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Lung cancer is the leading cause of cancer-related deaths worldwide. Dysregulation
of RNA binding proteins (RBPs) has been found in a variety of cancers and is
related to oncogenesis and progression. However, the functions of RBPs in lung
squamous cell carcinoma (LUSC) remain unclear. In this study, we obtained gene
expression data and corresponding clinical information for LUSC from The Cancer
Genome Atlas (TCGA) database, identified aberrantly expressed RBPs between tumors
and normal tissue, and conducted a series of bioinformatics analyses to explore the
expression and prognostic value of these RBPs. A total of 300 aberrantly expressed
RBPs were obtained, comprising 59 downregulated and 241 upregulated RBPs.
Functional enrichment analysis indicated that the differentially expressed RBPs were
mainly associated with mRNA metabolic processes, RNA processing, RNA modification,
regulation of translation, the TGF-beta signaling pathway, and the Toll-like receptor
signaling pathway. Nine RBP genes (A1CF, EIF2B5, LSM1, LSM7, MBNL2, RSRC1,
TRMU, TTF2, and ZCCHC5) were identified as prognosis-associated hub genes by
univariate, least absolute shrinkage and selection operator (LASSO), Kaplan–Meier
survival, and multivariate Cox regression analyses, and were used to construct the
prognostic model. Further analysis demonstrated that high risk scores for patients were
significantly related to poor overall survival according to the model. The area under
the time-dependent receiver operator characteristic curve of the prognostic model
was 0.712 at 3 years and 0.696 at 5 years. We also developed a nomogram based
on nine RBP genes, with internal validation in the TCGA cohort, which showed a
favorable predictive efficacy for prognosis in LUSC. Our results provide novel insights
into the pathogenesis of LUSC. The nine-RBP gene signature showed predictive
value for LUSC prognosis, with potential applications in clinical decision-making and
individualized treatment.
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INTRODUCTION

Lung cancer is one of the most commonly diagnosed diseases and
the leading cause of cancer-related deaths worldwide (Siegel et al.,
2019). Lung squamous cell carcinoma (LUSC) accounts for 30%
of lung cancer cases, resulting in about 0.4 million deaths each
year worldwide (Siegel et al., 2013). Despite advances in diagnosis
and treatment of lung cancer over the past few decades, there
remains a lack of effective therapies for patients, underscoring
the demand for novel treatment methods. Owing to differences in
genetic and epigenetic changes among different subtypes of lung
cancer, effective treatment targets of adenocarcinoma may not be
suitable for LUSC (Wang et al., 2019). Therefore, a systematic
study to explore the differentially expressed genes in LUSC is
required to identify potential diagnostic markers and therapeutic
targets for LUSC.

RNA binding proteins (RBPs) are proteins that interact with
various types of RNA and are ubiquitously expressed in cells
(Masuda and Kuwano, 2019; New et al., 2019; Otsuka et al.,
2019). A total of 1542 RBPs have been identified by high-
throughput screening in human cells, representing 7.5% of all
protein coding genes (Gerstberger et al., 2014). These RBPs
affect post-transcriptional events in cells and modulate cell
physiology, and are therefore involved in multiple biological
processes including RNA splicing, mRNA stability, export to
the cytoplasm, localization, and protein translation (Masuda
and Kuwano, 2019; Nahalka, 2019). Given that RPBs perform
various critical functions in post-transcriptional events, it is
unsurprising that alterations in RBPs are closely related to the
initiation and progression of many human diseases. However, the
roles of RBPs in the origin and development of cancer remain
relatively unexplored.

In recent years, genome-wide analysis has indicated that
many RBPs show dysregulated expression in tumors relative
to adjacent normal tissues, and that their expression is
associated with patient prognosis (Chen et al., 2019; Cooke
et al., 2019; Zhang et al., 2019). It is well-known that the
dysregulation of RBPs in cancer cells is mainly caused by
genomic alterations, microRNA-mediated regulation, epigenetic
mechanisms, and post-translational modifications (Gerstberger
et al., 2014). Previous studies have linked known cancer drivers
to RBP dysregulation. For example, the oncogene crabp2 interacts
with the RBP HuR to promote metastasis of lung cancer cells
by regulating integrin β1/FAK/ERK signaling (Wu et al., 2019).
Transforming growth factor-β (TGF-β) induces the expression of
RNA-binding motif protein 38 (RBM38) in breast cancer, which
promotes epithelial-to-mesenchymal transition by regulating the
zonula occludens-1 transcript (Wu et al., 2017). The forkhead
box K2 protein (FOXK2) promotes colorectal cancer metastasis
by upregulating mRNA expression of zinc finger E-box binding
homeobox 1 (ZEB1) (Du et al., 2019). Taken together, these
studies indicate that the RBPs are closely related to the occurrence
and development of human tumors. However, only a small
fraction of RBPs have been studied intensively and found to have
key roles in cancers to date. Therefore, we collected all relevant
LUSC data from The Cancer Genome Atlas (TCGA) database
and performed the present systematic analysis to examine the

potential molecular functions and clinical significance of RBPs
in LUSC. We identified multiple differentially expressed RBPs
associated with LUSC, which provide new insight into the
pathogenesis of the disease. Some of them may serve as potential
biomarkers for diagnosis and prognosis.

MATERIALS AND METHODS

Data Preprocessing and Identification of
Differentially Expressed RBPs
RNA sequencing data of 501 LUSC samples and 49 normal
lung tissue samples with corresponding clinical information were
downloaded from TCGA.1 The raw data were preprocessed
using the DESeq2 package.2 Differentially expressed RBPs were
identified based on a false discovery rate < 0.05 and |log2 fold
change (FC)|≥ 1. All differentially expressed RBPs had an average
count value more than 1.

GO and KEGG Functional Enrichment
Analyses
The biological functions of these differently expressed RBPs were
systematically investigated by gene ontology (GO) enrichment,
which comprised three terms: molecular function, biological
process, and cellular component. The Kyoto Encyclopedia of
Genes and Genomes database (KEGG) was used to detect
potential biological pathways of differentially expressed RBPs. All
GO and KEGG pathway enrichment analyses were carried out
using the WebGestalt (WEB-based Gene SeT AnaLysis Toolkit3)
(Liao et al., 2019) with a P-value less than 0.05 and gene
number more than 5.

Protein–Protein Interaction Network
Construction and Module Screening
The protein–protein interactions (PPIs) among all differentially
expressed RBPs were detected using the START (Search Tool
for the Retrieval of Interacting Genes4) (Szklarczyk et al., 2019),
and their network was constructed with the Cytoscape 3.7.0
software. Subsequently, the key modules were screened from the
PPI network with scores >7 and node counts >5 by using the
MCODE (Molecular Complex Detection) plug-in in Cytoscape.
The cytoHubba plug-in was used to select hub genes. P < 0.05
was considered to indicate a significant difference.

Hub RBPs Expression Validation and
Efficacy Evaluation
The Human Protein Atlas (HPA) database5 (Uhlen et al.,
2017) was used to detect the expression of 10 hub genes
at a translational level. Receiver operating characteristic
(ROC) curves were constructed with the GraphPad Prism 7.0

1https://portal.gdc.cancer.gov/
2http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
3http://www.webgestalt.org/
4http://www.string-db.org/
5http://www.proteinatlas.org/

Frontiers in Genetics | www.frontiersin.org 2 March 2020 | Volume 11 | Article 185

https://portal.gdc.cancer.gov/
http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.webgestalt.org/
http://www.string-db.org/
http://www.proteinatlas.org/
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00185 March 3, 2020 Time: 19:28 # 3

Li et al. RNA Binding Proteins in LUSC

software to calculate the ability to discriminate between normal
and tumor tissue.

Copy-Number Alterations and Mutation
Analysis of Hub RBPs
The copy-number alteration and mutation data for all hub RBPs
from the PPI network were identified using segmentation analysis
and the GISTIC algorithm in cBioPortal6 (Gao et al., 2013). Next,
we carried out a co-expression analysis of all hub RBPs. Then we
constructed a network including all hub genes and the 50 most
frequently altered neighbor genes.

Prognosis-Related RBP Selection
The differentially expressed RBPs were subjected to a univariate
Cox regression analysis using the survival package in R. A log-
rank test was used to select the significant prognosis-related
candidate RBPs, and the least absolute shrinkage and selection
operator (LASSO), a widely used machine learning algorithm,
was used to further predict the prognostic significance of
candidate RBPs (iteration equal 1000) (Jiang et al., 2018). We also

6https://www.cbioportal.org/

used a Kaplan–Meier test to evaluate the prognostic value of each
candidate RBP identified by LASSO; the RBPs with P-value less
than 0.05 were considered to be true prognosis-related RBPs.

Prognostic Model Construction and
Evaluation
Based on the selected prognosis-related RBPs genes, we
developed a multivariate Cox proportional hazards regression
model to predict the prognosis of LUSC patients (Jiang et al.,
2017). In this model, the risk score of each sample was calculated
according to the following formula:

Risk score =
n∑

i=1

Expi βi,

where β represents the regression coefficient, and Exp represents
the gene expression value.

To evaluate the performance of this prognostic model, LUSC
patients from the TCGA with a survival time greater than 1
month were divided into low- and high-risk subgroups according
to the median risk score, and the difference in overall survival
(OS) between the two subgroups was compared by a log-rank

FIGURE 1 | Framework for analyzing the RBPs in LUSC.
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TABLE 1 | GO and KEGG pathway analysis results for differentially expressed
RBPs.

Expression GO term P-value

Up-regulated RBPs

Biological processes Cellular amide metabolic process <0.001

RNA processing <0.001

ncRNA metabolic process <0.001

RNA modification <0.001

Ribonucleoprotein complex biogenesis <0.001

Molecular function RNA binding <0.001

Catalytic activity, acting on RNA <0.001

Structural constituent of ribosome 8.34e-14

Nuclease activity 1.33e-9

Cellular component Nucleolus <0.001

Mitochondrial matrix <0.001

Sm-like protein family complex <0.001

Ribonucleoprotein complex <0.001

KEGG pathway RNA degradation 2.34e-12

Ribosome biogenesis in eukaryotes 1.27e-11

mRNA surveillance pathway 2.33e-10

Spliceosome <0.001

Down-regulated RBPs

Biological processes mRNA metabolic process 5.93e-10

RNA processing 3.31e-7

Defense response to virus 3.57-7

Regulation of translation 7.47e-7

Molecular function RNA binding <0.001

Poly-pyrimidine tract binding 5.66e-8

Translation regulator activity 4.28e-8

Cellular component Ribonucleoprotein complex 7.9078e-8

Endolysosome membrane 0.0000033273

RNA cap binding complex 0.0000041529

KEGG pathway TGF-beta signaling pathway 0.001

Toll-like receptor signaling pathway 0.0018

mRNA surveillance pathway 0.02

test. Besides, the SurvivalROC R package was used to construct
a ROC curve for prognostic performance of this model, and we
drew a nomogram plot to forecast the likelihood of OS using the
rms R package. Additionally, 69 LUSC patient samples from the
GSE73403 dataset7 were used as a validation cohort to confirm
the predictive value of the prognostic model.

RESULTS

Selection of Differentially Expressed
RBPs in LUSC
The workflow of this study is illustrated in Figure 1.
RNA sequencing data for LUSC and corresponding clinical
information were downloaded from the TCGA database.
A total of 501 LUSC samples and 49 normal lung samples
were analyzed. The DESEq2 software packages were used to
preprocess these data and detect the differentially expressed

7https://www.ncbi.nlm.nih.gov/gds/?term=GSE73403

RBPs. In total, 1542 RBPs (Gerstberger et al., 2014) were
analyzed in this study, of which 300 met our inclusion
criteria (adj P < 0.05, |log2FC| ≥ 1.0), comprising 59
downregulated and 241 upregulated RBPs. The expression
distribution of these differentially expressed RBPs is shown in
Supplementary Figure S1.

Functional Enrichment Analysis of the
Differentially Expressed RBPs
To explore the potential functional and molecular mechanisms
of the identified RBPs, they were divided into two groups based
on their expression level. Then we carried out GO and pathway
analysis for these differentially expressed RBPs using the online
tool WebGestalt. Upregulated differentially expressed RBPs were
significantly enriched in biological processes associated with
the cellular amide metabolic process, RNA processing, RNA
metabolic process, RNA modification, and ribonucleoprotein
complex biogenesis (Table 1). The downregulated differentially
expressed RBPs were notably enriched in the mRNA metabolic
process, RNA processing, defense response to virus, and
regulation of translation (Table 1). The molecular function
analysis showed that, among the differentially expressed RBPs,
the upregulated RBPs were significantly enriched in RNA
binding catalytic activity, acting on RNA, structural constituent
of ribosome, and nuclease activity (Table 1), whereas the
downregulated RBPs were significantly enriched in RNA binding,
poly-pyrimidine tract binding, and translation regulator activity
(Table 1). In regard to the cellular component, the upregulated
RBPs were mainly enriched in the nucleolus, mitochondrial
matrix, Sm-like protein family complex, and ribonucleoprotein
complex, and downregulated RBPs were mainly enriched
in the ribonucleoprotein complex, endolysosome membrane,
and RNA cap binding complex (Table 1). Moreover, we
found that downregulated differentially expressed RBPs were
mainly enriched in the TGF-beta signaling pathway, Toll-like
receptor signaling pathway, and mRNA surveillance pathway,
whereas upregulated RBPs were significantly enriched for
RNA degradation, ribosome biogenesis in eukaryotes, mRNA
surveillance pathway, and the spliceosome (Table 1).

PPI Network Construction and Key
Module Screening
We constructed a protein–protein co-expression network using
Cytoscape software and the STRING database, in order to
better understand the potential molecular functions of these
differentially expressed RBPs in LUSC. This PPI network
contained a total of 167 nodes and 771 edges (Figure 2A).
Then we screened the hub genes by computing degree and
betweenness, and obtained 10 candidate genes: MRPL15,
MRPL13, MRPL4, MRPL3, MRPL24, MRPS12, MRPL11,
MRPL21, MRPL36, and MRPL47. Subsequently, we further
analyzed the co-expression network to detect potential critical
modules by using the plug-in MODE in Cytoscape, and
determined the top two significant modules. Module 1 included
18 nodes and 147 edges (Figure 2B), and module 2 consisted
of 14 nodes and 91 edges (Figure 2C). The GO and pathway
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FIGURE 2 | PPI network and module analysis. (A) PPI network for RBPs; (B) critical module 1 in PPI network; (C) critical module 2 in PPI network.

analyses showed that the genes from module 1 were mainly
enriched in mitochondrial translation, mitochondrial gene
expression, and cellular protein complex disassembly, whereas
the genes in module 2 were significantly enriched in spliceosomal
snRNP assembly, mRNA splicing, mRNA metabolic process,
and RNA processing.

Hub Gene Expression Validation
To further determine the expression of these hub genes in LUSC,
we used immunohistochemistry results from the Human Protein
Atlas database to show that MRPL15, MRPL13, MRPL4, MRPL3,
MRPL24, MRPS12, MRPL11, MRPL21, MRPL36, and MRPL47
were significantly increased in lung cancer compared with
normal lung tissue (Figure 3). Furthermore, we used ROC curve
analysis to evaluate the efficacy of 10 hub genes to discriminate
between carcinoma tissue and normal lung tissue. The area under
the curve (AUC) of hub genes MRPL15 (AUC = 0.9585, 95%
CI: 0.9376–0.9795, P < 0.0001), MRPL13 (AUC = 0.9480, 95%
CI: 0.9111–0.9849, P < 0.0001), MRPL4 (AUC = 0.9578, 95%

CI: 0.9407–0.9749, P < 0.0001), MRPL3 (AUC = 0.9943, 95%
CI: 0.9896–0.9991, P < 0.0001), MRPL24 (AUC = 0.9415, 95%
CI: 0.9158–0.9672, P < 0.0001), MRPS12 (AUC = 0.9862, 95%
CI: 0.9758–0.9966, P < 0.0001), MRPL11 (AUC = 0.9393, 95%
CI: 0.9062–0.9724, P < 0.0001), MRPL21 (AUC = 0.934, 95%
CI: 0.9074–0.9608, P < 0.0001), MRPL36 (AUC = 0.9835, 95%
CI: 0.9718–0.9953, P < 0.0001), and MRPL47 (AUC = 0.9845,
95% CI: 0.9751–0.9939, P < 0.0001) were all greater than 0.9,
indicating that the hub genes had higher diagnostic accuracy for
LUSC (Figure 4).

Mutation and Copy-Number Alteration
Analysis of Candidate Hub Genes in
LUSC Patients
Mutation and copy-number alteration (CNA) analyses of the hub
genes MRPL15, MRPL13, MRPL4, MRPL3, MRPL24, MRPS12,
MRPL11, MRPL21, MRPL36, and MRPL47 were carried out
using the cBioPortal online tool for LUSC (TCGA, Provisional).
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FIGURE 3 | Validation of protein expression of hub genes in normal lung tissue and LUSC using the HPA database. (A) MRPL15; (B) MRPL13; (C) MRPL4;
(D) MRPL3; (E) MRPL24; (F) MRPS12; (G) MRPL11; (H) MRPL21; (I) MRPL36; (J) MRPL47.

FIGURE 4 | ROC analysis of 10 hub RBPs based on the TCGA dataset. (A) MRPL15; (B) MRPL13; (C) MRPL4; (D) MRPL3; (E) MRPL24; (F) MRPS12;
(G) MRPL11; (H) MRPL21; (I) MRPL36; (J) MRPL47.
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The results showed that these 10 hub genes were altered
in 178 samples out of 511 LUSC patients (35%). Two or
more alterations were found in 68% of the LUSC samples
(121 samples) (Figures 5A,B). The amplification of MRPL47
was the most frequent copy-number alteration among these
10 hub genes. Then we constructed an interaction network
containing 60 nodes, which comprised 10 hub genes and
the 50 most frequently altered neighbor genes (Figure 5C).
We also found that mitochondrial translation-related genes,
including GFM1, MTIF2, MTRF1, MRPS10, MRPS11, MRPL1,
MRPL9, and PTCD3, were closely associated with alterations of
the 10 hub genes.

Prognosis-Related RBP Screening
Of the 300 differentially expressed RBPs, 54 were associated
with prognosis as confirmed by univariate Cox regression
analysis (Supplementary Table S1). Then we conducted a LASSO
regression analysis to obtain the RBP genes with the best potential

prognostic significance; 13 RBP genes, A1CF, F4, DQX1, EIF2B5,
GEMIN2, LSM1, LSM7, MBNL2, PABPC3, RSRC1, TRMU, TTF2,
and ZCCHC5, were selected (Supplementary Figure S2). To
further determine the RBPs with the greatest potential prognosis
ability, a Kaplan–Meier test for OS was used to identify nine
RBP-coding genes, A1CF, EIF2B5, LSM1, LSM7, MBNL2, RSRC1,
TRMU, TTF2, and ZCCHC5 (Figure 6).

Prognosis-Related Genetic Risk Score
Model Construction and Validation
The nine RBPs were analyzed by multiple stepwise Cox regression
to construct a predictive model (Table 2). The risk score of each
LUSC patient was computed according to the following formula:

Risk score = (0.0218 ∗ ExpMBNL2)+ (−0.0134 ∗ ExpLSM1)

+ (2.4069 ∗ ExpA1CF)+ (−0.0067 ∗ ExpEIF2B5)

FIGURE 5 | Hub RBP expression and alteration analysis in LUSC. (A) Mutation frequency of hub genes; (B) mutation frequency of each gene; (C) interaction
network.

Frontiers in Genetics | www.frontiersin.org 7 March 2020 | Volume 11 | Article 185

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00185 March 3, 2020 Time: 19:28 # 8

Li et al. RNA Binding Proteins in LUSC

FIGURE 6 | Prognostic value of key nine RBPs in LUSC. (A) LSM1; (B) MBNL2; (C) A1CF; (D) EIF2B5; (E) TTF2; (F) TRMU; (G) LSM7; (H) ZCCHC5; (I) RSRC1.

+ (−0.0550 ∗ ExpTTF2)+ (−0.0557 ∗ ExpTRMU)

+ (−0.0066 ∗ ExpLSM7)+ (1.3639 ∗ ExpZCCHC5)

+ (−0.0132 ∗ ExpRSRC1)

To assess the predictive ability of this model, we divided
424 LUSC patients into high- and low-risk groups for survival
analysis according to the median risk score. Patients in the
high-risk subgroup had a significantly lower OS rate than those
in the low-risk subgroup (Figure 7A). Then we performed a
time-dependent ROC analysis to further evaluate the prognostic
performance of the nine-RBP gene signature; the AUC of the
ROC curve for OS was 0.712 at 3 years and 0.696 at 5 years
(Figure 7B). The expression heat map and survival status of
patients with the nine-RBP gene biomarker in the low- and high-
risk subgroups are shown in Figure 7C. These results reveal that
our prognostic model had moderate sensitivity and specificity.
Furthermore, we assessed whether the nine-RBP gene signature

predictive model has similar prognostic ability in other LUSC
patient cohorts; the same risk assessment formula was utilized to
the GSE73403 datasets. The results indicated that patients with

TABLE 2 | Multivariate Cox regression analysis to identify prognosis-related hub
RBPs.

Gene Coef Exp (coef) Se (coef) z Pr(>| z|)

LSM1 −0.0134 0.9867 0.0062 −2.1820 0.0291

MBNL2 0.0218 1.0220 0.0114 1.9120 0.0558

A1CF 2.4069 11.0993 1.8701 1.2870 0.1981

EIF2B5 −0.0067 0.9933 0.0054 −1.2340 0.2171

TTF2 −0.0550 0.9465 0.0513 −1.0710 0.2844

TRMU −0.0557 0.9458 0.0532 −1.0460 0.2955

LSM7 −0.0066 0.9934 0.0079 −0.8410 0.4004

ZCCHC5 1.3639 3.9115 1.7583 0.7760 0.4379

RSRC1 −0.0132 0.9869 0.0223 −0.5920 0.5536
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FIGURE 7 | Risk score analysis of nine-gene prognostic model in TCGA LUSC cohort. (A) Survival analysis according to risk score; (B) ROC analysis; (C) heat map
and survival status of patients.

high-risk score had poorer OS than those with low-risk score in
the GSE73403 cohorts (Figures 8A–C).

In order to construct a quantitative model for LUSC prognosis,
we combined the nine-RBP marker to build a nomogram plot
(Figure 9A). This allowed us to calculate the estimated survival
probabilities of LUSC patients at 3 and 5 years by plotting a
vertical line between the total point axis and each prognosis axis.
We constructed calibration plots, which showed that there was
good conformity between the predicted and observed outcomes
(Figures 9B,C). We also calculated the concordance index for
OS in the TCGA and GSE16011 cohorts, which were 0.69
and 0.66 respectively. In addition, we evaluated the prognostic
value of different clinical features in 335 patients with LUSC by
conducting a univariate regression analysis. The results indicated
that age, smoking, stage, distant metastasis, and risk score were
related to OS of LUSC patients (P < 0.01) (Table 3). However, we

only found that age, smoking, and risk score were independent
prognostic factors related to OS through multiple regression
analysis (Table 3).

DISCUSSION

Malignant tumors are characterized by uncontrolled cell growth,
which is mainly due to the dysregulated expression of cancer
driver genes that regulate cell proliferation and differentiation.
This includes gain of function mutations of oncogenes and
functional deletion alterations of tumor-suppressor genes, or
disabling of genome maintenance genes (Masuda and Kuwano,
2019; Zhou et al., 2019). Many studies have reported that RBPs
show dysregulated expression in various human cancers (Dong
et al., 2019; Soni et al., 2019; Velasco et al., 2019). However, little
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FIGURE 8 | Risk score analysis of nine-gene prognostic model in GSE73403 LUSC cohort. (A) Survival analysis according to risk score; (B) ROC analysis; (C) heat
map and survival status of patients.

is currently known about the expression patterns and roles of
RBPs in LUSC. In the present study, we integrated TCGA RNA
sequencing data for LUSC and identified differentially expressed
RBPs between cancer and normal tissue. We systematically
investigated relevant biological pathways and constructed PPIs
for these RBPs. Then, we performed survival analyses, ROC
analyses, and copy-number alterations analyses to explore the
potential biological functions and clinical values of the hub RBPs.
We also screened key prognosis-related RBPs and constructed
a risk model to predict LUSC prognosis based on a nine-
RBP gene signature.

The biological functions and pathway enrichment analysis of
these differentially expressed RBPs showed that the upregulated
RBPs were significantly enriched in the cellular amide metabolic
process, RNA processing, RNA metabolic process, RNA

modification, RNA degradation, ribosome biogenesis, and
mRNA surveillance pathway. The downregulated RBPs were
mainly enriched in the mRNA metabolic process, RNA
processing, regulation of translation, TGF-beta signaling
pathway, and Toll-like receptor signaling pathway. In recent
years, a large number of studies, have reported the role of
aberrant RNA metabolism and RNA processing in various
diseases (Li et al., 2017, 2018; Li S. et al., 2019; Li Y. et al., 2019).
RNA processing factors were shown to have increased expression
in poorly differentiated non-small-cell lung cancer cells (Geles
et al., 2016). The TGF-beta signaling pathway is a classical
tumorigenesis-related pathway; it exerts dual and opposing
roles in oncogenesis, inhibiting cell proliferation in early tumors
and inducing tumor progression and metastasis in advanced
cancer (Seoane and Gomis, 2017; Batlle and Massague, 2019).
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FIGURE 9 | Nomogram and calibration plots of nine RBPs. (A) Nomogram to predict 3- and 5-year OS in the TCGA cohort. (B,C) Calibration plots of the nomogram
to predict OS at 3 and 5 years.

Previous studies have shown that RBPs can interact with the
TGF-beta signaling pathway to regulate lung carcinogenesis
(Kim et al., 2016; Bai et al., 2019). These results suggest that
RBPs can affect the growth of tumor cells by regulating multiple
biological processes, such as the TGF-beta signaling pathway,
RNA metabolism, and RNA processing.

Subsequently, we obtained 10 hub RBPs by constructing a
PPI network: MRPL15, MRPL13, MRPL4, MRPL3, MRPL24,
MRPS12, MRPL11, MRPL21, MRPL36, and MRPL47. These hub
RBPs are mitochondrial ribosomal proteins that are essential for
maintaining mitochondrial functions. Impaired mitochondrial
functions such as apoptosis and oxidative phosphorylation
are found in most cancers, however, their mechanisms are
unclear (Koc et al., 2015; Lee et al., 2017; Lin et al., 2019).
Lee et al. (2017) found that suppressed MRPL13 expression
increased hepatoma cell invasiveness. Koc et al. (2015) proposed
that defects in mitochondrial function in head and neck
squamous cell carcinoma might be caused by a decrease in

MRPL11 expression. Shi et al. (2015) revealed that MRPL21
was significantly overexpressed in esophageal squamous cell
carcinoma (ESCC) and could be used as a candidate prognostic

TABLE 3 | The prognostic effect of different clinical parameters.

Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95%CI P-value

Age 1.03 1.01–1.08 0.003 1.04 1.02–1.08 <0.001

Gender 1.19 0.81–1.75 0.380 1.21 0.82–1.80 0.333

Smoking 0.80 0.67–0.94 0.009 0.73 0.61–0.87 <0.001

Stage 1.24 1.01–1.51 0.036 1.50 0.93–2.41 0.0956

T 1.22 0.99–1.54 0.095 1.02 0.74–1.41 0.910

M 2.74 1.01–7.44 0.049 1.01 0.26–3.99 0.985

N 1.08 0.85–1.37 0.542 0.83 0.53–1.29 0.400

Risk score 1.93 1.55–2.40 <0.001 2.06 1.64–2.59 <0.001
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biomarker. Although little is known about the relationship
between mitochondrial ribosomal proteins and LUSC, our results
indicate that impaired mitochondrial function is an important
cause of LUSC, and further evaluation of potential roles of the
10 differentially expressed hub mitochondrial ribosomal proteins
in LUSC may be worthwhile.

In addition, the prognosis-related hub RBPs were screened
using univariate Cox regression analysis, LASSO regression
analysis, Kaplan–Meier test, and multiple Cox regression
analysis. We finally determined nine RBP-coding genes: A1CF,
EIF2B5, LSM1, LSM7, MBNL2, RSRC1, TRMU, TTF2, and
ZCCHC5. High expression of LSM1, EIF2B5, TTF2, TRMU,
LSM7, and RSRC1 was associated with a good prognosis in
patients with LUSC, whereas that of A1CF,MBNL2, and ZCCHC5
were related to poor prognosis. Next, the nine RBPs were used
to construct a risk model by multiple stepwise Cox regression
analysis to predict prognosis in LUSC patients. The ROC curve
of the prognostic model showed that the nine-RBP genes
signature had moderate performance for predicting OS at 3 years
(AUC = 0.712) and 5 years (AUC = 0.696). A nomogram was
constructed to enable practitioners to predict 3-, and 5-year OS
of LUSC patients. According to the outcomes predicted by our
model, patients with high risk scores have a poor prognosis,
suggesting that they may need an adjusted treatment plan and
individualized treatment.

Overall, our study provides novel insights into the role
of RBPs in the tumorigenesis and progression of LUSC.
Furthermore, our prognostic model showed good predictive
performance with regard to survival, which may contribute
to the development of new prognostic indicators for LUSC.
Furthermore, the RBP-related gene marker showed a pivotal
biological background, which demonstrates that these RBPs
could be used in clinical adjuvant treatments. Nevertheless,
our study had several limitations. First, our results were only
based on single-omics (RNA sequencing); patients may exhibit
heterogeneity owing to the different features of other omics
data platforms. Moreover, our prognostic model was built on
the TCGA LUSC dataset and was not validated with a clinical
patient cohort; a prospective study should be performed to
verify the results. Finally, the lack of some clinical characteristics
in the datasets from TCGA may have decreased the statistical
effectiveness and reliability of the multivariate stepwise Cox
regression analysis.

CONCLUSION

We investigated the expression, potential functions, and
prognostic values of aberrantly expressed RBPs via a series of
bioinformatics analysis in LUSC. These RBPs were associated
with oncogenesis, development, invasion, and metastasis. A nine-
RBP coding gene prognostic model was developed that could
act as an independent prognostic signature for LUSC. To
the best of our knowledge, this is the first report of the
establishment of an RBP-associated prognostic model for LUSC.
These findings provide important insight into the pathogenesis
of LUSC, which may contribute to clinical decision-making and
individualized treatment.
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