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Summary: Genotype Query Tools (GQT) were developed to discover disease-causing
variations from billions of genotypes and millions of genomes, processes data at
substantially higher speed over other existing methods. While GQT has been available
to a wide audience as command-line software, the difficulty of constructing queries
among non-IT or non-bioinformatics researchers has limited its applicability. To overcome
this limitation, we developed webGQT, an easy-to-use tool with a graphical user interface.
With pre-built queries across three modules, webGQT allows for pedigree analysis, case-
control studies, and population frequency studies. As a package, webGQT allows
researchers with less or no applied bioinformatics/IT experience to mine potential
disease-causing variants from billions.

Results: webGQT offers a flexible and easy-to-use interface for model-based candidate
variant filtering for Mendelian diseases from thousands to millions of genomes at a
reduced computation time. Additionally, webGQT provides adjustable parameters to
reduce false positives and rescue missing genotypes across all modules. Using a case
study, we demonstrate the applicability of webGQT to query non-human genomes. In
addition, we demonstrate the scalability of webGQT on large data sets by implementing
complex population-specific queries on the 1000 Genomes Project Phase 3 data set,
which includes 8.4 billion variants from 2504 individuals across 26 different populations.
Furthermore, webGQT supports filtering single-nucleotide variants, short insertions/
deletions, copy number or any other variant genotypes supported by the VCF
specification. Our results show that webGQT can be used as an online web service, or
deployed on personal computers or local servers within research groups.

Availability: webGQT is made available to the users in three forms: 1) as a webserver
available at https://vm1138.kaj.pouta.csc.fi/webgqt/, 2) as an R package to install on
personal computers, and 3) as part of the same R package to configure on the user's own
servers. The application is available for installation at https://github.com/arumds/webgqt.
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INTRODUCTION

Exome sequencing, genome sequencing, and gene panel
sequencing methods have become the de facto methods for
studying the heritability of human and non-human genetic
diseases involving small pedigrees to large-scale population
cohorts. The current wealth of sequenced genomes produces
billions of genotypes in the variant call format (VCF), requiring
publicly available programs to effectively and rapidly filter
candidate variants for personalized disease and population
genomics. There are tools to analyze large VCF files, such as
GEMINI (Paila et al., 2013), canvasDB (Ameur et al., 2014),
VCF-miner (Hart et al., 2016) and VarSifter (Teer et al., 2012),
which have specific pros and cons in terms of large file handling,
query time, graphical user interface (GUI), memory requirement,
and application to non-human genomes when compared with
each other. A recent study has shown that VCF-Explorer (Akgun
and Demirci, 2017), a GUI program, has out-performed the
standard queries in speed. On the other hand, Genotype Query
Tools (GQT), a command line software (Layer et al., 2016), was
developed to query and scale-up to the billions of loci from the
UK 100,000 Genomes Project (Samuel and Farsides, 2017) and
the expected millions of microbial, plant and animal genomes
(Stephens et al., 2015) using a Word-Aligned Hybrid (WAH)
compressed bitmap index. The GQT algorithm uses a sample-
centric indexing strategy that is orders of magnitude faster than
existing methods to query genotypes, phenotypes, and familial
relationships. The 1000 Genome Project Consortium has
extended to 2,504 individual genomes in Phase 3 and GQT has
become an integral tool in the 1000 Genomes Project to expedite
such massive data sets (Genomes Project et al., 2015).
Additionally, users use the GQT command line interface to
filter inherited variants among small pedigrees, case-control
variant filtering, and comparing variants among different
cohorts. While GQT is available to a wide audience as
command line software, the difficulty in constructing queries
faced by non-IT or non-bioinformatics researchers has limited
its applicability among many users.

Many re-sequencing projects complemented with publicly
available variant data sets are on the scale of several thousands
of genomes. Tasks such as variant calling, data processing and
management, and storing the genome data are most commonly
implemented by experienced bioinformaticians within the
research groups. The billions of variants from such large-scale
projects offer a challenge in extracting candidate variants from
specific families or groups specific to a research project.
Furthermore, the presence of additional samples or controls
within the cohort is an invaluable resource that allows users to
filter out the common variants. Specifically, for non-human data
sets there are no or few population frequency databases like 1000G
Genomes Project (Genomes Project et al., 2015), ExAC (Lek et al.,
2016), and gnomAD (https://doi.org/10.1101/531210) to greatly
reduce the number of potential causal variants for further
downstream analysis. However, the extraction of candidate
variants from the entire variant database to a manageable subset
still requires the assistance of bioinformaticians in every project
associated with the data set. For example, consider a research
Frontiers in Genetics | www.frontiersin.org 2
group with “n” geneticists having more than one family to study
from the samples within the data set. And each researcher
requiring to analyze or filter variants in “x” different ways per
family. This requires the bioinformatician to perform “n*x“
filtering tasks per family which is daunting and repetitive. A
central installation of webGQT on institutional servers deployed
with user data sets would enable geneticists, clinicians or
researchers with life science backgrounds to filter for candidate
disease variants without requiring computational skills or
installing R or webGQT.

Here, a web server for GQT (webGQT) is developed to
support inheritance model-based filtering among a family or a
group of individuals in the study cohort utilizing the GQT index
files to reduce computation time. Specifically, webGQT is
developed with an emphasis to provide a web server that can
be utilized as a common platform across members of a research
group without requiring independent access to the large variant
databases. We present a graphical user-interface (GUI)
application to identify candidate disease-causing variants
according to user-defined inheritance patterns that include
dominant, recessive, de novo inheritance models, population
comparisons, and sample-based filtering from large cohorts.
The pedigree-based studies and case-control studies aim to
identify rare disease-causing variants that are present in
affected individuals and absent in un-affected individuals. The
population-based studies filter for variants with differential
MAFs among two populations. We present several use-cases
available with webGQT, representing Mendelian inheritance
models, case-control studies, and population studies that can
be implemented on human and other model species. This is
validated by using webGQT on the data from the study (Salmela
et al., 2018), which identified the causal variant segregating in a
recessive inheritance pattern. The key features include:

1. scale-up to efficiently query the stored genotypes in GQT
index files from the upcoming millions of genomes (Stephens
et al., 2015; Samuel and Farsides, 2017)

2. rapid filtering of massive data sets relative to applications
such as canvasDB (Ameur et al., 2014)

3. Mendelian inheritance disease models for pedigree-based
studies, case-control studies, and complex population
comparisons

4. control for minor allele-frequencies (MAF) within control
cohorts

5. cross-species support (unlike few other tools that are limited
to only human data sets) (Paila et al., 2013) and

6. the flexibility of running as either a web service or a
standalone webserver for use within and between research
groups.
METHODS

Overview of webGQT
webGQT utilizes GQT indexed files as the variant database
and serves as a webtool to filter candidate variants more
rapidly by the user criteria. webGQT is implemented using
March 2020 | Volume 11 | Article 152
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the R Shiny server, which provides a graphical user interface
(GUI), and variant database queries are performed using GQT
in the backend, with the filtered variants rendered as data
tables in the GUI. A new installation of webGQT can be done
on a personal computer using Rstudio as an R package.
Alternatively, the users can host their own version of
webGQT on a local or remote server with nginx HTTP
server to act as front-end proxy to shiny server .
Additionally, we host the application on our institutional
server where users can explore the features and upload the
data for analysis. Each data upload creates a new instance and
is only viewable to the specific user during a single browser
session. In order to allow multiple users to access the
application, the data upload size per user is limited to 50GB.
An overview of the webGQT system architecture is shown in
Figure 1A. The webGQT application has been extensively
tested on Chrome, Firefox, and Safari browser environments.
The workflow for implementing webGQT is shown in Figures
1B and 2. In the first step, the user selects the default data set
or uploads the variant database. Subsequently, a PED file with
sample relationships or affection status is uploaded, and a
sample database is created. In the final step, a filtering module
is chosen and analyzed to obtain the variant results (Figure
1B). The GUI provides documentation for each module about
data preparation, input file format specifications and
parameters to be used in each module. The GUI of webGQT
Frontiers in Genetics | www.frontiersin.org 3
is shown in Figure 2, illustrating the workflow assuming a
dominant inheritance mode of filtering.

Input Specifications
The Variant Call Format (VCF) has been the standard for storing
genome-variation from variant calling algorithms like GATK and
SAMtools. webGQT allows users to filter single nucleotide variants
(SNVs), short insertions/deletions (INDELs) and also copy number
variants and structural variations (SV) generated in the standard
VCF format. The user can generate a merged multi-sample VCF file
from cohorts that have been called using different variant callers.
For example, bcftools {http://github.com/samtools/bcftools} can be
used to merge SNV and INDEL VCF files from disparate SNV
variant callers and Parliament2 {https://doi.org/10.1101/424267}
can be used to combine variant calls from multiple SV callers to
generate an accurate VCF file for indexing with GQT. Furthermore,
the user can also merge SNV and SVs into standard multi-sample
VCF format files for indexing and querying.

In a VCF, variants are represented in a “variant-centric”
manner where each row corresponds to a variant and the
genotypes of individuals at that locus. The “variant-centric”
analyses allow the retrieval of specific variants based on
chromosomal location. In this “variant-centric” format,
comparing the genotypes of two individuals is highly
inefficient. The comparison must load every row (variant) but
only accessing two elements per row. To improve our ability to
FIGURE 1 | (A) An overview of the architecture of the webGQT system. The variant information is stored in as GQT index files. The user performs the query on the
GQT index files from the GUI provided by the shiny server and the results are returned to the user via GUI. The whole application is secured with a Nginx front-end
proxy server to serve https requests. (B) The three-step workflow of implementing webGQT is shown here: 1) selecting the default data set (e.g., 1000 Genomes) or
uploading GQT indexed files, 2) uploading phenotype file (PED) and creating sample database, and 3) choosing a module and performing variant filtering.
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query by genotypes and other individual-level attributes
(phenotypes, affection status, population groups), we transpose
variants so that each row corresponds to an individual and their
genotypes as columns for all loci. In this “sample-centric” format,
comparing two individuals requires accessing only two rows and
all values in those rows. The transposed data is then sorted by
allele frequency to improve compression of the data. Finally,
Word-Aligned Hybrid (WAH) compression strategy enhances
query performance without inflation.

GQT indexes the standard VCF file with the command “gqt
convert bcf -i input.vcf/input.bcf” to allow “sample-centric”
variant filtering which is used as input by webGQT. GQT
indexing creates three metadata files; a compressed index
(.gqt), a compressed summary of the variant metadata (.bim),
and a variant ID file (.vid) file, which are only a fraction of the
source VCF/BCF, and thus saves storage space and improves
performance query over the existing methods. The conversion
pre-process efficiently indexes and compresses the variant data in
VCF/BCF format as described in the original study (Layer et al.,
2016). Creating GQT index files is a one-time pre-processing
step on the target VCF/BCF file upon which numerous queries
can be performed by multiple users from different projects.
Frontiers in Genetics | www.frontiersin.org 4
Second, webGQT requires a PED file that defines the sample
information, phenotypes, population groups, case-control status,
and relationships of the samples in the target VCF/BCF file. The
PED file should contain the tab-separated fields of IndividualID,
Phenotype, Sex, and Population in the first line to perform
pedigree analysis, case-control studies, and population
comparisons (Supplementary Table 1). The IndividualID and
Phenotype fields are mandatory for analysis in pedigree and case-
control modules. The “IndividualID” column represents the
sample names in the target VCF/BCF file. The “Phenotype”
column represents the affection status of the samples. The
phenotype coding for the samples in the PED file is as follows:
0 represents samples to exclude from the analysis; 1 represents
unaffected parent or unaffected offspring/siblings or other
unaffected individuals (controls); 2 represents affected offspring
(cases); and 3 represents affected or carrier parents. IndividualID,
Population, and Sex fields are mandatory for population modules
while other optional fields can be present. Sex is coded as 1 for
males, 2 for females, and NA if unavailable. When PED files are
uploaded, the interface allows users to review the sample relations
and affection statuses from the data table before creating the
sample database. A sample database has to be created to enable
FIGURE 2 | Figure showing the work flow of webGQT via user interface: (1) interface showing the user upload panel for input variant data. The user can choose the
default data set or upload GQT indexed files. (2a) Interface showing the user upload panel of the phenotype file. The user uploads the PED file by clicking “Browse”
button. (2b) After uploading, the phenotype file is rendered as data table with the sample selection information. The user is then required to create a phenotype
sample database by clicking “CreateDB” and (3) The user choses a filtering module and applies the available parameters of the corresponding module and finally
filters the variants. A dominant analysis module filter is shown in the figure.
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rapid variant filtering of cohorts with different sample attributes in
the associated VCF/BCF file. The sample database created in the
PED file complements the GQT index files created in the original
VCF or binary VCF (BCF) file to identify the compressed target
sample bitmaps and retrieve the genotype bitmaps in VCF format.
webGQT Analysis Modules
Establishing the causality of the variant as disease-causing variant
requires hypothesizing analysis strategies with different modes of
inheritance across pedigree, case-control, and population modules
in the GUI. Each module is constructed with independent analysis
models for studying with familial cases or trios or non-familial
case-control samples or group level comparisons.

The models of pedigree module:

• Recessive model: In autosomal recessive disorders, the
affected individual inherits one pathogenic mutation from
each parent (the parents are carriers). webGQT filters for such
variants, where the parents are heterozygous carriers
(Phenotype=3) for the variant and the affected individual
(Phenotype=2) has a homozygous state.

• Compound heterozygous: In the case of such a recessive
model, we implemented a compound heterozygous variant
filter on a single variant level. To be able to perform this
analysis, the input VCF requires the genotypes of all
individuals in the trio (off-spring and parents). This model
filters for at least two heterozygous variants in the affected
offspring (Phenotype=2) for which one of the parents is
heterozygous and the other parent should have a wild-type
genotype (both parents, Phenotype=3). The control cohorts
can be further used to filter the common variants in the
general population (Phenotype =1) using the MAF cut-off
parameter.

• Dominant model: In autosomal dominant disorders, the
affected individual inherits a single variant from the affected
parent. webGQT filters for such variants, where the affected
parent (Phenotype=3) and the affected child/sample
(Phenotype=2) are heterozygous. Ideally, the affected parent
genome is required to accurately retrieve potential dominantly
inherited variants. In the absence of the affected parent, the user
can switch to the case-specific module to filter for the
heterozygous variants specific to the affected individual while
the unaffected parent (Phenotype=1) or other unaffected
individuals (Phenotype=1) are used as controls.

• Recessive de novo: This module identifies the mutations that
are absent in the parents (Phenotype=3) and are novel
homozygous mutations in the offspring (Phenotype=2).
Common variants in the general population can be filtered
out using the unaffected control samples ((Phenotype=1) and
the MAF parameter.

• Dominant de novo: This module identifies the mutations that
are absent in the parents (Phenotype=3) and occur as novel
heterozygous mutations in the offspring (Phenotype=2).

Ideally, the analysis models in the pedigree module would
require the genotypes from both the parents to infer recessively
Frontiers in Genetics | www.frontiersin.org 5
inherited variants. However, in the absence of one parent's
genotype, webGQT can still mark a possible inherited variant
based on only one parent's genotype. Quite often, sequencing
errors or low-quality regions produce missing or unknown
genotypes that lead to the loss of information in candidate
regions in the affected samples. To rescue variants in these
regions, the user can choose to allow missing genotypes in the
affected individuals. Further, the availability of unaffected
samples (Phenotype=1) or control cohorts (i.e., 1000 Genomes
and gnomAD) (Genomes Project et al., 2015; Lek et al., 2016) can
allow the user to filter out common variants using a minor allele
frequency (MAF) cutoff. Specifically, while studying the isolated
populations, the MAF parameter allows to adjust the carrier
frequency in the control group. The missing genotypes and MAF
parameters are available in all filtering modules and are
important contributors to webGQT.

The models in case-control module:

• Case-specific: This model filters the variants that are present
only in the affected individuals (Phenotype=2) and absent in
the unaffected individuals (Phenotype=1). The user can
specify the genotype state of the variants from HOM_ALT,
HET, HET HOM_ALT to retrieve case-specific homozygous
variants, heterozygous variants and all non-reference variants,
respectively. The user can also control for missing genotypes
in this model.

• Cases shared: This model filters the variants that are shared
in the cases (affected individuals, Phenotype=2). By default,
this module does not consider variants in the unaffected
individuals (Phenotype=1). However, users can set a
maximum MAF cutoff in the control cohort to retrieve
variants shared by the cases and some controls. This model
represents a relaxed version of the case-specific module,
allowing users to control for genotypes (HOM_ALT, HET,
HET HOM_ALT, UNKNOWN) and MAF.

For the population module, the PED file should have the
population groups and sex specified with the fields Population
and Sex, respectively. This module filters the variants between
two populations defined in the PED file by allele frequencies or
individual count or by sample.

• Allele-frequency: The user can filter variants that are present
in the Finnish (FIN) male population occurring at minimum
MAF threshold and occurring in the British (GBR) male
population at a maximum MAF cutoff.

• Individual count: The user can filter the variants by genotype
(HET or HOM_ALT) that are present in minimum
percentage of individuals in the Finnish population and
occurring in British population in at most percentage of
individuals.

• Sample: This model can be used to retrieve variants present in
specific samples. The sample names can be selected from the
dynamically populated dropdown list from the IndividualID
field defined in the PED file. The user can ask to retrieve
specific genotypes (HOM_ALT, HET, HET HOM_ALT)
among the selected samples. Further, a minimum number
March 2020 | Volume 11 | Article 152
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of samples with the chosen genotype can be set using the
“Count” parameter.

Variant count: The variant count module allows users to
count the variants of selected genotypes (HOM_ALT, HET, HET
HOM_ALT) in a specific sample selected from the dropdown
list. This operation is orders of magnitude faster compared to the
other modules as it only gives the count of the variants instead of
writing the output to VCF file.

Data From 1000 Genomes Project
We provide implementation of all the available modules using
webGQT with data from 1000 Genomes Phase 3 release. This
release includes 8.4 billion variants from 2,504 individuals across
26 populations (Genomes Project et al., 2015). To load 1000
genome phase 3 variant data into webGQT, the VCF files have
been converted to bcf format, indexed, and compressed using
GQT command “gqt convert bcf -i ALL.wgs.phase3_shapeit2_
mvncall_integrated_v5.20130502.genotypes.bcf” which creates
three metadata files with the file extensions “.gqt,” “.bim,” and
“.vid.” The indexing and compressing is a one-time pre-
processing step on the data set. Subsequently, a PED input file
describing the samples in the VCF is used to create the sample
database with the GQT command “gqt convert ped -i ALL.wgs.
phase3_shape i t2_mvnca l l_ in tegra ted_v5 .20130502 .
genotypes.bcf -p 1kg.phase3.ped.” The index files are then used
to perform multiple queries on the variant data by using PED
files defining the affection status of the samples from different
projects. For the demo, we have randomly defined HG00096 and
HG00097 samples as affected offspring (Phenotype=2),
HG00099 sample as affected parent (Phenotype=3) and the
remaining 2,501 individuals as unaffected controls
(Phenotype=1) and created the sample database. The GQT
index files for Phase 3 of the 1000 Genomes project are
available for download from the homepage of the web server.

Hardware and Software
webGQT is implemented using R Shiny server to provide a
graphical user interface to query variants stored in GQT index
files. GQT utilizes SQLite database to query the samples and
phenotypes with the GQT indexed variant files. The webGQT
installations and analyses were performed on an Ubuntu 18.04.1
64-bit system, with 16 CPUs and 80 Gb RAM with 700 Gb
ephemeral hard disk and GQT version 5.5.29 and R version 3.4.4
(https://vm1138.kaj.pouta.csc.fi/webgqt/). webGQT can be
installed as an R package on Linux/Mac OS operating
computers as well as on local servers to serve within a group of
users. The web application is available for download and
installation as an R package with instructions at https://github.
com/mehararumilli/webgqt.
RESULTS

Select Variant Database
The first step in using webGQT is to select the type of variant
database to perform the query. webGQT is deployed with 1000
Frontiers in Genetics | www.frontiersin.org 6
Genomes phase 3 variant data set and the user can query the
phase 3 data set by choosing “1000 Genomes” as the input data
set. This provides a platform to query 2,504 individuals from 26
populations, simply by choosing the desired samples in
subsequent steps for a specific query. To use webGQT on a
custom data set through the web server, the user is either
required to upload the GQT index files by clicking the
“Upload VCF” button or to deploy the application with a
default data set on their personal computer or server. The
latter functionality allows the provision of web services within
research groups and helps clinicians to explore patient data
through their local installation on their own servers or
computers. The “Upload VCF” page also shows the
instructions to prepare the input GQT index files on the target
VCF/BCF.

Creating and Querying by Sample
Database
The phenotype file page is used to input the PED file to query the
GQT indexed variant files. An SQLite sample database of the
PED file is created. The sample database has a single table with
sample name and sample position. The sample database created
on the pedigree file (PED) complements GQT for rapid and
complex queries based on the individual's phenotype/ancestries/
relationships, provided in the phenotype file. By clicking on the
“Browse” button the user uploads a PED file (.ped extension) and
can visualize the PED file as a data table by clicking “View
samples” (Supplementary Figure 1A). This gives a summary of
the number of cases, controls or carriers used in the study and
the “Phenotype” column in the data table can be used to review
the affection status of the individuals (Supplementary Figure
1B). Subsequently, by clicking the “ÇreateDB” button, a sample
database that describes the samples in the target BCF file is
created. Once the sample database is created, the subset of
variants that meet the user criteria can be quickly identified by
choosing one of the analysis modules. An example of performing
variant filtering with a dominant module is shown in
Supplementary Figure 2A with the progress bar displayed at
the bottom of the page.

Output
When webGQT successfully completes the query, the results
page is displayed, which gives: 1) Summary: a count of the total
variants and a summary table of variants annotated across
different functional regions (if annotated) (Supplementary
Figure 2B); 2) Table: a data table which displays the filtered
variants in a navigation page that displays the selected number of
entries per page (Supplementary Figure 2C); and 3) a bar plot
summarizing the total retained variants by functional region
when the variants are annotated (Supplementary Figure 2D).
webGQT currently supports the annotation terms from
ANNOVAR and snpEff to summarize the functional
annotations. The gene summary table and the bar plot are
empty if the gene annotations are absent in the input VCF.

In the results “Table” panel, the user can apply sorting of
individual variant columns to inspect the results or can
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download the resul t s f rom the download buttons
(Supplementary Figure 2C). Download VCF button retrieves
the output in the standard VCF (.vcf) format, which can be used
with any third-party tools compatible with VCF input, e.g.
bcftools for custom filtering, VEP for gene annotation.
“Download Table” generates a text format (.xls) file of variants
which has a similar format to the variants displayed in the table
pane in the results page. This file can be analyzed in Excel to
further fine-tune the results.

Case-Study: Detection of a Disease-
Causing Mutation in Model Species
We have implemented webGQT on the variant data from the
recent study “A novel KRT71 variant in curly‐coated dogs”
(Salmela et al., 2018), which illustrates the usefulness of the
tool that identifies the causative variant for curly coat type in
specific dog breeds. Whole-genome sequencing was performed
on one affected dog which resulted in 6,880,938 variants. As a
proof of principle, we have analyzed the whole‐genome
sequencing variant data of the affected dog from chr27, which
includes 114,467 variants using webGQT under a recessive
model. Additionally, we have used WGS data from 329 control
dogs to filter out the common variants. A recessive filtering
strategy is applied, allowing some heterozygote genotypes in
other breeds. The affected dog is coded as “Phenotype=2” and the
unaffected dogs as “Phenotype=1” in the PED file. The result of
the webGQT analysis is a list of candidate variants that segregate
with the disease model. webGQT detected 186 variants across
different gene regions, which include six exonic variants
(Supplementary Table 2). The six coding variants include a
frameshift and stop loss novel structural variant in exon 7 of the
KRT71 gene (c.1266_1273delinsACA) which is a causative gene
for curly fur. The case-study data set is available from the
homepage of webGQT.

Performance of webGQT on Phase 3 1000
Genomes Data
To evaluate the efficiency of webGQT, we compared the
execution time of webGQT with canvasDB, an existing tool/
database on 1000 Genomes data that has 4.4 billion variants from
1,092 whole genomes from 26 populations. The task is to find the
population-specific variants i.e. variants present in at least 10% of
the individuals in the target population and at most 1% in all the
other individuals from the other populations. Previously,
canvasDB has reported the execution times applying the same
filtering strategy on the Phase 1 data set with 4.4 billion variants
and 1,092 individuals (Ameur et al., 2014). Here, we have
implemented webGQT with the same strategy on phase 1 data
set to allow direct comparison with canvasDB. The filtered
variants count and execution times have been reported in
Table 1. For the majority of the populations, the execution
time of webGQT on the Phase 1 data set ranged from 1 to 6
min while it took more than 30 min to find IBS, YRI, and LWK
population specific variants. canvasDB completed the same task
in the time range of 29 min to 20 hrs. On the phase 1 data set, the
time required for the population-specific variant filtering by
Frontiers in Genetics | www.frontiersin.org 7
webGQT has been always several times less than canvasDB
(Table 1). In addition, we have also implemented webGQT on
the phase 3 data set, which has nearly twice the number of
variants (8.4 billion) and more than twice the number of
individuals (2,504) in phase 1 data set. Strikingly, the execution
times of webGQT for population-specific variant filtering on the
much larger Phase 3 data set are in the time range of 3 to 10 min,
except for LWK which took 13 min to query and write the results
to GUI. The maximum time taken by webGQT for both querying
and writing to disk is several times less than the minimum query
time taken by canvasDB on 78% (11/14) of the Phase 1 queries
and 100% (14/14) on Phase 3 population queries, which signifies
that the performance of webGQT is increased with increased
cohort sizes. (Table 1). The conversion of VCF output to tabular
format is implemented with vcfR package (Knaus and Grunwald,
2017) within webGQT.
DISCUSSION

webGQT brings the power and performance of GQT to a wider
audience, including researchers from bio/medical field and
clinicians without bioinformatic expertise, by replacing the
command-line interface with an intuitive web GUI. This
includes pre-built modules to perform customized filtering
analysis for Mendelian disease and population studies. Some
previously published methods like GEMINI (Paila et al., 2013)
and canvasDB (Ameur et al., 2014) have similar filtering modules
to webGQT. However, the major distinctive feature of webGQT
is its use of GQT on the backend, which uses an “sample-centric”
strategy for indexing and mining large data sets and the Word-
Aligned Hybrid (WAH) bitmap indices strategy for data
compression that maximizes performance over all other
existing methods (Layer et al., 2016). Like variant filtering tools
that require pre-processing of the variant data, webGQT also
requires pre-processed GQT index files which is the bottleneck
for attaining better performance involving big data sets. The
indexing offers webGQT an advantage in exploring massive data
TABLE 1 | Performance comparison of webGQT with canvasDB on 1000
Genomes Phase 1 and Phase 3 data sets.

Population Phase 1 Phase 3

canvasDB webGQT webGQT

GBR 30 m 1 m 28 s 3 m 20 s
FIN 40 m 2 m 55 s 6 m 25 s
CHS 40 m 2 m 10 s 4 m 5 s
PUR 39 m 2 m 12 s 3 m 40 s
CLM 43 m 2 m 15 s 3 m 40 s
IBS 4 h 17 m 32 m 40 s 3 m 20 s
CEU 5 m 34 m 40 s 4 m 30 s
YRI 13 h 26 m 28 m 10 s 5 m 50 s
CHB 33 m 2 m 18 s 4 m 45 s
JPT 59 m 5 m 45 s 6 m 58 s
LWK 20 h 25 m 34 m 40 s 13 m 58 s
ASW 49 m 6 m 25 s 4 m 20 s
MXL 59 m 2 m 2 s 4 m 50 s
TSI 29 m 1 m 12 s 4 m 40 s
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sets of thousands to millions of genomes while similar tools such
as canvasDB (Ameur et al., 2014) are limited to tens of thousands
of samples from whole-exome experiments, which are 1% to 2%
of the genome. As shown in the results, webGQT outperformed
canvasDB in the most complex population specific queries on the
1000 Genomes data set with twice the number of samples
compared to the canvasDB data set.

webGQT can also be used to query non-human data sets. The
case-study demonstrates the applicability of webGQT on other
model species by identifying a recessively inherited known disease-
causing mutation, while the existing companion method GEMINI
solely supports human variation. In the case-study, the use of 329
internal controls by webGQT allowed to filter out the common
variants which not only emphasizes the importance of including
internal control cohorts in the absence of population frequency
but also highlights the scalability of webGQT with many samples
in the VCF. The scalability is further evident by implementing
webGQT on 2,504 genomes from the 1000 Genomes data set. In
addition, the various filtering modules across pedigree analysis and
case-control studies, allows the user to apply expert knowledge to
query the variant database in different possible ways. In the
absence of the parent's genomes of the affected individual, case-
control module facilitates to filter for specific genotypes among the
affected individuals contrasting with healthy controls.

In contrast to providing the software only as a stand-alone
application or only as a web application, we provide webGQT in
both forms. The web application provides a resource for the 1000
Genome project Phase 3 data set via the web interface that allows
users to query the 1000 Genomes data set by uploading the PED
file defining their phenotypes of interest or population groups or
by uploading custom data sets. Alternatively, the users can install
their own version of webGQT as an R package on local computer
(Linux/Mac OS) and can query by deploying or uploading custom
GQT indexed data sets where the data will be available only to the
user. webGQT can also be deployed on a local or remote server
with their genomic variant data to allow multiple users within the
group to query the variants by only uploading only the project
specific PED file. This allows users within the group to filter
variant data without installing R or the webGQT application or
without requiring for independent database creation. Further,
webGQT installation on local servers can be accessed or limited
only to the users with the web-address to the application.

webGQT is a GQT database dependent web server and,
therefore, requires pre-indexed GQT files that serve as a
bottleneck to attain the best query performance among large-
scale genome projects. Enabling native VCF support will require
to perform the indexing of the VCF file on the server hosting the
application which will consume hours of computational time
especially for large-scale data sets and, therefore, disabled.
webGQT is not a variant annotation tool and also does not
require gene annotations in the input VCF/BCF. If an annotation
exists, it is utilized only to summarize the filtered variants across
the gene features. This unrequired gene annotation extends the
applicability of webGQT to any model species and the user can
opt to upload Annovar (Wang et al., 2010) or snpEff (Cingolani
Frontiers in Genetics | www.frontiersin.org 8
et al., 2012) pre-annotated variant data in VCF format for any
species. The current version of webGQT does not natively
support the popular VEP annotations, in which case the
filtered variant summary across gene features are missing,
although variant filtering can still be performed. Furthermore,
webGQT does not support the variant data in gVCF format.
While gVCF is popularly used to store variant and non-variant
information from WGS samples, it is not widely supported for
downstream analysis and also restricts the merging of targeted or
exome samples with the genome sequencing data sets.

It is important to note that the data uploaded to our web-
server is temporarily available only to the user during the user
session and is not retained or distributed or stored on our
servers. However, it is the user responsibility to comply with
the data security and privacy while uploading sensitive or clinical
human data. We encourage researchers to copy and modify the
code to suit their specific research needs and local installations
and also welcome the contribution of users and experts in future
development of the app. The development of the app is ongoing,
and we intend to improve on the speed and analysis modules.
CONCLUSIONS

In summary, webGQT is a web application built with GQT tools
with an emphasis on filtering for candidate disease-causing
variants from larger cohorts of samples. We expect that
webGQT suits the need of research/clinical groups that require
a common platform for storing, management, and filtering
variant data large-scale genomic data sets with many samples.
Overall, webGQT serves as a useful tool for disease genomics e.g.,
for candidate disease variant filtering among families, pedigrees
or larger cohorts, as well as filtering population specific variants
in short time. The availability of webGQT as a web application,
stand-alone installation on user computer, and a stand-alone
installation on local servers of a research group allows the user to
protect or share sensitive data.
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SUPPLEMENTARY FIGURE 1 | (A) Phenotype file page of webGQT to upload
the PED file with sample meta-information such as affection status, population,
gender etc. The phenotype file requires IndividualID, Phenotype columns for
pedigree and case-control studies. Additionally, Population and Gender columns
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are required for population module filters. (B) An example of the uploaded PED file
displayed as data table after clicking “View Samples.” The summary table shows the
count of number of affected, unaffected, and carrier samples in the uploaded PED
file where the data table shows the phenotype file content. This page also shows the
“CreateDB” button to subsequently create a phenotype sample database.
SUPPLEMENTARY FIGURE 2 | (A) An example of variant filtering under
dominant module allowing a MAF of up to 0.1 in the control cohort is shown in the
figure. The progress bar during the filtering operation is shown at the bottom of the
page. (B) An example of the Summary table displayed in the results page. Each
column corresponds to different annotation databases in the input VCF/BCF file,
and each row corresponds to different functional regions. The total filtered variants
across each functional region are reported. (C) An example of the variant table
returned from the filtering module is shown here. The table displays all the FLAGS
present in the input VCF file in separate tab-delimited columns that can be viewed
upon scrolling to the right of the table (only a few columns are shown in the figure).
(D) An example of the barplot generated using the count of variants across different
functional regions from the summary table.
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