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Large sets of genomic regions are generated by the initial analysis of various genome-
wide sequencing data, such as ChIP-seq and ATAC-seq experiments. Gene set
enrichment (GSE) methods are commonly employed to determine the pathways
associated with them. Given the pathways and other gene sets (e.g., GO terms) of
significance, it is of great interest to know the extent to which each is driven by binding
near transcription start sites (TSS) or near enhancers. Currently, no tool performs such
an analysis. Here, we present a method that addresses this question to complement
GSE methods for genomic regions. Specifically, the new method tests whether the
genomic regions in a gene set are significantly closer to a TSS (or to an enhancer)
than expected by chance given the total list of genomic regions, using a non-parametric
test. Combining the results from a GSE test with our novel method provides additional
information regarding the mode of regulation of each pathway, and additional evidence
that the pathway is truly enriched. We illustrate our new method with a large set of
ENCODE ChIP-seq data, using the chipenrich Bioconductor package. The results show
that our method is a powerful complementary approach to help researchers interpret
large sets of genomic regions.

Keywords: gene set enrichment test, ChIP-seq data analysis, non-parametric test, pathway analysis, genomic
regions

INTRODUCTION

Cell development and differentiation depend on complex gene expression patterns which are
precisely and spatiotemporally controlled. The complex process of gene regulation involves many
different mechanisms, including regulation of transcription (Berger, 2007; Deaton and Bird, 2011),
post-transcriptional regulation (Roundtree et al., 2017), and regulation of translation (Sonenberg
and Hinnebusch, 2009). Transcription is the first step to decode the genetic information from
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DNA to functional elements, and this process is regulated by
many cis-regulatory elements across the genome (Wittkopp
and Kalay, 2011). Cis-regulatory elements include promoters,
enhancers, silencers, and insulators, with promoters and
enhancers being two important ones that can initiate
transcription and are the most well-studied (Andersson,
2015). Both promoters and enhancers are regions of DNA
sequences that typically are a few hundred base pairs in length
(Nguyen et al., 2016). Promoters are usually located immediately
upstream of the transcription start sites (TSSs) on the 5′ end of
target genes (Sanyal et al., 2012) and recruit transcription factors
(TFs) and RNA polymerase II (RNAPII) to instruct the direction
and initiation of transcription (Schoenfelder and Fraser, 2019).
Conversely, enhancers can be located upstream, downstream,
or in the intron of the target gene or another unrelated gene
(Shlyueva et al., 2014) and bound by TFs and cofactors to
activate or increase the transcription rate of their target genes
(Li et al., 2016). The protein sequences and regulatory motifs of
many TFs are well conserved across living organisms, indicating
that genome-wide gene regulatory mechanisms have important
conserved properties (Lambert et al., 2018). However, some TFs
such as ESR1 bind to different sets of target genes in a cell type
specific manner (Gertz et al., 2012), resulting in complex and
dynamic TF regulatory programs. Thus, deciphering the rules of
TF binding events is a key step to understanding gene expression
patterns and associated biological pathways.

A diverse collection of sequence-based approaches exist
to probe the gene regulome (Pinsach-Abuin et al., 2016).
For instance, ChIP-seq can provide genome-wide information
about gene regulation for specific TFs or chromatin marks
by identifying thousands of genomic regions (i.e., peaks,
which we will refer to for simplicity) across the genome
(Schmidt et al., 2009). ATAC-seq and copy number variation
(CNV) sequencing are also popular for studying genome-
wide regulation (Xie and Tammi, 2009; Buenrostro et al.,
2015). Through the aforementioned sequencing data, we can
identify significant peaks that were bound by a particular
TF or modified chromatin mark (ChIP-seq), open chromatin
regions (ATAC-seq), or regions with a CNV. We can further
infer their underlying regulatory functions by associating the
identified regions with target genes, whether predicted or
verified. Since biological processes involve many genes and
pathways, gene-centered analysis on regulome data may not
be as informative as Gene Set Enrichment (GSE) testing
(Subramanian et al., 2005).

Most GSE methods were developed for gene expression data,
do not adjust for the varying lengths of genes or regulatory space
between them, and thus are not generally appropriate for GSE
testing with large sets of peaks. However, several GSE methods
have been developed to specifically test sets of peaks, including
GREAT (McLean et al., 2010), ChIP-Enrich (Welch et al., 2014),
Broad-Enrich (Cavalcante et al., 2014), and Poly-Enrich (Lee
et al., 2018). Among these, Poly-Enrich is the only method
that counts genomic regions (which we will refer to as peaks
for simplicity) for each gene, adjusts for the varying lengths of
genes and regulatory space between them, and provides a flexible
approach with the ability to assign weights to peaks.

Current methods for GSE testing of peaks focus mainly
on the relationship between peaks and TSSs (promoters).
However, although some TFs [e.g., E2F1 (Ertosun et al., 2016)]
preferentially bind to promoters, others [e.g., FOXA1 (Pristera
et al., 2015)] tend to bind enhancers, while still other TFs bind
to both enhancers and promoters depending on context (e.g.,
master regulators, such as Serum response factor). Therefore,
it is of great interest to know the patterns of TF binding
with respect to promoters and enhancers of the target genes
and pathways. Although GREAT (McLean et al., 2010), ChIP-
Enrich (Welch et al., 2014), and Poly-Enrich (Lee et al., 2018)
incorporate distal binding events in their GSE testing, no method
has been established for answering the question of whether a TF
is binding closer to TSSs, near enhancers, both, or neither for a
specific gene set.

Other methods such as ChIPseeker (Yu et al., 2015) and
Seq2pathway (Wang et al., 2015) also perform GSE testing for
genomic regions. Different from previous GSE testing methods
that assign peaks to nearest TSS (NTSS), ChIPseeker applies a
max distance cutoff for assigning peaks to genes. Seq2pathway
incorporates the significance of each genomic region and both
coding and non-coding regions in GSE testing. Methods such
as Cistrome-GO (Li et al., 2019) and TREG (Chen et al., 2013)
incorporate the distance between ChIP-seq peaks and a gene’s
TSS into the GSE testing itself. Cistrome-GO integrates the peak
distance to TSS and the peak number together to estimate the
gene regulation potential. TREG collects the peak distances to a
gene’s TSS within a 2Mb window around each TSS into the GSE
test. However, since these methods embed the information about
binding proximity to a TSS within the test itself, it is difficult for
the user to interpret the results with respect to this information,
or separate the effect of proximity from that of enrichment.
A recently published, unique tool called loci2path (Xu et al.,
2019) links a set of genomic regions to key pathways by testing
for enrichment of expression quantitative trait loci (eQTLs) in
the genomic regions, including tissue-specific analyses. By using
eQTL target genes, loci2path does not rely on assigning genomic
regions to the nearest gene, and thus it is a complementary
method to a proximity test. No method, to our knowledge,
incorporates enhancer proximity.

Here, we propose a new method, Proximity Regulation
(ProxReg) to address this shortcoming of current methods.
By measuring the distance between each peak and the closest
TSS (or enhancer) and then performing a modified two-sided
Wilcoxon rank-sum test, we test whether the peaks in a gene
set are significantly closer to TSSs or enhancers than expected
by chance. Our method, in combination with a GSE test, is
able to provide additional evidence that a pathway is truly
enriched and information on the regulatory mechanism for that
enrichment. After validating the Type I error rate of our method,
we test ProxReg by applying it, in combination with Poly-
Enrich (implemented in the chipenrich Bioconductor package)
to 90 ENCODE ChIP-seq datasets (Sloan et al., 2015), including
35 TFs. In many cases, this led to a significant improvement
in the ability to pinpoint the known biological processes in
which a TF functions. In summary, we show the power and
benefits of ProxReg, which is available in five species (fruit fly,
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zebrafish, mouse, rat, and human) for promoters and in human
for enhancers, to complement GSE testing of large sets of peaks.

MATERIALS AND METHODS

Datasets Used
We used a total of 90 human ChIP-seq datasets from the
Encyclopedia of DNA Elements (ENCODE) at University of
California, Santa Cruz (ENCODE Project Consortium, 2004;
Qu and Fang, 2013; Sloan et al., 2015) that consists of 35 TFs
over the three Tier 1 cell lines [embryonic stem cells (H1-
hESC), B-Lymphocyte (GM12878), and myelogenous leukemia
cell (K562)] (Supplementary Table 1).

Gene sets tested were Gene Ontology: Biological Processes
(GO BP) from GO.db Bioconductor package version 3.4.2 (The
Gene Ontology Consortium, 2018). We filtered gene sets to only
use those with more than 15 and less than 2000 genes, as small
gene sets have very little statistical power and large gene sets tend
to be too vague to have meaningful biological interpretation. This
resulted in 5159 GO BP gene sets.

Measuring Peak Distances to Nearest
Transcription Start Site or Enhancer
Midpoint
Each peak’s “regulatory proximity” was defined as the distance,
in base pairs, between the peak’s midpoint and either the closest
TSS or the midpoint of the closest enhancer region. Human
gene TSS locations were obtained from the chipenrich package,
which for hg19 version 3.5.0 are from Bioconductor packages
TxDb.Hsapiens.UCSC.hg19.knowngene version 3.2.2 (Carlson
and Maintainer, 2015) and org.Hs.eg.db version 3.5.0 (Carlson,
2018). Enhancer regions were defined by the union of DNase
hypersensitive sites (DNase DHSs) found in at least two of the
125 cell and tissue types processed by ENCODE (Thurman et al.,
2012) and distal and non-promoter DHS within 500 kb of the
correlated promoter DHSs from 32 cell types (Thurman et al.,
2012). The minimum of two cell types was used to reduce false
positives. Unions were calculated using the expand_and_resect2
function in the granges R package with min.gapwidth = 0, and
distal and non-promoter elements were defined as those >5 kb
from a TSS. That is, we removed only the portion of an enhancer
that was <5 kb from a TSS. This resulted in a total set of
1,616,520 regions >5 kb from a TSS composed of enhancers,
silencers, and insulators, although for simplicity we refer to the
total set as enhancers. Finally, all peaks are then assigned to the
gene with the NTSS.

ProxReg Step 1: Normalizing for Gene
Locus Length and Average Distance to
Enhancer
Identical to our previous work, we define a gene’s locus length
(in bps) as the length of the region on the genome such that
a peak binding in the region is assigned to that target gene
(Cavalcante et al., 2014; Welch et al., 2014). As genes with larger
locus lengths (i.e., longer distances to neighboring genes) are

more likely to have peaks binding farther away from the gene’s
TSS, gene locus length is associated with average peak distance
to TSS, and thus gene locus length is a potential confounding
variable. To empirically normalize for gene locus length, we used
the combined set of peaks from all 90 ENCODE ChIP-seq peak
datasets and computed a cubic smoothing spline for log locus
length (x-axis) vs. log peak distances (y-axis) using the gam
function in the mgcv package. The spline provides the expected,
global average binding distance for each gene, which we then used
to obtain the normalized adjusted binding distance as:

Dadj
tss = logDtss − logDspline

Thus, peaks that are closer to a TSS than expected based
on the spline fit will contribute to significant promoter
proximity for a gene set.

Similar to how a gene with a longer locus length tends
to have peaks farther from its TSS, gene loci with farther
spaced enhancers tend to have peaks farther from them. More
specifically, the distance to an enhancer region is associated with
how far apart a gene’s enhancers are spread, which is dependent
on both the gene locus length and the number and distribution of
enhancers associated with the locus region. Therefore, the average
(or expected) enhancer density for each gene is a potentially
confounding variable. To normalize for this, we first determined
every gene’s empirical average distance to an enhancer with our
list of 90 ENCODE ChIP-seq datasets, and then calculated each
peak’s distance to the nearest enhancer, and finally averaged this
distance for each individual gene. As these 90 experiments do not
cover every gene, if a dataset happens to have a peak assigned
to a gene not covered, the average distance to enhancer will be
set as the predicted mean of a linear estimation using the log
gene locus length of the known genes. Similar to the locus length
normalization, we have the adjusted enhancer distance:

Dadj
enh = logDenh − logAvgDenh

Thus, peaks closer to an enhancer than expected by chance will
contribute to significant enhancer proximity for a gene set.

ProxReg Step 2: Testing for Proximal
Regulatory Binding
For a gene set of interest, the peaks assigned to genes in the
gene set are placed in one group while all other peaks assigned
to other genes, called the background genes, are placed in
another. We let any gene that has the potential of a peak being
assigned to it and annotated in the gene set database to be
a background gene, which is equivalent to the procedure of
gene expression tools such as DAVID (Da Wei Huang et al.,
2007). The goal is to test whether the peaks in the gene set
are significantly closer to TSSs (or enhancers) than expected
by chance, given the adjusted distances described above. We
use a two-sided Wilcoxon rank-sum test, with positive values
denoting the distances in the gene set are smaller than those
not in the gene set, to test if peaks in the gene set tend
to be closer or farther from regulatory regions than those
not in the gene set. To account for multiple testing, we
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use the Benjamini–Hochberg method to calculate FDR values
(Benjamini and Hochberg, 1995).

Gene Set Enrichment Testing Using
Poly-Enrich
We tested all 90 ENCODE datasets using the polyenrich method
in the chipenrich Bioconductor package, using the “nearest_tss”
gene locus definition and GO biological processes for the gene
sets. Poly-Enrich performs GSE on sets of peaks by testing if the
number of peaks regulating a gene set is greater or less than that
not in the gene set, taking into account the number of peaks
assigned to each gene (Lee et al., 2018). The statistical model uses
a negative binomial glm with an adjustment for gene locus length.
Significantly enriched gene sets have more peaks, while depleted
ones have fewer.

Permutations to Assess Type I Error Rate
To test Type I error rate of the ProxReg method, we simulated a
null set of peak distances (i.e., with no gene sets having significant
proximal binding) in three ways: (1) by reassigning every peak to
a random gene, where all genes are equally likely to be assigned
(Unif ). (2) To test for correct normalization of gene locus length,
we randomized peaks to a gene as above, except genes were first
binned with other genes of similar locus length as defined by
their TSSs. Specifically, we ranked genes by locus length, binned
them into sets of 100 genes, and then reassigned every peak to a
random gene within the same bin (ByLocusLength). (3) To test the
normalization of average distance to enhancers, we ranked genes
by expected distance to enhancer by chance, and then binned
genes into sets of 100. Again, we then reassigned every peak to
a random gene within the same bin (ByAvgDEnh). We performed
10 randomizations per ChIP-seq experiment and chose α-levels
of 0.05 and 0.001 to test for a controlled Type I error rate.

Simulations to Estimate Power
We simulated significant proximal gene sets by starting from a
null set of peaks using the ByLocusLength permutation strategy.
We then added peaks near the TSSs of genes from a gene set, with
the choice of a small (471 genes) or a large (1717 genes) gene set.
The number of peaks added was equal to 0.01, 0.05, or 0.1% of the
total number of starting peaks (4839) in the null set. The distance
was chosen from an exponential distribution with mean d0, and
an equal chance for upstream or downstream. We chose values of
100, 500, 1000 for d0 to simulate scenarios of closer and farther
binding. For each scenario, 200 simulated gene sets were ran.

Clustering for TF Regulatory Patterns
To investigate the regulatory patterns among all 90 ENCODE
ChIP-seq data sets, we performed clustering to classify them.
We first applied a p-value cut off (<0.001) for both ProxReg
(promoter and enhancer) results and Poly-Enrich results. We
counted the numbers of points (GO BP terms) in each of
four regions, defined by the different colored regions shown in
Figure 3, for both promoter and enhancer results in all 90 data
sets. Then, a hierarchical clustering heat map was generated based
on the log 2 value of counts from each region. The Euclidean

distance metric was used with Ward’s minimum variance method
for clustering. In addition, we also calculated the Pearson
correlation between ProxReg promoter results and enhancer
results. Since we propose our method as a complementary
method for GSE testing, only signed negative log p-values of
significant GO terms (FDR < 0.05) from Poly-Enrich were used
for correlation calculations.

Test for the Ability of ProxReg to Reduce
False Positives From GSE Results
To test the ability of our method to reduce false positives from
GSE results, we compared the results of ProxReg and Poly-Enrich
together to Poly-Enrich alone, using gene sets for each TF that
the TF is likely to regulate. Since no gold standard is available
for this, we used the GO BP terms that our 35 TFs were assigned
to in the human annotation Bioconductor package org.Hs.eg.db
(Carlson, 2018). Motivation for this derives from the fact that
TFs do not regulate random sets of genes, but rather a well-
coordinated set of genes in order to fulfill a cellular biological
goal. Indeed, it’s been shown that genes in a GO biological process
term tend to be regulated by a common TF (Allocco et al., 2004;
Qian et al., 2005; Roider et al., 2008; O’Connor et al., 2016). The
cellular biological goal is precisely what GO biological process
terms aim to describe, as it is defined as “The larger processes,
or ‘biological programs’ accomplished by multiple molecular
activities” (The Gene Ontology Consortium, 2004), which for
TFs in DNA binding. Based on these two facts, the TFs that are
assigned to a GO biological process term relate closely to this
biological process, and since the function of TFs is to regulate
genes, it follows logically that TFs tend to regulate genes in the
biological processes to which they belong. As an example, the
NCBI Gene website, an authoritative source for the properties
of genes, states in the main summary of E2F family genes that
“the E2F family plays a crucial role in the control of cell cycle”.
This family includes members E2F1, E2F2, E2F3a, E2F3b, E2F4,
E2F5, E2F6, E2F7, and E2F8. In each case, we can also find at
NCBI Gene that these TFs are assigned to the GO BP terms
related to cell cycle. To further validate our approach, we tested
whether the TFs actually do tend to target the promoters of
genes in their assigned GO terms. Indeed, we found a strong
overall trend to targeting more genes in the assigned GO terms
versus the non-assigned GO terms (Supplementary Figure 1
and Supplementary Table 2). Although TFs may not regulate
all of their target gene sets in every cell type, we conclude that
the degree of overlap between a method’s predictions and a TF’s
assigned GO BP terms represents a useful benchmarking tool.

To assess this, we first counted all significantly enriched gene
sets from Poly-Enrich for all 90 ENCODE ChIP-seq data sets
and found their overlap with the GO BP terms each TF was
assigned to in org.Hs.eg.db. These GO terms were used to count
significant GO terms from ProxReg promoter and enhancer
results. Fisher’s exact test was used to determine whether ProxReg
further enriched the resulting GO terms to those assigned to by
the TF, beyond what GSE testing accomplished. We used datasets
for TFs that are assigned to at least five GO BP terms that were
also significant with GSE testing alone. Fisher’s exact test results
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demonstrated whether ProxReg was able to increase the odds
ratio of identifying GO BP terms assigned to the TF, compared
to GSE testing alone.

Website Implementation and
Bioconductor Availability
Proximity Regulation is available in the chipenrich Bioconductor
package with the proxReg() function, and at the ChIP-Enrich
website1, as an additional option following any of our current
GSE tests. To run ProxReg, the user uploads a file of peaks, which
can be in narrowPeak or BED format. They then select to test for
proximity to either NTSS or enhancers. Currently, we have only
implemented testing for enhancer proximity in human (hg19
genome), but others will be added as enhancers are sufficiently
defined in other species and newer genome versions. Finally, the
user selects what gene sets to test from any of our included gene
set databases (including KEGG, Panther, MSigDB gene sets, and
several others; details in chipenrich package and on website), or a
user-generated set. An example of the proxReg() function outputs
four files:

Opts: the options that the user input into the function.
Peaks: a peak-level summary showing the peak-to-gene
assignment for each peak, as well as their distances to
TSS or enhancer.
Results: the results of the proximity tests. Lists the tested
gene sets along with their descriptions, the test effect,
closer/farther status, p-value, and FDR. Also included is
the list of Entrez gene IDs with contributing signal for
each proximity test.
Qcplot: a histogram showing the distribution
of peak distances.

All R code for recreating analysis and figures can be found at:
https://github.com/sartorlab/proxReg. An example for the use of
ProxReg can be found in the chipenrich Bioconductor vignette.

RESULTS

Overview of ProxReg Method
We developed a new method, ProxReg, to test the proximity
of peaks to TSSs or enhancers in a gene set of interest. The
motivation for our new method is illustrated in Figure 1. The
goal is to test whether the enrichment of a GO term or pathway
is driven by regulation via promoters or distal regions (i.e.,
enhancers). To accomplish this, we firstly measure the distances
from the midpoints of the peaks to the nearest regulatory regions
(either TSSs or enhancers), and assign each peak to its target
gene according to the gene with the NTSS (Welch et al., 2014).
Specifically, for each gene we defined its gene locus to be the
region between the upstream and downstream midpoints of
its TSS and the neighboring gene’s TSSs. However, one cannot
simply directly test whether the distances are smaller within
a gene set versus other genes, due to potentially confounding

1http://chip-enrich.med.umich.edu

variables that first need to be taken into account. Since a gene
locus with a large length was observed to have farther peaks
from its TSS on average (Figure 1A), we first normalize for
the gene locus length before testing the proximity to TSSs (see
section “Materials and Methods”). For enhancers, we observed
that the distance to an enhancer was dependent on the average
distance from each enhancer to peaks in a gene locus (Figure 1B).
Thus, we normalized the raw peak to enhancer distances using
the average enhancer density for each gene. Finally, a two-sided
Wilcoxon rank sum test was used for testing the proximity of
peaks in a gene set to TSSs (or enhancers) compared to peaks
outside the gene set. Generally, this test would be performed on
all of the enriched gene sets identified by a GSE test, to understand
whether the enrichment of each gene set was due to regulatory
activity near promoters or enhancers.

Recommended Workflow for ProxReg
To test our new method, 90 ENCODE ChIP-seq data sets (36 TFs
in three Tier 1 cell lines) (ENCODE Project Consortium, 2004;
Qu and Fang, 2013; Sloan et al., 2015) were used in this study.
The recommended workflow for implementing our new method
is summarized in Figure 2. We begin with a gene definition
file containing gene locus definitions (provided by our software,
or uploaded custom by the user) and a set of peaks of interest
(provided by the user). The distance between the midpoint of
peaks and NTSSs (or midpoint of enhancers) are measured and
adjusted for all background genes. The ProxReg non-parametric
test is ran for the chosen gene sets (e.g., GO). In parallel to this,
a standard GSE test is performed using the same gene sets. In
this article, we applied the polyenrich method for the GSE test
(Lee et al., 2018), but others may be used. Result files contain
the proximity results with test direction (enriched/depleted from
GSE, and closer/farther from ProxReg), p-values and FDR values.
Combined with the p-values from GSE, the gene set proximity
and enrichment patterns can be easily visualized (Figure 2; see
section “Results”).

Controlled Type 1 Error Rate and Ability
to Detect True Positive Results
We validated the Type 1 error rate (rate of false positives) of
ProxReg using randomizations of real datasets to simulate null
datasets with no significant proximities to TSSs or enhancers. We
performed three types of permutations: the “Unif ” permutation,
which takes every peak and reassigns another gene to it with
each gene having the same probability, the “ByLocusLength”
permutation, which tests the effectiveness of the locus length
normalization in the distance to TSS test, and the “ByAvgDEnh”
permutation, which tests the effectiveness of the normalization
to average distance to enhancer in the distance to enhancer
test (see section “Materials and Methods” for details). For
a p-value < 0.05 cutoff, we expect a Type I error rate of
approximately 5%. For a p-value < 0.001 cutoff, we expect a
Type I error rate of approximately 0.1%. Results indicate that for
each permutation (Unif and ByLocusLength for TSS proximity
tests, and Unif and ByAvgDEnh for enhancer proximity tests), the
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FIGURE 1 | Overview of how ProxReg adjusts for confounding variables. We describe the ProxReg adjustments in two parts. (A) When testing proximity to TSSs,
we normalize the peak distances to TSSs according to their relationship with gene locus lengths. (B) When testing proximity to enhancer, we normalize the peak
distances to enhancers according to their relationship with enhancer density, modeled by the average distance of any peak to an enhancer. In both cases, we avoid
a potential confounding effect, as shown by the arrows between variables on the left-hand side.

Type 1 error rate is reasonably controlled at the expected level
(Supplementary Figure 2).

To ensure that our method is able to identify gene sets with
true cases of TSS or enhancer proximity, we generated artificial
peak datasets starting with a randomized data set using the
ByLocusLength permutation, and then adding peaks with TSS
distances following a specified distribution. We added peaks by
varying the number of peaks and the distance of peaks to assess
a wide range of scenarios. We also used two gene sets of different
sizes (see section “Materials and Methods” for details). We
expected the following changes in parameters to increase power: a

smaller gene set used (easier to influence average distance), more
peaks added, and a smaller average distance. We can see that all
three of these scenarios increased power to detect the true positive
gene sets as expected (Supplementary Figure 3).

Integration of GSE and ProxReg Results
Reveals Different Regulatory Patterns of
TFs
We clustered the 90 ENCODE ChIP-seq datasets into three
groups based on the hierarchical clustering heat map illustrated
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FIGURE 2 | Overview of how of ProxReg fits in with the overall workflow of gene set enrichment testing with genomic regions. The peak distances to TSSs or
enhancers are calculated for the proximity test. In parallel, all peaks are assigned to genes for gene set enrichment testing. The same gene set database is used for
both proximity and gene set enrichment testing. Combining the gene set enrichment and proximity tests, the results can be visualized as shown in section “Results.”
The left scatter plot is an example of the combination of enrichment and promoter results. The right scatter plot is an example of enhancer results combined with
enrichment results. The x-axis of these two scatter plots represent the gene set enrichment test result. A larger signed –log p-value indicates more enrichment, while
negative values indicate depletion. The Y-axis represents the proximity results. Larger signed –log p-values indicate GO terms having genomic regions closer to the
TSSs or enhancers.
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in Figure 3. The first and largest group (47 datasets) is
characterized by a strong positive correlation between GSE and
promoter (TSS) ProxReg signed significance levels, and a strong
negative correlation between GSE and enhancer ProxReg signed
significance levels, indicating that the majority of enriched gene
sets are due to binding near TSSs (Figure 3 blue cluster; many
genes in regions p1, p2, e3, and e4). TFs like SIX5 (SIX homeobox
5), SP1 (Specificity Protein 1∗), and GABP (Nuclear Respiratory
Factor 2) are included in this group. The second largest group (32
datasets) is more interesting because the datasets consist of some
enriched gene sets with significant proximity to promoters, and
other enriched gene sets with significant proximity to enhancers
(Figure 3 red cluster; genes spread out across mainly p1, p4,
e1, and e4). The results for these TFs enable understanding
the different regulatory mechanisms used for different biological
processes. MEF2A (Myocyte-specific enhancer factor 2A) in
K562 cells, a member of this group, was observed to regulate
GTPase activity and translational initiation-related GO terms
from TSSs, and transmission of nerve impulse and multicellular
organismal signaling GO terms from enhancers. Similarly,
P300 (Histone acetyltransferase p300), a well-known marker of
enhancers, was found to regulate chromatin organization from
TSSs, while regulating phosphatidylinositol dephosphorylation
and phosphatidylinositol-mediated signaling-related GO terms
from enhancers (Fryer et al., 2002; De Luca et al., 2003).
The smallest group included only 11 ChIP-seq datasets. This
group was characterized mainly by enriched gene sets with
many having significant proximity to enhancer regions and/or
far from promoters (Figure 3 purple cluster; many genes in
p4 and e1). Members of this group included Pol II in all
three cell lines and EGR1 in K562 cells and Gm12878 cells,
indicative of Pol II binding along entire gene lengths and
not just at promoters. In addition, we examined the Pearson
correlation between promoter results and enhancer results for
all 90 ENCODE ChIP-seq data sets. Eighty-eight of them show a
negative correlation between the promoter results and enhancer
results (Figure 4). This negative correlation indicates that overall,
GO terms are significantly enriched either by the TF binding
closer to promoters or closer to enhancers. Among these 90 data
sets, most of them (67 out of 88 data sets) show a strong negative
correlation as shown in Figure 4A. Several of them have weak
correlations as shown in Figure 4B. The two datasets that did
not show negative correlations are neuron restrictive silencer
factor (NRSF) and CMYC in H1-hESC cells. After removing non-
significant GO BP terms from Poly-Enrich results, NRSF data set
shows a weak positive correlation based on the remaining GO BP
terms and no significant GO BP terms in CMYC data set.

ProxReg Identifies Known Associations
With Promoter and Enhancer Binding,
Using SIX5 and NRSF Peaks
To further illustrate our method, we assess ProxReg results for
two TFs known to have a very strong tendency to bind either
in proximal promoters or enhancers. We first selected SIX5 in
GM12878 cells as an example, which is involved in determination
and maintenance of retina formation that proposed binding to

promoter regions of related genes (e.g., myogenin and IGFBP5)
(Spitz et al., 1998; Sato et al., 2002). The results of SIX5 are shown
in Figure 5.

In Figure 5A, we can see that the majority of the ChIP-
seq peaks (67.4%) are near TSSs. Through the combination of
ProxReg results and Poly-Enrich results, a great majority of
gene sets are enriched by the TF binding near TSSs (positive
correlation in Figure 5B) instead of near enhancers (negative
correlation in Figure 5C). Using two particular GO terms from
the scatter plots, we show the distribution of distances from
peaks to TSSs or enhancers (bottom part of Figures 4C, 5B).
Combining the locations of these two GO terms (GS1 and GS2
in the scatter plots), illustrates how our method is able to provide
additional information for interpreting GSE testing results.

We also selected NRSF in the K562 cells as an example.
NRSF, also known as RE1-Silencing Transcription factor (REST),
is a TF known to silence neuronal genes in non-neuronal
cells, it can act as a transcriptional repressor or enhancer of
target genes, often regulating from enhancer regions (Schoenherr
and Anderson, 1995; Seth and Majzoub, 2001). Almost half of
NRSF ChIP-seq peaks (51.2%) are far from TSSs (Figure 5D).
A similar strategy was used for illustration of ProxReg with
the transcriptional repressor NRSF in K562 cells. Consistent
with previous observations that this TF tends to bind to
silencers/enhancers instead of promoters, there is a relative
strong positive correlation shown in the enhancer scatter plot
(Figure 5F) but not for TSSs. Thus the results confirm that most
enriched GO terms were enriched due to the TF binding in or
near enhancer regions. These results validate our new method,
ProxReg, is a powerful tool that can be used as a complementary
approach for interpreting GSE test results.

ProxReg Enriches GSE Findings for
Likely True Positives
We assessed whether ProxReg can be used to not only estimate
the proximity effects but also help users to remove possible
misleading or false positive gene sets from GSE results. To
accomplish this, we compared the significantly enriched gene sets
to a set of GO biological process (BP) terms from org.Hs.eg.db
for each TF before versus after taking into account their ProxReg
results. The GO BP terms from org.Hs.eg.db consists of the TFs
and the assigned GO BP terms for the gene that encodes them
(see section “Materials and Methods” for more detail).

We used ChIP-seq datasets with at least five significantly
enriched GO BP terms in their org.Hs.eg.db set (to ensure
sufficient power), which resulted in 28 datasets with ProxReg
enhancer results and 36 datasets with ProxReg promoter results.
We then tested whether requiring a significant ProxReg test
resulted in a higher odds ratio of detecting the TF-assigned
GO BP terms. Of the 28 enhancer dataset results, 18 (64%)
had an odds ratio greater than 1. Among these, 11 (61%) of
them were significant. Conversely, only two enhancers’ results
had an odds ratio significantly less than 1. These two results
were from EGR1 and ATF3 in K562 cells. Previous research
(Cullen et al., 2010) suggests that EGR1 recognizes and binds
to promoter regions of target genes, so it is possible that the
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FIGURE 3 | The regulation patterns of the 90 ENCODE ChIP-seq datasets. A p-value cutoff (<0.001) was applied to define the four regions as illustrated in the top
panel. The cutoffs are represented by the red dash lines. For each data set, the points count of the combination of ProxReg promoter results and Poly-Enrich results
are labeled as p1, p2, p3, and p4. Similarly, the combination of enhancer results and Poly-Enrich results are labeled as e1, e2, e3, and e4. Based on our analyses,
47 data sets show a clear positive correlation in promoter results and a clear negative correlation in enhancer results. 32 datasets show no strong correlation in either
promoter or enhancer results. The remaining 11 data sets show a clear positive correlation in the enhancer results. For each group, the promoter and enhancer
results of one data set are illustrated as an example.

GO BP terms from org.Hs.eg.db we compared to is incomplete,
with previous data mainly being focused on biological processes
that EGR1 regulates from promoter regions. A similar case may
be true for ATF3.

Among 36 ProxReg promoter results, 25 (69%) had an odds
ratio greater than 1. Among these 25 results, 15 (60%) of them
were significant. Conversely, only two promoter results were
significant with an odds ratio smaller than 1. One of them was
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FIGURE 4 | Examples of the correlation between ProxReg promoter p-values and enhancer p-values. Majority of the 90 ENCODE ChIP-seq data sets show a strong
negative correlation as shown in (A). A small portion of these data sets show a pattern as shown in (B). The three orange dots in (B) are GO terms related detection
of chemical stimulus (GO:0050907, GO:0009593, and GO:0050911).

PU.1 in K562 cells. A previous study (Heinz et al., 2015) indicated
that PU.1 usually binds to a PU-box found on enhancers of
target genes, consistent with the ProxReg promoter results of
PU.1 peaks having an odds ratio less than 1. Although we only
found five significant GO BP terms from our results that are also
assigned to PU.1, some other significant GO BP terms that we
identified were biologically related to the remaining GO terms
assigned to PU.1. For instance, some GO terms assigned to
PU.1 were related to response to toxic substances, drugs, and
antibiotics, and many immune response-related GO terms were
significant. Overall, these results demonstrate that ProxReg can
be used as a powerful supplemental method to remove misleading
or false positive GSE test results (Supplementary Table 3), and
provide additional evidence for novel regulated processes initially
identified by GSE testing.

ProxReg Analysis Identified NRSF
Regulatory Pattern Switching in Different
Cell Types
The ProxReg results can guide and refine the biological
interpretation of GSE results by identifying whether each
enriched gene set is regulated mainly via binding close to
promoters or enhancers. We exemplified this using the findings
of NRSF, which was shown to regulate neuron development
mostly via binding to enhancers in K562 cells (see details above).
To further investigate the regulation patterns of NRSF in different
cell lines, we utilized ENCODE NRSF ChIP-seq experiments
from three cell types (GM12878, H1-hESC, and K562), and
performed and integrated the Poly-Enrich and ProxReg analyses
for each cell type. In GM12878, almost all significant GO terms

identified by both Poly-Enrich and ProxReg were found to
be closer to enhancers, except one GO term “establishment
of localization in cell”, which was significantly closer to
promoters (FDR = 2.04 × 10−6) and farther from enhancers
(FDR = 9.60 × 10−7) (Figures 6A,B and Supplementary
Table 4). Most of them were related to neuron development,
including “neurological system process,” “regulation of nervous
system development,” and “synapse organization.” In H1-hESC
cells, however, NRSF binding sites were significantly enriched
in GO terms which were significantly closer to promoters, and
mostly related to neuron development and regulation, such
as “synapse organization,” “neuron projection guidance,” and
“neurotransmitter secretion” (Figures 6A,C and Supplementary
Table 5). Less than 1% GO terms were closer to enhancers
(“cell morphogenesis involved in differentiation,” “regulation
of cell projection organization,” and “positive regulation of
nervous system development”). The pattern observed in K562
was similar to that in GM12878: the majority of enriched GO
terms were significantly closer to enhancers, and again most of
them were related to neuron regulation (e.g., “axon guidance,”
“synapse maturation,” and “regulation of synapse assembly”)
(Figures 6A,D and Supplementary Table 6), whereas only
one was closer to promoters (“regulation of alternative mRNA
splicing, via spliceosome”). These findings point to a fundamental
shift in the binding patterns of NRSF to regulate neuronal genes
during neuron development and organization processes: closer
to promoters of genes in H1-hESC, while closer to enhancers
in differentiated cells (GM12878 and K562). Taken together, we
demonstrate that ProxReg analysis complements the GSE results
by distinguishing where a TF binds to regulate genes, which is key
to understanding the mechanisms of gene regulation and guiding
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FIGURE 5 | Illustration of ProxReg results. The results of SIX5 in GM12878 cell lines are shown in (A–C). (A) The distribution of distances from peaks to nearest
TSSs. (B) Scatter plot of the combination of enrichment results and promoter results. Two gene sets were selected to show the distance distribution to nearest TSSs
for genes in the gene set and not in the gene set. (C) Enhancer results combined with the enrichment results. The same gene sets were used in this scatter plot. The
distribution of distances to the nearest enhancers of these two gene sets are shown in the bottom of (C). Similar to SIX5 results, (D–F) show the results of NRSF in
K562 cells. For SIX5, GeneSet 1: RNA processing. GeneSet 2: Positive regulation of nitrogen compound metabolic process. For, NRSF, GeneSet 1: Neuron
differentiation. GeneSet 2: System process.

potential targeted gene therapy. ProxReg is incorporated in the
chipenrich Bioconductor package and ChIP-Enrich website, and
can be used with many additional databases of gene sets.

DISCUSSION

We introduced a genomic region proximity test called ProxReg
that can be used as a complement for GSE tests, and can
be used with various types of genomic regions, including
ChIP-seq, ATAC-seq, GWAS SNPs, DNA methylation, and
repetitive element families. The standard GSE tests for sets
of genomic regions (e.g., ChIP-seq peak sets) usually only
consider the relationship between the genomic regions and TSSs

(McLean et al., 2010). However, it is of great interest to know
whether a gene set is significantly enriched through regulatory
activity near promoters or enhancers. Our new method, ProxReg,
is able to find gene sets with regions that bind significantly closer
to (or farther from) either promoters or enhancers. Furthermore,
we validated that it has an appropriate Type I error rate,
and that the statistical power of the test behaves as expected
when varying the relevant variables. ProxReg uses a two-sided
Wilcoxon rank-sum test for the proximity test while adjusting
for important confounding variables. On its own, it provides
insight into particular regulatory patterns. Integrated with GSE
testing, it serves as a powerful complementary approach to
enhance understanding of regulatory behavior across cell types,
time points, disease stages, and more.
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FIGURE 6 | The different regulatory patterns of NRSF in three cell lines. (A) The bar plots show the percentage of significantly enriched GO terms that were closer to
enhancer (dark red) or promoter (dark blue) in each cell line (x-axis). The numbers of terms were marked on the top of each bar. (B–D) The dots represent the
ProxReg enhancer or promoter significance levels (signed negative log p-values, resulting in positive values for proximal regions, and negative values for more distal
regions) of the enriched GO terms in GM12878 (B), H1-hESC (C), and K562 (D) cell lines. In a particular cell line, the arrows point to the GO terms closer to
promoters (blue arrows) while most of the terms are closer to enhancers, or point to the GO terms closer to enhancers (red arrows) while most of the terms are
closer to promoters. For visualization, the redundant GO terms were removed from the list (Koneva et al., 2018).

When performing pathway analyses with current tools, the
method may detect significance from regulation coming from
different regions, but the underlying details are often left
unknown. Standard GSE tests either do not take proximity to
regulatory regions into account, or embed the proximity to
TSSs within the test, still ignoring enhancers. In this way, it is
difficult to interpret the results without the proximity effects.
For example, when GREAT or Poly-Enrich finds a significant
gene set from a ChIP-seq experiment, it is known that the gene
set is enriched with peaks compared to genes not in the gene
set, but we do not know if the peaks reside in promoter or
enhancer regions any more than expected by chance. ProxReg is
able to further show if the binding sites are closer to (or farther
from) TSSs or enhancers, giving more insight into a TF’s binding
tendencies. We showed with real world ChIP-seq datasets from

ENCODE that ProxReg was able to identify tendencies of TFs
known to most often bind in proximal promoter regions (SIX5)
(Spitz et al., 1998; Sato et al., 2002) or distal regions (NRSF)
(Schoenherr and Anderson, 1995; Seth and Majzoub, 2001).
Additionally, significantly enriched gene sets that were not found
to be significant by ProxReg may have resulted from distal peaks
being misassigned to incorrect target genes.

To illustrate the usefulness of ProxReg, we performed GSE
and ProxReg testing on three ChIP-seq datasets of the TF NRSF
in embryonic stem cells (H1-hESC) and two differentiated cell
lines (K562 and GM12878). We showed how NRSF tends to
regulate certain neuronal-related gene sets in differentiated cells
by binding closer to enhancer regions, while regulating similar
gene sets via binding to promoters in embryonic stem cells.
Furthermore, we identified other non-neuronal GO terms that
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NRSF regulates via binding mainly in promoter (or enhancer)
regions. It is interesting to note that the enhancer binding,
which is more cell-type specific and generally evolved later than
regulation from promoters (Nord et al., 2013; Cai et al., 2019),
was identified for the complex neuron development and related
terms, while more basic processes such an establishment of
location in cell and mRNA splicing, were regulated from closer to
TSSs. Only in embryonic stem cells was even the neuronal-related
terms regulated via promoters.

Proximity Regulation does have multiple limitations.
Currently, we have implemented distance to enhancers for
human (hg19 and hg38), and are planning to soon provide
support for mouse (mm9 and mm10) (Haeussler et al., 2018).
Since the enhancer landscape for other organisms lags the
comprehensiveness of that for humans and mice, we currently
only offer the promoter proximity test for other species. As other
organisms’ enhancer locations become more accurately defined,
we plan to add support for more enhancer proximity tests.

An ongoing question is the identity of the targeted genes of
enhancers binding events (Rubtsov et al., 2006; Sanyal et al., 2012;
Melamed et al., 2016), which remains challenging due to long-
range chromosome interactions. By analyzing TFs that tend to
bind far from TSSs, we found that there are gene sets that tend
to be regulated by TFs binding significantly farther from gene
TSSs while also binding closer to enhancer locations. However,
ProxReg assumes that each peak is associated with the gene with
the NTSS, whereas this is often not true. It has been estimated
that 79–95% of TF binding actually regulates a gene interceded
by one or more other genes (Van Heyningen and Bickmore, 2013;
Aldrup-Macdonald and Sullivan, 2014; de Sotero-Caio et al.,
2017). Additionally, we used one general set of enhancer locations
across the entire genome, whereas in reality, this method may
benefit from allowing different tissues to have different sets
of defined enhancer locations. Further research is required to
understand how the comprehensiveness of the enhancer database
affects the results of ProxReg, as well as of GSE tests. We are

currently undergoing research on the differences in enhancer
locations and their target genes in relation to GSE testing.
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