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Recent research efforts provided compelling evidence of genome-wide DNA methylation
alterations in aging and age-related disease. It is currently well established that DNA
methylation biomarkers can determine biological age of any tissue across the entire
human lifespan, even during development. There is growing evidence suggesting
epigenetic age acceleration to be strongly linked to common diseases or occurring in
response to various environmental factors. DNA methylation based clocks are proposed
as biomarkers of early disease risk as well as predictors of life expectancy and mortality.
In this review, we will summarize key advances in epigenetic clocks and their potential
application in precision health. We will also provide an overview of progresses in
epigenetic biomarker discovery in Alzheimer’s, type 2 diabetes, and cardiovascular
disease. Furthermore, we will highlight the importance of prospective study designs
to identify and confirm epigenetic biomarkers of disease.

Keywords: aging, DNA methylation, epigenetic clocks, biomarkers, Alzheimer’s disease, diabetes, cardiovascular
diseases

INTRODUCTION

Aging is a complex and time-dependent deterioration of physiological process occurring in the
majority of living organisms (Galloway, 1993). In humans, life expectancy has increased rapidly in
the last few centuries due to a significant improvement in medical care and public health awareness
(Crimmins, 2015). Consequently, increased life expectancy caused higher morbidity rates since
advanced age is a predominant risk factor for several diseases including cancer, dementia, diabetes,
and cardiovascular disease (CVD) (Jaul and Barron, 2017; Franceschi et al., 2018). Currently, there
is an urgent need to improve health and longevity to increase not just the life span but also the
health span of the elderly population. In recent years, several molecular and cellular processes
have been reported to be linked to aging and contribute to its phenotype. Scientists proposed nine
hallmarks of aging that can be classified into three categories: primary, antagonistic, or integrative
(López-Otín et al., 2013). The primary hallmarks are defined as key factors causing cellular damage
including genomic instability, telomere attrition, loss of proteostasis, and epigenetic alterations
(López-Otín et al., 2013). During aging, there is a continuous accumulation of epigenetic changes,
which might give rise to multiple age-related pathologies. A number of epidemiological studies
revealed that monozygotic twins exhibit an increased rate of phenotypic discordance particularly
for age-related diseases among older siblings (Frederiksen et al., 2002; Reynolds et al., 2005;
Zwijnenburg et al., 2010; Greenwood et al., 2011; Castillo-Fernandez et al., 2014). This may
be due to a gradual decrease in methylation conservation rates with successive cell divisions,
a phenomenon referred to as “Epigenetic Drift” (Poulsen et al., 2007; Issa, 2014). This notion
proposes an increased rate of stochastic methylation errors across the entire genome during aging.
Indeed, several reports provided compelling evidence that older monozygotic twins exhibit global
differences in DNA methylation (DNAm) patterns when compared to their younger counterparts
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(Fraga et al., 2005; Lévesque et al., 2014; Tan et al., 2016;
Wang et al., 2018). Similarly, a centenarian’s methylome displays
reduced DNA methylation levels as well as a decreased pair-wise
correlation in the methylation status of neighboring CpG sites
relative to the methylome of a newborn (Heyn et al., 2012).

In 1973, Vanyushin et al. (1973) were the first to describe
global 5-methylcytosine (5mC) variations during aging in
rats. Now, vast literature have revealed genome-wide DNA
methylation changes that occur in response to aging across
multiple species. These age-related epigenetic alterations either
arise systemically or are restricted to a specific tissue/cell type.
Age-related DNA methylation changes also take place in germ
cells and might be possibly transmitted to the offspring (Atsem
et al., 2016; Potabattula et al., 2018). Since the sequencing of
the human genome the scientific community has been trying
to elucidate how the genetic code controls the spatial and
temporal expression of genes. The essence of DNA lies within
the dynamic interaction between the genetic sequence (i.e.
genome) and the epigenome. In many ways, environmental
influences alter gene expression through various mechanisms
such as DNA methylation, hydroxymethylation, histone
modifications, alternative splicing, etc. (Edwards and Myers,
2007). Recent advances in “omics” technologies availed new
avenues toward implementing precision medicine based on the
genetic, environmental, and lifestyle factors of each individual.
Similarly, treatments of complex diseases is demanding better
diagnostic and screening tools for early detection particularly
in the initial phase of the disease. DNA methylation (5-
methylcytosine) is a covalent epigenetic modification to the
DNA by addition of a methyl group to the C-5 position of the
cytosine ring by DNA methyltransferases (Dnmts). Whereas,
DNA hydroxymethylation (5-hydroxymethylcytosine) is a
more recently discovered modification involving the addition
of a hydroxymethyl group to the 5′ position of cytosine.DNA
hydroxymethylation has been reported to be enriched in the
brain especially in the proximity of synaptic genes (Kriaucionis
and Heintz, 2009; Khare et al., 2012). The role 5-hmC plays
in various biological processes remains elusive, nevertheless
scientists are starting to appreciate its importance in gene
expression regulation. Methylation and demethylation processes
are not only important for transcription regulation but also
play a crucial role during development and cell differentiation
(Moore et al., 2013). Recently, DNA methylation measurements
were shown to be valuable age prediction tools, even surpassing
in accuracy the age prediction models based on telomere length
(Horvath et al., 2016a). DNA methylation-based age prediction
models are not only accurate in predicting chronological age
but can also estimate biological aging rates (Chen et al., 2016;
Christiansen et al., 2016).

EPIGENETIC-BASED AGING CLOCKS

It is only 6 years since Steve Horvath inaugurated a new era in
epigenetics and aging research. In a landmark study, he developed
a multivariate age predictor based on DNA methylation values
of 353 individual CpG sites (Horvath, 2013). One of the main

advantages of the Horvath clock is its ability to predict age
systemically in all human cell types and tissues, excluding sperm.
This is in contrast to other clocks that can be only applied to
a single tissue (Hannum et al., 2013; Figure 1). Interestingly,
the clock starts ticking early during development where fetal
tissues as well as embryonic and induced pluripotent stem
cells reveal a DNA methylation age (DNAm age) between −1
and 0 years (Horvath, 2013; Spiers et al., 2015). Till now, the
biological mechanisms underlying changes measured by the
epigenetic age clock have not been clearly identified. Therefore,
recognizing genes that influence the rate of epigenetic aging
might help determine such biological processes. Recent genome-
wide association studies revealed tissue-specific association of
variants in metabolism, immune system, aging, and autophagy
-related genes with epigenetic age acceleration (Kananen et al.,
2016; Lu et al., 2016, 2017, 2018). Epigenetic clocks have
been also proposed to measure molecular processes involved in
development and tissue homeostasis particularly those affecting
stem cell differentiation as well as replenishment of committed
cells (Horvath and Raj, 2018).

By regressing DNAm age on chronological age, epigenetic
clocks can determine whether biological age acceleration occurs
in certain diseases or in response to environmental factors
(Horvath and Raj, 2018). Using this approach, age acceleration
measurements in blood were associated with body mass index
(BMI), obesity, physical fitness, Huntington’s disease, Parkinson’s
disease, sleep, and smoking (Horvath et al., 2014; Horvath and
Ritz, 2015; Horvath et al., 2016b; Carroll et al., 2017; Quach
et al., 2017; Levine et al., 2018). Epigenetic clocks are highly
valuable age prediction tools nevertheless their true value as
diagnostic biomarkers requires further confirmation (Figure 2).
Such biomarkers are epigenetic modifications/marks used as
a risk assessment and diagnostic tool to uncover sequence of
events preceding the manifestation of disease. Biomarkers can
be measured within tissue or body fluid, in the context of
disease vs health state, for the purpose of disease detection,
disease prognosis, response to therapy, and therapy monitoring
(García-Giménez et al., 2016).

Evidently, epigenetic clocks were employed to study epigenetic
age acceleration in age-related disorders. For e.g. several reports
showed DNAm age acceleration associated with incidence, future
onset, and mortality across several types of cancer (Levine
et al., 2015a; Zheng et al., 2016; Ambatipudi et al., 2017).
Similarly, DNAm age was reported to be a useful biomarker
for predicting physical and mental fitness in elderly individuals
(Marioni et al., 2015) and was shown to be associated with
cholesterol (High Density Lipoprotein: HDL), insulin, glucose,
and triglycerides levels (Quach et al., 2017; Levine et al., 2018).
The adult progeroid disease, Werner syndrome, which mimics
aging at a faster rate, also revealed DNAm age acceleration
of >6 years (Maierhofer et al., 2017). Recently, the Horvath
lab developed the DNAm PhenoAge clock by training their
predictor on phenotypic age rather than chronological age
(Levine et al., 2018). The DNAm PhenoAge is a powerful
biomarker for measuring health- and life- span that relies on
measurements from 513 CpG sites (Levine et al., 2018). This
clock could conclusively predict CVD incidence using whole

Frontiers in Genetics | www.frontiersin.org 2 March 2020 | Volume 11 | Article 171

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00171 March 6, 2020 Time: 17:30 # 3

Salameh et al. DNA Methylation Biomarkers of Aging

FIGURE 1 | The growing number of epigenetic age clocks developed for both humans and mice, including the number of CpG sites comprising the age-prediction
model, as well as the tissues in which age can be estimated.

blood DNA methylation values. In 2019, the DNAm GrimAge
clock was released where it was reported to predict mortality,
cancer, and coronary heart disease (CHD) to a high level of
accuracy (Lu et al., 2019). Epigenetic clocks that can estimate
gestational age of neonates are also available (Knight et al.,
2016). Using these clocks, we have demonstrated that DNAm
age of children born via intracytoplasmic sperm injection (ICSI)
lags half a week behind their naturally conceived counterparts
(El Hajj et al., 2017).

In mice, epigenetic aging clocks were recently developed by
relying on reduced representation bisulfite sequencing (RRBS)
or whole genome bisulfite sequencing (WGBS) data (BI Ageing
Clock Team et al., 2017; Petkovich et al., 2017; Wang et al.,
2017; Meer et al., 2018; Thompson et al., 2018). These clocks
provide useful biomarkers for measuring whether experimental
interventions are able to slow the aging process in mice. Current
research is focused on identifying evolutionary conserved pan-
mammalian clocks that can calculate age across multiple species
with varying lifespans. In addition, efforts are being invested
in identifying clocks based on a handful of CpG sites since
methylation arrays, RRBS, or WGBS remain relatively expensive
compared to bisulfite pyrosequencing. In this aspect, Wolfgang
Wagner’s group has shown that measurements from just three
CpG sites can accurately readout lifespan in both humans and

mice (Weidner et al., 2014; Han et al., 2018). More recently,
an epigenetic clock based on ribosomal DNA methylation was
reported to be evolutionary conserved across several species
(Wang and Lemos, 2019).

EPIGENETIC DYSREGULATION IN
TYPE 2 DIABETES, ALZHEIMER’S
DISEASE, AND CARDIOVASCULAR
DISEASE

The dynamic change between methylation and demethylation
states introduces flexibility to the rigidly stable DNA code,
allowing controlled changes in gene expression in response
to external and internal environmental cues. These moldable,
yet generally stable processes are becoming valuable tools
for distinguishing healthy versus diseased states. In cancer,
despite the genome-wide hypomethylation, CpG islands are
hypermethylated and can serve as a biomarker for early cancer
detection (Anglim et al., 2008). Recent studies have shown that
changes in global content of 5mC and 5hmC are not only useful as
early detection tools but also a valuable source for understanding
the underlying mechanisms of cancer development and patient
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FIGURE 2 | Diseases and conditions associated with DNAm age acceleration in blood DNA where epigenetic clocks can be used as biomarkers of disease. We only
display diseases/conditions where epigenetic age acceleration is observed in blood or other non-invasive tissues. We do not show correlations with glucose, insulin,
HDL, and triglyceride levels as well as with blood pressure since these factors are biomarkers on their own.

prognosis (Liu et al., 2019). There are several published reviews
discussing epigenetic biomarkers in cancer, however, this review’s
main focus will be on DNA methylation biomarkers in type 2
diabetes (T2D), Alzheimer’s disease (AD), and cardiovascular
disease (CVD) (Supplementary Table S1). Here, it is important
to mention that these biomarkers are independent of the
epigenetic clock described in the previous section.

Type 2 Diabetes
According to the World Health Organization (WHO), >420
million adults suffer from diabetes where 1.6 million deaths per
year are directly attributed to the disease (Chan, 2014). The
increased lifespan in humans is one of the main contributors
to the rising prevalence of diabetes in the older population.
Currently, more than third the United States population above
the age of 65 are diabetics with numbers projected to increase in
the next decade. Type 2 Diabetes (T2D) is a metabolic disorder
characterized by abnormally elevated blood glucose levels due
to β-cells dysfunction and insulin resistance (Chatterjee et al.,
2017). T2D is a complex multifactorial disease where a variety
of genetic, epigenetic, and environmental factors contribute to its
etiology (McCarthy, 2010). Common complications of diabetes
include cardiovascular problems, neuropathy, nephropathy,
and retinopathy due to high blood glucose levels (Jacobs
et al., 2017). Therefore, prevention or early treatment are
very important to prevent damage to several of the body’s
systems. Despite the availability of well-established measures
for diagnosing diabetes such as hemoglobin A1c (HbA1c) and
fasting glucose, additional DNA-methylation based biomarkers

can help complement current tests for screening and diagnosis.
Identifying an individual during the pre-diabetic stage is very
important for the management of the disease since ∼70%
of persons with intermediate hyperglycaemia tend to develop
T2D later in life.

Recently, efforts have focused on defining epigenetic risk
factors associated with T2D as well as its major risk factors.
Published reports have identified DNAm alterations in various
tissues of T2D patients including blood, liver, pancreas, skeletal
muscle, and adipose tissue (Ling and Rönn, 2019). These studies
employed different approaches to quantify methylation changes
including candidate gene analysis, global 5mC measurements,
DNA methylation arrays, as well as WGBS (Volkov et al., 2017;
Ling and Rönn, 2019). Evidently, the first reports describing
epigenetic dyrsegulation in skeletal muscle and pancreatic islets
of T2D patients applied a candidate gene approach. These
studies identified increased DNA methylation and reduced gene
expression in T2D-related genes such as INS, PDX1, PPARGC1A,
and GLP1R (Ling et al., 2008; Barrès et al., 2009; Yang et al.,
2012; Hall et al., 2013). Similarly, bisulfite pyrosequencing and
methylation-specific PCR were employed to study methylation
of key T2D genes in blood DNA. Investigated genes included
KCNJ11, PPARgamma, PDK4, KCNQ1, PDX1, FTO, PEG3,
TCF7L2, GCK, PRKCZ, BCL11A,GIPR, SLC30A8, IGFBP-7,
PTPPN1, CAMK1D, CRY2, CALM2, TLR2, TLR4, and FFAR3
[reviewed in Willmer et al. (2018)]. Most of those studies
suffered from low sample size apart of a report by Seman
et al. (2015), which quantified methylation in the solute carrier
family 30 member 8 (SLC30A8). Here, the authors detected
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hypermethylation at several CpG sites in SLC30A8 in 516
T2D subjects vs 476 individuals with normal glucose tolerance
(Seman et al., 2015). Global changes in DNAm levels were also
investigated using bisulfite pyrosequencing of ALU and LINE-
1 elements, liquid chromatography mass spectrometry, Imprint
Methylated DNA Quantification kit (Sigma-Aldrich), and High
Performance Liquid Chromatography (HPLC). Conflicting
results were reported which might be inherently related to low
sample size and lack of replication in independent cohorts
[reviewed in Willmer et al. (2018)].

The development of Infinium Methylation arrays and
NGS-based methylation sequencing allowed simultaneous
quantification of methylation at thousands of CpG sites.
Several case-control array studies compared DNA methylation
abnormalities in pancreatic islets, liver, and subcutaneous
adipose tissue of T2D patients. The focus of this review is
on methylation-based biomarkers therefore we will mainly
describe changes reported in blood or other accessible tissues.
One impressive example of such alterations is the occurrence
of dynamic DNA methylation changes in Peripheral Blood
Mononuclear Cells (PBMCs) ∼80–90 days prior to elevated
glucose levels. This was observed by Chen et al. (2018) after
longitudinally following a healthy individual over the course of
3 years while measuring DNA methylation levels using WGBS
at 28 selected time-points. Another study by Toperoff et al.
(2012) used a pooling-based methylation screen followed by
individual-level replication in a prospective cohort to identify
CpGs that can predict future T2D risk. The authors reported a
single CpG site in the first intron of the fat mass and obesity-
associated (FTO) gene to be hypomethylated prior to the
appearance of T2D (Toperoff et al., 2012). DNA methylation
alterations were also measured in concordant and discordant
monozygotic twins for T2D using genome-wide methylated
DNA immunoprecipitation sequencing (MeDIP-seq). This
elegantly designed study uncovered differentially methylated
regions (DMRs) located in the promoters of MALT1 and GPR61
(Yuan et al., 2014).

In addition to age, BMI is a major risk factor contributing
to T2D and has been the focus of multiple epigenome-wide
association studies (EWAS) studies. A large study on >10,000
samples identified DNA methylation changes across 187 loci
correlating with high BMI levels. Out of the 187 “sentinel
obesity biomarkers,” 62 loci were associated with T2D incidence
including a probe in ABCG1 with the strongest significance.
A methylation risk score based on the sum of these markers
exhibited a higher predictive power of future T2D onset when
compared to traditional risk factors such as obesity, fasting
glucose, and hyperinsulinemia (Wahl et al., 2017). Similarly, a
longitudinal follow-up study on Indian Asians and Europeans
discovered five T2D methylation markers in whole blood DNA
collected at baseline prior to diabetes onset. These markers
located in ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP
were associated with metabolic measures of insulin resistance
including glucose concentration, BMI, waist-to-hip ratio, and
homeostatic model assessment for insulin resistance (HOMA-
IR) (Chambers et al., 2015). A conceptually related study tried
to replicate the association between T2D and the five previously

mentioned genes in subjects from the Botnia prospective cohort.
Nonetheless, they could only confirm ABCG1 and PHOSPHO1
methylation as predictors of future T2D risk (Dayeh et al., 2016).
This association was also observed in healthy individuals where
ABCG1 methylation was reported to correlate with fasting insulin
and HOMA-IR (Hidalgo et al., 2014).

Further EWAS studies could confirm methylation aberrations
in some of the previously mentioned genes. A large EWAS
analysis in Mexican-American individuals unraveled five CpG
sites linked to T2D-related traits out of which 3 were located
in TXNIP (cg19693031), ABCG1, and SAMD12 (Kulkarni et al.,
2015). Two separate studies from Spain and Germany confirmed
the association between decreasing methylation levels at TXNIP
(cg19693031) and T2D, as well as with fasting glucose and HbA1c
concentrations (Florath et al., 2016; Soriano-Tárraga et al., 2016).
To end with EWAS, it is important to mention a meta-analysis
by Walaszczyk et al. (2018) that took the initiative to confirm
potential glycemic trait and T2D biomarkers. In this replication
analyses, the authors concluded that a significant association
between T2D and methylation sites in ABCG1, TXNIP, and
SREBF1 exists, which makes them promising biomarkers for
early T2D detection. As a final point, we have to emphasize the
significance of non-genetic elements including blood sugar levels,
patient age, BMI, and gender in predicting future diabetes risk.
Thus, such factors should be integrated into a T2D predictive
model that includes genetic and epigenetic biomarkers to
improve early T2D detection and allow better disease prognosis.

Alzheimer’s Disease
Accumulation of errors in the epigenetic machinery during
aging progression increases the risk for onset of age-related
pathologies, such of those involving brain deterioration and
neurodegeneration. The most common brain disorders affecting
elderly individuals are those causing dementia through loss of
synaptic plasticity, leading to memory impairment and defective
learning capabilities. Alzheimer’s disease (AD) affects 45–60%
of the population with dementia and its burden is expected to
double by the year 2060 (Finder, 2010; Duong et al., 2017). AD is
a polygenic, complex and age-related neurodegenerative disease
clinically characterized by progressive memory loss and cognitive
impairment. Its pathological features include accumulation of
β-amyloid (Aβ) in senile plaques, the formation of neurofibrillary
tangles (NFTs) composed of hyperphosphorylated protein tau,
and massive neuronal loss mainly in the hippocampus as well
as associated regions of the neocortex (Hardy, 2006). Several
clinical and epidemiological aspects of AD indicate a role for
epigenetic factors in its etiology. This is evident in monozygotic
twins discordant for the disease where prognosis and age-of onset
could vary by >10 years. Indeed, a broad spectrum of epigenetic
pathways such as DNA methylation, histone modification, and
non-coding RNAs (ncRNAs) appear to be aberrant. For e.g.
Wang et al. (2008) reported that Alzheimer’s susceptibility loci
have an age-specific epigenetic drift in brain and blood of
individuals with late-onset AD. Several studies were conducted to
identify epigenetic aberrations, as well as to differentiate specific
methylation changes occurring in AD vs non-AD dementias
[reviewed in: Lardenoije et al. (2015)]. Using southern blot
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analysis, West et al. (1995) first showed loss of methylation
at a single site in the amyloid precursor protein (APP) gene
in postmortem human brain of a single individual with AD.
This was confirmed by Tohgi et al. (1999) who reported that
hypomethylation of cytosine residues within the APP promoter
with age results in Aβ deposition in the cerebral cortex of human
autopsy brain samples. Nevertheless, new studies using bisulfite
sequencing failed to replicate these findings (Brohede et al.,
2010). Recently, neuronal fractions from postmortem brains of
Alzheimer’s patients were reported to display significantly up-
regulated expression of BRCA1, consistent with hypomethylation
of a CpG island (CGI) in its promoter region. BRCA1 protein
levels were also increased in response to Aβ deposition and
became mislocalized to the cytoplasm, in both in vitro cellular
and in vivo mouse models (Mano et al., 2017).

After the introduction of methylation arrays, a large study
on >700 autopsied brain samples revealed methylation and
expression changes in ANK1, CDH23, DIP2A, RHBDF2, RPL13,
SERPINF1, and SERPINF2 (De Jager et al., 2014). Similarly,
Lunnon and collaborators performed a large EWAS analysis
on four brain regions where they reported a significant
hypermethylation of ANK1 in the entorhinal cortex, superior
temporal gyrus, and prefrontal cortex of AD individuals. The
authors went on to measure methylation in pre-mortem blood
DNA where they identified distinct differentially methylated
probes (DMPs) to those in AD brains (Lunnon et al., 2014). The
top ranked AD-associated blood DMPs were located in DAPK1,
GAS1, and NDUFS5. Furthermore, epigenetic age acceleration
was shown to be associated with AD neuropathological markers
such as neuritic plaques, diffuse plaques, and amyloid load in
the dorsolateral prefrontal cortex (Levine et al., 2015b). Down’s
syndrome patients, predisposed to early onset AD, also display
DNAm age acceleration in blood and brain tissue starting early
during in utero development (Horvath et al., 2015; El Hajj et al.,
2016) in addition to epigenetic dysregulation at the clustered
protocadherin locus (Almenar-Queralt et al., 2019).

Presently, a definitive AD diagnosis is only possible through
neuropathological examination of brain tissue after death.
Therefore, it is important to identify clinical biomarkers that
can help in early disease detection. In addition, the effectiveness
of available FDA-approved treatments for AD increases when
administered during early stages of the disease. Currently,
ongoing research efforts are mainly focused on delineating AD-
related epigenetic changes that occur in various brain regions.
So far, only a limited number of studies have assessed DNA
methylation changes in blood cells. These articles will be the
subject of the next section, where we will first summarize
findings observed using a candidate gene approach. In one
of these studies, blood DNA methylation of the Brain-derived
neurotrophic factor gene (BDNF) promoter and a tag SNP
(rs6265) were shown to have a significant role in the progression
of the amnestic mild cognitive impairment (aMCI) to AD. Here,
the interaction between DNA methylation of CpG5 and AA
genotype of rs6265 had a role in the progression of aMCI to
AD (p = 0.003, OR = 1.399, 95% CI: 1.198–1.477) (Xie et al.,
2017a). A 5-year longitudinal study also revealed BDNF promoter
methylation as a significant independent predictor of aMCI to

AD transformation (Xie et al., 2017b). Similarly, Nagata et al.
(2015) reported higher DNA methylation affecting a single CpG
site in the BDNF promoter of patients with AD. Nevertheless, it
is important to note that Carboni et al. (2015) could not confirm
methylation alterations in the BDNF promoter in peripheral
blood of Alzheimer’s disease patients. Therefore, doubts remain
as to whether BDNF promoter methylation changes occur in
AD patients. Besides, DNA methylation levels were demonstrated
to be significantly elevated in Coenzyme A Synthase (COASY)
and Serine Peptidase Inhibitor (SPINT1) gene promoter regions
in AD and aMCI (Kobayashi et al., 2016). DNA methylation
at the NCAPH2/LMF2 promoter region was also found to be a
useful biomarker for the diagnosis of AD and aMCI where it
was shown to be associated with hippocampal atrophy through
apoptosis (Shinagawa et al., 2016). Furthermore, Ozaki et al.
(2017) could show that a decline in DNA methylation in intron
1 of Triggering receptor expressed on myeloid cells 2 gene
(TREM2) causes higher mRNA expression in the leukocytes
of AD subjects versus controls. Phosphatidylinositol Binding
Clathrin Assembly Protein (PICALM) was another candidate
gene whose methylation associated with cognitive decline in
blood cells of AD patients (Mercorio et al., 2018). Higher global
DNA methylation levels were also observed in the peripheral
blood mononuclear cells of late onset Alzheimer disease (LOAD)
patients. This hypermethylation was associated with APOEε4
allele (p = 0.0043) and APOEε3 carriers (p = 0.05) (Di Francesco
et al., 2015). In the same way, Bollati et al. (2011) observed
a hypermethylation of LINE-1 elements in AD patients after
measuring DNA methylation at ALU, LINE-1, and alpha satellite
repetitive elements.

In AD, epigenome-wide association studies (EWAS) on
prospective cohorts are still lacking. To address this limitation,
the German Study on Aging, Cognition and Dementia in Primary
Care Patients (AgeCoDe) recruited >3300 healthy individuals at
baseline to investigate markers for early detection of dementia
and cognitive impairment. From this cohort, Lardenoije et al.
(2019) identified 55 converters healthy at baseline that developed
AD dementia at follow-up. Using DNA methylation arrays,
several differentially methylated regions were spotted in blood
of AD converters at baseline. By focusing on those regions, we
could discern epigenetic dysregulation at six DMPs in blood DNA
of Down’s syndrome patients who are at high risk of developing
early onset AD. One of the DMPs mapped to ADAM10, a major
alpha-secretase, responsible for APP cleavage in neurons (Haertle
et al., 2019). It is still challenging to find a non-invasive biomarker
that reflects AD pathogenesis in the brain. Nonetheless, the
previously described epigenetic alterations might be considered
potential biomarkers that require further research to assess
their efficacy.

Cardiovascular Disease
Cardiovascular disease (CVD) is an umbrella term for a range
of conditions that affect the heart or blood vessels. The main
determinants of a person’s cardiovascular health is age, as well
as several risk factors including diabetes, smoking, obesity,
and high blood pressure. Epigenetic aging biomarkers based
on “The Horvath Clock,” “DNAm PhenoAge,” and “DNAm
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GrimAge” were recently reported to be associated with CVD risk
(Levine et al., 2018; Lind et al., 2018; Lu et al., 2019). Even
though not much research is published on the epigenetics of
CVD, however, the impact of epigenetics has been extensively
studied in the aforementioned risk factors. The complex interplay
of genetics, epigenetics, and environment have an important role
in the pathogenesis and progress of these conditions. For e.g. a
trans-ancestry genome wide association study (GWAS) identified
12 genetic variants associated with methylation levels, which
influences susceptibility for hypertension (Kato et al., 2015).
Similarly, elevated global DNA methylation levels were reported
to be positively associated with CVD and its predisposing
risk factors (Sharma et al., 2008; Kim et al., 2010). Another
example by Infante et al. (2019) investigated DNA methylation
and expression changes in coronary heart disease patients
undergoing Cardiac Computed Tomography (CCT). They could
show that genes involved in cholesterol bioactivity such as LDLR
promoter have higher methylation in PBMNCs of CHD patients
compared to healthy controls. LDLR promoter methylation
was also associated with calcified plaque volume and total
plague burden measured via CCT. A case-control study using
Human CpG 12K Array (HCGI12K) revealed 72 DMRs hyper-
methylated in patients with coronary artery disease (CAD)
(Sharma et al., 2014). More recently, an EWAS analyses using
the HumanMethylation450 BeadChips reported 211 CpG sites
located on 196 genes to be differentially methylated in patients
with a history of myocardial infarction (MI) (Rask-Andersen
et al., 2016). A similar EWAS study on acute coronary syndrome
revealed associations with blood methylation levels of 47 CpG
sites located in genes involved in atherogenic signaling and
immune response (Li et al., 2017). Nakatochi et al. (2017)
also performed an EWAS analyses on blood DNA of patients
suffering from MI which revealed three differentially methylated
CpG sites in SGK1, SMARC4, and ZFHX3. A large EWAS
study on the Women’s Health Initiative (discovery set) and
Framingham Heart Study (FHS) – (replication set) identified
three DMRs in SLC9A1, SLC1A5, and TNRC6C linked to CVD
incidence (Westerman et al., 2018). The authors also performed a
module based epigenetic analysis, which revealed three modules
associated with CVD and its risk factors out of which two had
strong concordance in both cohorts (Westerman et al., 2018).

A growing number of studies reported a possible role for
DNA methylation in atherosclerosis pathogenesis (Newman,
1999; Napoli et al., 2012; Aavik et al., 2015; Liu et al.,
2018). Atherosclerotic lesions are known to harbor differentially
methylated CpGs in genes involved in endothelial and smooth
muscle functions (Zaina et al., 2014). Circulating concentrations
of tumor necrosis factor α, a pro-inflammatory cytokine
linked to atherosclerosis, were recently shown to be associated
with methylation changes in the immune response-related
genes DTX3L-PARP9 and NLRC5. DNA methylation levels
of those genes were also shown to negatively correlate with
CHD incidence (Aslibekyan et al., 2018). Similarly, a large
EWAS meta-analysis on serum C-reactive protein (CRP), an
inflammation biomarker predicting heart failure, identified 58
CpG sites related to CRP levels. Several of those CpGs (51
sites) were associated with cardio-metabolic traits including

CHD prevalence and incidence (Ligthart et al., 2016). More
recently, focus shifted toward understanding the role of 5-
Hydroxymethylcytosine in CVD, where reports have shown
that global DNA hydroxymethylation levels could be better
predictors of MI and CHD when compared to 5-mC. In elderly
individuals, the incidence and degree of coronary atherosclerosis
(CA) were linked to increased DNA hydroxymethylation levels
in PBMCs (Jiang et al., 2019a). This lead the authors to propose
a novel CA biomarker based on integrating carotid plaques
scores, as well as DNA methylation and hydroxymethylation data
(Jiang et al., 2019b).

From a precision health perspective, a machine learning
based framework focused on the FHS cohort could detect CHD
presence and foresee its incidence by implementing genetic,
epigenetic and phenotypic data (Dogan et al., 2018a,b). Similarly,
DNA methylation levels in the TRAF3 gene were reported
to predict recurrence of ischemic events in patients treated
with Clopidogrel (Gallego-Fabrega et al., 2016b). A conceptually
related study from the same group identified PPM1A methylation
to be associated with vascular recurrence after stroke in aspirin
treated patients (Gallego-Fabrega et al., 2016a). Nonetheless,
there must be a more concerted effort to establish whether the
reported epigenetic alterations can be reliable CVD biomarkers.

CONCLUSION AND FUTURE
PERSPECTIVES

Despite the extensive plethora of epigenetic modifications,
measuring DNA methylation of specific CpG sites remains
the most promising epigenetic biomarker. DNA methylation
modifications are highly stable compared to RNA- or protein-
based biomarkers, relatively easy to measure using non-invasive
biospecimen, and are quantifiable marks on the DNA that
can track the influences of various environmental and lifestyle
factors (Berdasco and Esteller, 2019). Nevertheless, epigenetic
biomarkers are still in the nascent stage and more research is
warranted to move toward applications in healthcare. Still, efforts
invested in developing biomarkers based on the epigenetic clocks
has accelerated discoveries in the field. Furthermore, GRAIL a
multi-billion dollar investment has chosen DNA methylation
as its preferred approach for a non-invasive test for early
cancer detection.

A key factor in the development of epigenetic clocks
was the advent of Infinium Methylation arrays that enabled
simultaneous quantification of DNA methylation starting from
∼27,000 individual CpG sites (Infinium HumanMethylation27
BeadChip) up to 850,000 sites via EPIC arrays. These
methylation arrays provide a cost-effective approach for
large-scale epigenetic epidemiology studies. Nevertheless, the
human genome is comprised of 28 million CpG sites out
of which 3% are measured using Epic Arrays. Even though,
a few reports have mentioned that whole genome bisulfite
sequencing (WGBS) is potentially inefficient due to non-
dynamic methylation across a large fraction of CpG cites as
well as the majority of WGBS reads being non-informative
(Ziller et al., 2013). Nevertheless, sequencing costs are
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decreasing dramatically and more comprehensive DNA
methylation datasets would become publicly available once
whole-genome bisulfite and oxidative bisulfite sequencing
becomes mainstream. Development of more accurate epigenetic
biomarkers by relying on whole genome sequencing data will
be a hot topic in the next years. Future work based on these
data should be even more exciting and would have important
implications for human health.
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