 2016).

Our patient presented with the clinical features that
resembled those associated with both FGS1 and LS:
macrocephaly, dysgenesis of the corpus callosum, hypotonia,
Frontiers in Genetics | www.frontiersin.org 5
development delay, long and thin face, hypernasal voice, high
nasal root, repaired cleft lip and palate, short philtrum, and
hyperextensible digits. Thus, it is more appropriate to consider a
“MED12-related disorder” than to attribute a definite syndrome.

To date, at least 35MED12 genetic variants have been reported
relevant to MED12-related disorders. All were missense
mutations, except one frameshift mutation (Murakami et al.,
2019). These previously reported variants were concerned
evolutionary conserved sites (Supplementary Table 2;
Supplementary Figure 2).

MED12-related disorders are defined as X-linked recessive
genetic diseases. In the families of patients with MED12-related
diseases, carrier females are usually unaffected (Graham and
Schwartz, 2013). Up to date, two female carriers with the clinical
symptoms (Gurrieri and Neri, 1991; Rump et al., 2011) and six
MED12 variants, c.5898dupC, c.5922G > T, c.2312T > C,
c.2545T > C, c.3443G > A, c.514G > C (Lesca et al., 2013;
Bouazzi et al., 2015; Prontera et al., 2016; Popp et al., 2017;
Charzewska et al., 2018; Murakami et al., 2019), have been
reported with intellectual deficiency (ID) and clinical
variability. The first time that intellectual disability and
aberrant facial development in a female carrier, similar to that
of her brother, was reported in 1991 (Gurrieri and Neri, 1991).
Later, a single carrier female was reported to have mild learning
problems with no cognitive evaluation provided (Rump et al.,
2011). A novel frameshift mutation c.5898dupC was then
reported in a five-generation family including 10 males and 1
female affected with profound non-syndromic XLID. Variable
cognitive impairment was similarly observed in seven
heterozygous females in this family. There was no correlation
between cognitive function and X-chromosome inactivation
profiles in blood cells (Lesca et al., 2013). A novel variant
c.5922G > C was reported in three brothers with severe non-
syndromic ID, mild dysmorphic features, along with their
heterozygous mother with a mild phenotype characterized by
borderline ID and language delay (Bouazzi et al., 2015). Another
novel missense mutation c.2312T > C was detected in two males
and one female in a family, with severe and mild ID, respectively,
with phenotype that overlap in part with those of the patients
reported on c.5898dupC and c.5922G > C. In this family, the
affected female had a completely skewed XCI pattern (Prontera
et al., 2016). The three mutations (c.5898dupC, c.5922G > T, and
c.2312T > C) with non-syndromic XLID shared the similar
condition that ID, clinical manifestation were milder in
heterozygous females in the family, but were particularly severe
in the affected males (severe ID and absent or deficient language).
Another de novo missense variant c.2545T > C was reported in a
girl with severe but non-syndromic ID. This variant might be
pathogenic in female, but remains unclear (Popp et al., 2017).
Two mutations, c.3443G > A and c.514G > C, have been
described to cause OSMKB. c.3443G > A, a known variant,
reported causing OSMKB in males, was first reported in affected
females (two affected daughters and their carrier mother) by
Charzewska in 2018. XCI analysis in this family revealed a mildly
skewed pattern in the mother (82:18) and a skewed pattern in her
two affected daughters (100:0 and 85:15) (Charzewska et al., 2018).
FIGURE 2 | (A) The relative expression of MED12 was investigated with RT-
qPCR in the patient’s nuclear family, as well as in a sex- and age-matched
control group. The patient exhibited significantly lower expression of the
MED12 gene c.1249-1G > C relative to that of her parents. The discrepancy
in the levels of MED12 was not related to age or sex according to the results
of the control group. (B) The transcription levels of the sonic hedgehog
(SHH)-signaling genes (BMP4, CREB5, and NEUROG2) were investigated
with RT-qPCR in the patient’s nuclear family, as well as in a sex- and age-
matched control group. The expressions of BMP4, CREB5, and NEUROG2
were all significantly enhanced in our patient relative to that in her parents and
a sex- and age-matched control group (Supplementary Figure 1),
suggesting the hyperacitvated output of GLI3-dependent SHH signaling. Each
dataset for the transcription levels in (A) and (B) was generated from triplicate
studies presented as mean ± SEM. Statistical analyses of the qPCR data
were performed to compare the means of the samples according to the 2-
DDCtmethod. Asterisks denote statistically significant differences (Student t
test, **P < 0.05, ***P < 0.01).
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FIGURE 3 | PCR products of the androgen receptor (AR) with and without HpaII digestion of the patient’s nuclear family. The peak represents the amplified AR
allele. The PCR products of the patient derived from the undigested DNA yielded two peaks because of the different numbers of CAG repeats in the two alleles (275
bp from the father and 285 bp from the mother). However, after HpaII was digested, one peak (275 bp) appeared hypermethylated. The results revealed a skewed
X-inactivation pattern in the patient with the paternal allele highly inactivated.
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A novel de novo variant c.514G > C causing severe ID and facial
dysmorphism in a female patient was also reported consistent with
OSMKB. Analysis of XCI revealed a skewed pattern (87:13)
(Murakami et al., 2019).

To date, only six MED12 mutations were reported in females
with mental retardation and variable dysmorphic features. XCI
patterns have not been correlated to phenotype in female carriers
and patients for MED12-related disorders (Lesca et al., 2013;
Bouazzi et al., 2015; Prontera et al., 2016; Charzewska et al.,
2018). With the increase of family or sporadic affected females
reported in variable clinical expression, the clinical spectrum of
MED12-related disorder is wider than previously reported. But the
mechanism of pathogenesis in females has not been fully elucidated.

Here, and to the best of our knowledge, we present a novel
splicing MED12 gene (OMIM: 300188) mutation c.1249-1G > C
that occurred in a female patient with significant clinical
symptoms. The cDNA sequencing exhibited an exon9 skip in
the patient. Furthermore, we found that the expression level of
the MED12 gene in the patient was significantly lower than the
normal levels observed in her parents. The discrepancy in
the levels of MED12 was not related to age or sex under the
comparison with a sex- and age-matched control group.

Since MED12-related syndromes exhibit X-linked inheritance,
most female carriers are usually unaffected or with mild clinical
symptoms (Graham and Schwartz, 2013; Prontera et al., 2016);
however, the patient exhibited clinical features of MED12-related
disease significantly.Wepredicted that the decrease in the expression
of theMED12 genemay be related to the X-chromosome inactivated
by methylation. We subsequently conducted an X-chromosome
inactivation study in the patient’s nuclear family, according to the
method of methylation-sensitive PCR and analysis of androgen
receptor CAG repeat polymorphism. The result showed that X-
chromosome inactivation is skewed in this patent. We hypothesized
that the causative pathogenesis in the patient may be related to the
presenceof thepatient’s spontaneouslymutatedgeneon theactivated
X-chromosome which was unable to produce sufficient levels of
MED12, the critical component of themediator complexes playing a
key role inmany signaling pathways, thus leading to the disease. This
presumption should be further confirmed.

Based on previous studies, mutations of MED12 may cause
dysregulations in the SHH signaling pathway (Zhou et al., 2006;
Srivastava et al., 2019), we examined the transcription levels
corresponding to the three Gli3-dependent SHH signaling genes
(Srivastava et al., 2019) in the nuclear family of the patient and a
control group: CREB5, BMP4, and NEUROG2. The significant
elevation in transcription levels of all these three genes in our
patient with the MED12 mutation may support the view that the
mutation ofMED12 influences the regulation of the Gli3-dependent
SHH signaling pathway to contribute to the craniofacial anomalies
and multiple organ malformations of MED12-related XLID
syndromes (Zhou et al., 2012; Srivastava et al., 2019).

To the best of our knowledge, the present study is the first
novel splicing mutation reported in MED12 gene-related disease
in a female patient, with the clinical phenotype ofMED12-related
disorders. Our preliminary research put forward the possible
mechanisms underlying the pathogenesis of our patient. The
Frontiers in Genetics | www.frontiersin.org 7
speculation of whether the patient’s spontaneously mutated
MED12 gene was on the activated X-chromosome remained to
be further confirmed. The novel de novo MED12mutation in our
female patient, which leads to significant clinical manifestations,
raises the concern about the study in the mechanism of
pathogenesis of heterozygous females. Furthermore, the
induction of the patient’s naturally formed somatic cells into
stem cells would be a valuable avenue for future research to
explore possible functional changes induced by the mutation and
further clarify the function of the MED12 gene.
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SUPPLEMENTARY FIGURE 1 | RT-qPCR was used to ascertain the
expression levels of three target genes involved in the GLI3-dependent sonic
hedgehog (SHH) signaling pathway: CREB5, BMP4, and NEUROG2. The
expression levels of CREB5, BMP4, and NEUROGwere all significantly enhanced in
our patient relative to those in her parents and a sex- and age-matched control
group.

SUPPLEMENTARY FIGURE 2 | (A) Based on the previously reported variants,
fifteen MED12 mutations causing MED12-related disorders covering four
phenotypes are clustered around the established functional Domains ofMED12. (B)
Frontiers in Genetics | www.frontiersin.org 8
A conservative study on these 15 MED12 missense mutation sites. Red arrows
indicate heterozygous point mutation sites in humans relative to those in other
species. These mutation sites were all located in a conservative position in evolution.

SUPPLEMENTARY TABLE 1 | Primers used in this study are described in
Table 1.

SUPPLEMENTARY TABLE 2 | A review of previous studies on 15 meaningful
missense mutations inMED12 predicted to be pathogenic or likely pathogenic in the
ClinVar Database (https://www.ncbi.nlm.nih.gov/clinvar) is summarized in Table 2.
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