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Somatic cell nuclear transfer (SCNT) has broad applications but is limited by low cloning
efficiency. In this review, we mainly focus on SCNT-mediated epigenetic reprogramming
in livestock and also describe mice data for reference. This review presents the
factors contributing to low cloning efficiency, demonstrates that incomplete epigenetic
reprogramming leads to the low developmental potential of cloned embryos, and
further describes the regulation of epigenetic reprogramming by long non-coding
RNAs, which is a new research perspective in the field of SCNT-mediated epigenetic
reprogramming. In conclusion, this review provides new insights into the epigenetic
regulatory mechanism during SCNT-mediated nuclear reprogramming, which could
have great implications for improving cloning efficiency.

Keywords: somatic cell nuclear transfer, cloning efficiency, nuclear reprogramming, epigenetic modification, long
non-coding RNA

INTRODUCTION

Somatic cell nuclear transfer (SCNT) is an assisted reproduction technology for the generation
of cloned mammals that involves the culture of donor somatic cells and oocytes, transplantation
of donor cell nuclei into enucleated oocytes, activation of reconstructed embryos, and transfer
of cloned embryos into surrogates (Figure 1). SCNT enables the reprogramming of terminally
differentiated cells into totipotent cells, which has revolutionized our understanding of cell
fate determination and development, and has significant value for theoretical research and
production applications.

SCNT IN MAMMALS

The first SCNT mammal was a sheep known as Dolly that was born in 1997 (Wilmut et al,
1997), and since then, SCNT has entered a new era (Table 1). A series of cloned mammals,
including cow, mouse, goat, pig, and cat, have been produced with this technology (Cibelli
et al., 1998; Wakayama et al., 1998; Baguisi et al., 1999; Polejaeva et al., 2000; Chesne et al.,
2002; Shin et al., 2002; Galli et al., 2003; Woods et al., 2003; Zhou et al., 2003; Lee et al., 2005;
Li et al, 2006; Berg et al,, 2007; Shi et al., 2007; Wani et al., 2010). In 2018, the first non-
human primate species, the macaque monkey, was successfully cloned by SCNT, further attracting
worldwide attention on SCNT technology (Liu et al., 2018; Matoba and Zhang, 2018). Using this
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FIGURE 1 | Schematic illustration of the SCNT process. Somatic cells from the desired donor mammal are cultured for SCNT. Oocytes are recovered from the
ovaries obtained from the slaughterhouse and allowed to mature into metaphase (M)ll oocytes. MIl oocytes are enucleated, and donor somatic cells are transferred
into the perivitelline space of oocytes. After the fusion and activation of cell-cytoplast complexes, the reconstructed cloned embryos begin to develop, undergoing
nuclear condensation and nuclear swelling, followed by pseudo-pronucleus, 2-cell, 4-cell, etc. stages and form blastocysts in vitro. Cloned embryos are transferred

into surrogates and develop into cloned mammals.
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technology, a large number of mammals have been successfully
produced, showing many potential applications (Campbell
et al, 2007; Ogura et al, 2013; Telugu et al, 2017). In
agriculture, SCNT can rescue endangered species, protect
the genetic resources of commercially important species, and
accelerate the propagation of breeding livestock, including
pigs, cows, and sheep (Gomez et al., 2009; Keefer, 2015). In
combination with genome-modification technologies such as
the recently developed clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR-associated protein 9-
mediated genome editing, SCNT can rapidly produce cloned
mammals with desirable traits including rapid growth, disease
resistance, and good meat quality, thereby cultivating novel
varieties, and shortening breeding cycle (Galli et al., 2012; Wells
and Prather, 2017; Lee et al, 2020). In biomedicine, SCNT
can create a mammary gland bioreactor to produce therapeutic
proteins, establish animal models to investigate the pathogenesis
of human diseases, and produce genetically modified xenograft
organs for patient transplantation (Lotti et al., 2017; Niu et al.,
2017; Telugu et al., 2017). SCNT can also generate blastocyst-
derived stem cells, namely, nuclear transfer embryonic stem cells
(ntESCs), especially human ntESCs, which are isogenic to the
donor and do not cause immune rejection when transplanted,
thus providing an important tool for organ regeneration
(Tachibana et al., 2013). In basic research, SCNT has been used
to investigate interactions between the nucleus and cytoplasm,
which has enhanced our understanding of the mechanisms of
cell fate determination (Long et al, 2014). Moreover, SCNT
has promoted the generation and development of induced
pluripotent stem cells (iPSCs), which have similar therapeutic
applications to ntESCs (Takahashi and Yamanaka, 2006).

LOW CLONING EFFICIENCY LIMITS THE
APPLICABILITY OF SCNT

Although SCNT has been successfully used to clone many
species of mammals with significant improvements in cloning

efficiency in more than 20 years since the birth of Dolly,
the proportion of cloned embryos that develop to full term
remains very low, greatly limiting the application of SCNT
technology (Czernik et al., 2019). To improve the birth of cloned
mammals and cloning efficiency, researchers have investigated
the effects of donor cell type, oocyte maturation stage, embryo
activation method, etc. on the developmental competence of
cloned embryos (Table 1), and to some extent, cloning efficiency
has been shown to increase through optimizing these parameters
(Blelloch et al., 2006; Campbell et al., 2007; Kurome et al., 2013).
However, cloning efficiency remains low, the abortion of cloned
fetus frequently occurs, and the rate of abnormality or mortality
is high. Moreover, developmental defects still occur in cloned
mammals even after birth (Campbell et al., 2007; Loi et al., 2016).
These phenomena demonstrate that optimizing these technology
parameters of SCNT cannot make significant improvements in
cloning efficiency and only clarifying the theoretical molecular
mechanism underlying SCNT could understand the cause
of the poor and abnormal development of cloned embryos.
However, SCNT-mediated nuclear reprogramming is still poorly
understood, and the key factors determining the developmental
potential of cloned embryos remain unclear (Matoba and Zhang,
2018). Therefore, fully and clearly revealing the molecular
mechanism underlying SCNT-mediated nuclear reprogramming
is needed to enhance the development of cloned embryos.

INCOMPLETE EPIGENETIC
REPROGRAMMING UNDERLIES LOW
CLONING EFFICIENCY

During development, totipotent embryos differentiate into
pluripotent stem cells and subsequently into differentiated
cells. Cell fate determination is largely achieved by activating
some genes while suppressing other genes through epigenetic
modification such as DNA methylation, histone modification,
genomic imprinting, and X chromosome inactivation (XCI)
(Reik et al., 2003). These heritable changes in gene expression
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TABLE 1 | Mammals first cloned by different SCNT-based procedures.

Mammal Special procedures
Donor cells Oocytes Cloned embryos
Sheep Synchronized adult Superovulated Ml General SCNT
mammary epithelial  oocytes
cells
Cow Transgenic fetal Oocyte maturation General SCNT
fibroblast cells in vitro
Mouse Adult cumulus cells Superovulated Ml Donor cells injected
without in vitro culture oocytes into enucleated
oocytes
Goat Synchronized Superovulated Ml General SCNT
transgenic fetal and TIl oocytes
fibroblast cells
Pig Synchronized adult Superovulated Ml Double nuclear
granulosa cells oocytes and zygotes  transfer
Cat; ferret  Adult cumulus cells  Oocyte maturation General SCNT
in vitro
Rabbit Adult transgenic Superovulated Ml General SCNT
cumulus cells oocytes
Mule Fetal fibroblast cells  Oocyte collection General SCNT
in vivo
Horse Adult fibroblast cells  Oocyte maturation Zona-free
in vitro manipulation
Rat Synchronized fetal Oocyte maturation One-step SCNT
fibroblast cells in vivo; blocking
oocyte activation
Dog Adult fibroblast cells  Oocyte maturation General SCNT
in vivo
Buffalo Synchronized fetal Oocyte maturation General SCNT
fibroblast and adult  in vitro
granulosa cells
Red deer  Antlerogenic Oocyte maturation General SCNT
periosteum, putative  in vitro
bone and fat cells
Camel Adult cumulus cells  Oocyte maturation General SCNT
in vivo
Macaque Fetal fibroblast cells ~ Oocyte maturation HVJ-E-mediated
monkey in vivo fusion; embryos with

kdm4d injection and
TSA treatment

General SCNT refers to the fact that donor cell is transferred into the perivitelline
space of enucleated Mll oocyte and the cell-cytoplast complexes are fused by
electrical stimulation and activated by electrical or chemical induction.

without alterations in genomic DNA sequences occur during the
progression from fertilized oocyte to differentiated embryo and
also play a key role in embryo development following SCNT
(Niemann, 2016). It is thought that the low cloning efficiency,
abnormal embryo phenotype, and low viability of animals
generated by SCNT are due to incomplete reprogramming of
donor nuclei (Yang et al., 2007). Epigenetic changes during the
SCNT process are discussed in greater detail below (Figure 2).
DNA methylation occurs at cytosine residues in the CpG
dinucleotide and is generally associated with transcriptional
silencing (Schubeler, 2015). In the life cycle, the genome
undergoes DNA methylation maintenance, DNA demethylation,
and DNA remethylation, which allows organisms to activate
or silence specific genes according to the requirements of

organism growth and development (Li and Zhang, 2014).
DNA methyltransferases (Dnmts) such as Dnmtl and Dnmt3
(Dnmt3a, Dnmt3b, and Dnmt3]) are responsible for DNA
methylation maintenance and de novo DNA methylation
(Chen and Zhang, 2019). DNA demethylation occurs through
the oxidation-base excision repair pathway. Oxidative DNA
demethylation enzymes include ten—eleven translocation (Tet)1,
Tet2, Tet3, activation-induced cytidine deaminase, and DNA
glycosylases (Ito et al., 2010; Igbal et al., 2011; Shen et al., 2013).
Other pathways also contribute to active DNA demethylation
during early embryonic development (Wang et al, 2014).
Dnmtl maintains methyl marks on genomic DNA and
ensures that the DNA methylation pattern of offspring cells
is identical to that of parental cells (Lyko, 2018). After
fertilization, the genome demonstrates a combination of active
and passive DNA methylation, and the paternal genomic DNA is
actively demethylated while maternal genomic DNA is passively
demethylated (Guo etal., 2014). When fertilized embryos develop
to the blastocyst or subsequent implantation stage, genomic
DNA is remethylated (Reik et al., 2001; Yang et al, 2007).
In cloned embryos, the genomic DNA of donor somatic cells
is highly methylated and DNA methylation reprogramming
(especially DNA demethylation) is necessary for development to
proceed normally. The genome also undergoes de-/remethylation
during SCNT, but this is delayed and incomplete compared with
normal embryos (Bourc’his et al., 2001; Dean et al., 2001; Yang
et al., 2007). Tissue-specific and pluripotency-related genes in
cloned embryos show low and high DNA methylation levels,
respectively (Figure 2, DNA methylation) (Ng and Gurdon, 2005;
Kremenskoy et al., 2006; Yamazaki et al,, 2006; Huan et al,
2014, 2015a). Following zygotic genome activation (ZGA), the
erroneous reconstitution of DNA methylation pattern caused
by aberrant expression of genes related to DNA methylation
reprogramming and, consequently, of key genes required for
the normal development of cloned embryos results in low
cloning efficiency and abnormalities and death in cloned animals
(Bourc’his et al., 2001; Bortvin et al., 2003; Chung et al., 2003;
Kiefer et al.,, 2016; Gao et al,, 2018). Thus, a DNA methylation
pattern similar to that in normal fertilized embryos is necessary
for the successful development of SCNT embryos.

Chromatin structure and histone modification are key factors
that regulate gene expression (Sproul et al., 2005; Yi and Kim,
2018). The basic structural unit of chromatin is the nucleosome, a
histone octamer consisting of two copies each of H2A, H2B, H3,
and H4 wrapped by 146 bp of DNA and H1 as a linker (Kobayashi
and Kurumizaka, 2019). Gene expression depends on chromatin
accessibility, which is controlled by chromatin remodeling factors
and through covalent modification (e.g., acetylation, methylation,
and phosphorylation) of amino acids in the histone tail (Qin et al.,
2016; Kobayashi and Kurumizaka, 2019). Chromatin accessibility
during the SCNT-mediated epigenetic reprogramming has not
been extensively investigated as it requires a large number of
embryos. Recently, progress is being made in mice owing to
technologic advances such as low-input DNase I hypersensitive
site (DHS) sequencing and transposase-accessible chromatin
sequencing (Wu et al., 2016; Djekidel et al., 2018). DHSs, which
are positively correlated with gene expression, are present in
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Epigenetic modification reprogramming during SCNT
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FIGURE 2 | Diagram of epigenetic modification changes during SCNT-mediated nuclear reprogramming. The data of pig embryos are adopted to describe
epigenetic modification reprogramming. For DNA methylation, cloned embryos demonstrate delayed DNA demethylation and incomplete DNA remethylation of
genome (the data shown here represent DNA methylation status at centromeric repeats, which partly reflects genome DNA status), high DNA methylation status of
pluripotency-related gene Oct4, and low DNA methylation levels of tissue-specific gene Thy1, respectively. For histone modifications, low levels of histone acetylation
(H3K9ac at the ZGA stage and H3K14ac at the blastocyst stage) and H3K4me3, and high levels of histone methylation (H3KOme3 after ZGA and H3K27me3 at the

2-cell stage) are observed in cloned embryos. For genomic imprinting, DNA methylation of H719/Igf2 is not maintained during SCNT. For XCI, DNA methylation of Xist
is not fully established in female cloned embryos.
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donor somatic cells and are reprogrammed in cloned embryos.
However, specific DHSs of donor somatic cells fail to be
reprogrammed to those of embryos, which prevents the binding
of chromatin remodeling factors to regulate gene expression in
cloned embryos (Djekidel et al., 2018).

Histone acetylation is regulated by histone acetyltransferase
(Hat) and histone deacetylase (Hdac). Hat opens up chromatin,
which allows transcription factor binding and leads to activation
of gene transcription, whereas Hdac promotes gene inactivation
(Sun et al, 2003). After fertilization, histone acetylation such
as histone H3 acetylation occurs and allows the appropriate
expression of genes related to early embryonic development
(Rybouchkin et al., 2006; Ziegler-Birling et al., 2016). During
SCNT, histone acetylation marks decrease and gradually
disappear, for instance, Lys9 acetylation of H3 (H3K9ac) at the
ZGA stage and H3Kl14ac at the blastocyst stage (Rybouchkin
et al., 2006; Wee et al., 2006; Liu et al., 2012; Zhai et al., 2018).
Histone methylation mainly occurs on lysine and arginine, and
involves three methylation patterns including monomethylation,
dimethylation, and trimethylation (Izzo and Schneider, 2010).
Trimethyl of H3 Lys4 (H3K4me3) and H3K27me3 are the most
typical modifications. H3K4me3 is regulated by the Trithorax
group (TrxG) complex and is associated with gene activation,
while H3K27me3 is mediated by the Polycomb group (PcG)
proteins and leads to gene silencing (Liu X. et al., 2016).
During SCNT-mediated nuclear reprogramming, H3K4me3
level decreases and H3K27me3 level increases (Cao et al.,
2015; Xie et al., 2016; Zhai et al., 2018; Zhou et al., 2019).
Another modification, H3K9me3, is catalyzed by suppressor
of variegation 39H1/2 (Suv39H1/2) and removed by lysine
demethylase (Kdm)4 (Kdm4a, Kdm4b, Kdm4d, and Kdm4e),
and can alter chromatin conformation to inhibit gene expression
(Ninova et al., 2019). H3K9me3 can be removed in donor somatic
cells, but incomplete H3K9me3 demethylation in cloned embryos
inhibits their development. Studies have shown that H3K9me3
is enriched in the promoters of genes against SCNT-mediated
nuclear reprogramming, suggesting that incomplete H3K9me3
demethylation is an inhibitor of the development of cloned
embryos (Matoba et al., 2014; Liu W. et al., 2016; Zhai et al., 2018).
These disrupted histone modifications finally affect chromatin
accessibility, lead to the disordered expression of genes required
for the normal development of cloned embryos, and result in low
cloning efficiency (Figure 2, Histone modification) (Liu et al.,
2012; Xie et al., 20165 Zhai et al., 2018). Several histone variants
also exhibit abnormalities such as the delayed change of H1foo
(oocyte-specific H1) to somatic Hls, macroH2A expression
before the endogenous activation, and the existing replacement
of donor cell H3 carrying repressive modification by maternal
H3.3 in cloned embryos, which contributes to incomplete SCNT-
mediated nuclear reprogramming (Gao et al., 2004; Chang et al.,
2010; Wen et al., 2014). Therefore, histone modification is a
critical determinant in the development of cloned embryos.

Genomic  imprinting, an  epigenetically  regulated
phenomenon that shows monoallelic parent-specific gene
expression, is controlled by the differentially methylated
region (DMR) or specific histone modifications. The DMR is
protected by DNA-binding complexes composed of Dnmtl,

zinc finger protein 57, and tripartite motif-containing 28,
and the H3K27me3 mark (Barlow and Bartolomei, 2014;
Inoue et al, 2017a). In general, paternal and maternal gene
imprinting promotes and inhibits, respectively, offspring growth
and development (Barlow and Bartolomei, 2014). Therefore,
parental imprinted genes compete with or complement each
other, and the balance between the expression of paternal and
maternal imprinted genes is important for normal developmental
progression. H19/insulin-like growth factor (Igf)2 is a typical
genomic imprinting locus with the DMR methylated on the
paternal allele, on which H19 silencing stimulates IGF2 activity
and cell growth. In contrast, H19 on the maternal allele is an
inhibitory factor that has a cis-silencing effect on Igf2 expression.
Inhibiting Igf2 expression leads to fetal growth retardation,
whereas Igf2 overexpression or H19 transcription deficiency
results in fetal overgrowth (Sasaki et al., 2000). Genomic
imprinting is erased and established during gametogenesis and is
maintained throughout the lifetime of an organism (Simon et al.,
1999; MacDonald and Mann, 2014). Thus, the restoration of a
diploid genome in fertilized embryos and mutually compensatory
expression of monoallelic parent-specific imprinted genes ensure
normal growth and development of early embryos. However,
genomic imprinting is not effectively maintained in cloned
embryos, resulting in the aberrant expression of imprinted
genes that gives rise to development defects such as placental
hypertrophy and fetal abortion and death (Figure 2, Genome
imprinting) (Mann et al., 2003; Shi et al,, 2003; Yang et al,
2007; Wei et al,, 2010; Zhang et al., 2014; Huan et al., 2015b).
For example, hypomethylated H19/Igf2 imprinting results
in increased H19 transcription and suppresses the growth
of cloned fetuses, whereas Igf2 overexpression mediated by
hypermethylated H19/1gf2 imprinting leads to their overgrowth.
Therefore, disrupted genome imprinting during the development
of cloned embryos results in developmental abnormalities and
death in cloned offspring, constraining the cloning efficiency.
Female mammals have two X chromosomes, whereas only
one is present in males. In order to balance gene dosage, female
mammals silence one X chromosome through the activity of the
Xist gene product, a long non-coding (Inc)RNA on the inactive
X chromosome that recruits transcriptional repressors such as
PcG proteins (Latham, 2005; Galupa and Heard, 2015). During
normal embryonic development of female mammals, both X
chromosomes are active and XCI occurs at the blastocyst stage,
resulting in random inactivation of the X chromosome in the
inner cell mass (ICM). Meanwhile, the paternal X chromosome
is inactivated in the trophoblast (Yang et al., 2007; Payer, 2016).
During SCNT, the inactivated X chromosome in female donor
cells is reactivated during early development of cloned embryos,
with XCI occurring at the blastocyst stage. In theory, XCI should
occur randomly in the ICM, with the trophoblast exhibiting
XCI as in the donor cells. However, irrespective of the sex of
cloned embryos, DNA methylation level of Xist is lower than
that in fertilized embryos, and the consequent upregulation of
Xist expression represses the transcription of numerous X-linked
genes (Figure 2, XCI) (Xue et al, 2002; Nolen et al., 2005;
Inoue et al.,, 2010; Xu et al., 2013; Yuan et al., 2014; Ruan et al,,
2018). Such abnormal XCI has also been detected in the placenta
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and carcass of dead cloned animals and could be due to the
absence of a H3K27me3 mark in the Xist promoter following
SCNT, and H3K9me3 may also determine the expression level
of Xist in cloned embryos (Xue et al, 2002; Inoue et al,
2010; Inoue et al., 2017b; Ruan et al., 2018). Therefore, the
abnormal XCI pattern seriously affects the development of cloned
fetuses and placentas.

As epigenetic modification regulates gene expression,
disrupted epigenetic modification during SCNT leads to the
abnormal transcription of genes related to development in
cloned embryos. The persistently high expression of donor
somatic cell-specific genes and failure to activate genes related
to embryo development are against SCNT-mediated nuclear
reprogramming (Matoba et al, 2014; Liu W. et al, 2016).
Therefore, epigenetic modification status determines gene
expression levels and the developmental potential of cloned
embryos, further suggesting that only the full and effective
reconstruction of epigenetic modifications during SCNT-
mediated nuclear reprogramming can support the full-term
development of cloned embryos.

STRATEGIES FOR ENHANCING THE
DEVELOPMENT OF CLONED EMBRYOS
BY IMPROVING EPIGENETIC
REPROGRAMMING

Presently, the aim of SCNT-mediated nuclear reprogramming-
related research is to improve epigenetic reconstruction in
cloned embryos, as the degree of epigenetic reprogramming
determines the developmental competence of cloned embryos
(Niemann, 2016).

Improving DNA methylation reprogramming has been
applied in cloned embryos (Enright et al., 2003; Huan et al,
2015a; Liao et al., 2015). One way in which this is accomplished
is by recapitulating the DNA methylation pattern of normal
fertilized embryos using DNA-demethylating agents or by Dnmts
including Dnmtl and Dnmt3l gene silencing. The application
of DNA demethylation reagents and Dnmts knockdown have
successfully ameliorated genome DNA methylation and histone
modification in cloned embryos. The nucleoside analog 5-aza-
2’-deoxycytidine (5-aza-dC) is incorporated into the genome
during DNA replication, inhibiting DNMT1 activity and
resulting in DNA hypomethylation (Enright et al, 2003).
Genomic DNA hypomethylation by 5-aza-dC treatment has
been shown to improve the development of cloned embryos,
whereas Dnmtl or Dnmt3] knockdown in somatic cells
or cloned embryos increases gene-specific DNA methylation
and histone modification reprogramming and, consequently,
developmental competence (Diao et al., 2013; Huan et al,
2015a; Liao et al, 2015; Song et al, 2017b). Additionally,
the expression level of Tet3 in oocytes has been shown to
be positively correlated with the developmental competence,
and Tet3 overexpression in donor cells restores normal DNA
hypermethylation and increases the full-term development of
cloned embryos (Han et al., 2018). Therefore, ameliorating DNA

methylation reprogramming in cloned embryos is a feasible
strategy to enhance cloning efficiency.

Modifying histone marks is another approach for increasing
the development competence of cloned embryos. Hdac
inhibitor treatment increases histone acetylation and opens
up the chromatin structure, which facilitates the binding of
transcription factors that activate genes involved in early
embryonic development. Hdac inhibitors have been used to
improve the developmental ability of cloned embryos. For
example, trichostatin A (the class I and II Hdac inhibitor),
scriptaid (a synthetic Hdac inhibitor with low toxicity), and
valproic acid all increase histone acetylation levels, especially
H3K9ac and H3Kl4ac, improve gene expression levels in
cloned embryos, and thus enhance SCNT-mediated nuclear
reprogramming (Enright et al., 2003; Kishigami et al., 2006; Bui
et al,, 2011; Costa-Borges et al., 2010; Liu et al., 2012; Zhai et al,,
2018). These results suggest that histone acetylation is beneficial
for the development of cloned embryos. The increased H3K4me3
has been shown to improve the epigenetic modifications and the
developmental efficiency of cloned embryos (Zhai et al., 2018).
H3K9me3 has been reported to be a barrier for SCNT-mediated
nuclear reprogramming, and removal of H3K9me3 through
injection of Kdm4 mRNA activates the appropriate expression of
repressed genes and increases the developmental competence of
cloned embryos (Antony et al., 2013; Matoba et al., 2014; Chung
et al., 2015; Liu et al., 2018; Weng et al., 2019). Importantly, the
positive effect of histone acetylation on cloning efficiency could
also be mediated through H3K9me3 removal (Matoba et al,
2014). Moreover, the loss of H3K9me3 can also be realized by
introducing protamines in the nuclei of donor somatic cells,
holding great potential to improve cloning efficiency (Iuso et al.,
2015). Additionally, blocking H3K27me3 has been shown to
promote nuclear reprogramming and embryonic development
following SCNT (Xie et al., 2016; Zhou et al., 2019). Therefore,
improvements in histone modification can correct the expression
pattern of genes required for the normal development of cloned
embryos and greatly enhance cloning efficiency.

Importantly, with the enhanced development of cloned
embryos induced by histone modification improvements,
genome imprinting in cloned embryos, fetuses, and offspring
is also effectively maintained, suggesting that epigenetic
modifications form mutually regulatory networks (Cervera
et al., 2009; Xu et al., 2013; Huan et al, 2015b; Inoue et al,
2017a). H19 knockdown in abnormal imprinting fetal fibroblasts
has also been shown to rescue damaged imprinting and the
reduced development of cloned embryos (Song et al., 2017a).
Therefore, restoring normal epigenetic marks and expression of
imprinted-related genes can directly or indirectly ensure genome
imprinting and the normal development of cloned embryos.

Targeting XCI is another strategy for improving
developmental potential in SCNT. When Xist is deleted,
the pattern of X-linked gene expression is corrected in cloned
embryos, and the birth rate of cloned mammals is improved
(Inoue et al., 2010; Matoba et al., 2011; Ruan et al., 2018). The
inhibition of Xist also results in a remarkable improvement in
the development of male cloned embryos (Zeng et al., 2016; Yang
et al., 2019). Therefore, Xist deletion or knockdown restores
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X-linked gene expression patterns in cloned embryos and
increases cloning efficiency.

With the understanding of epigenetic modifications during
SCNT, researchers have successfully cloned macaque monkeys
(Liu et al., 2018). Therefore, the existing evidence indicates
that the epigenetic status of cloned embryos is an important
determinant in cloning efficiency, and improving epigenetic
modifications can be a good strategy to support the successful
long-term development of cloned embryos (Figure 3).

ROLE OF LNCRNAS IN SCNT-MEDIATED
EPIGENETIC REPROGRAMMING

An increasing number of studies have shown that the degree
of epigenetic reprogramming determines the developmental

potential of cloned embryos (Niemann, 2016; Matoba and Zhang,
2018). However, the molecular regulatory network involved
in SCNT-mediated epigenetic reprogramming remains unclear.
Therefore, exploring the molecular mechanism underlying
nuclear reprogramming induced by SCNT and clarifying how
highly differentiated somatic cells effectively become pluripotent
cloned embryos through the epigenetic reprogramming process
are areas of great interest.

LncRNAs are gene transcripts longer than 200 nucleotides that
do not encode proteins but nonetheless play a critical role in
gene regulation in nearly all physiologic processes, as well as in
cell fate determination during development (Pauli et al., 2011;
Chen and Zhang, 2016; Wang et al., 2018). A comprehensive
and systematic exploration and analysis of IncRNA function
has become a frontier in the field of life science (Flynn
and Chang, 2014). As mentioned above, H19 and Xist have
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been shown to regulate the development of cloned embryos,
suggesting that IncRNAs play a key role during SCNT-mediated
nuclear reprogramming (Inoue et al., 2010; Song et al., 2017a).
Exploring the molecular mechanism of IncRNAs in mediating
epigenetic reconstruction during SCNT can provide new ideas for
improving cloning efficiency.

Recent studies have shown that IncRNAs participate in many
epigenetic modification processes, such as DNA methylation,
histone modification, genome imprinting and XCI, and regulate
the activation or silencing of genes according to cell function
requirements (Mercer and Mattick, 2013; Holoch and Moazed,
2015). During DNA methylation reprogramming, IncRNAs
can interact with enzymes related to DNA methylation

or demethylation (Dnmts and Tets), and determine DNA
methylation reconstruction to regulate gene expression. When a
gene needs to be activated, IncRNAs recruit DNA demethylation-
related enzymes, such as Tets, to the gene promoter and help
to achieve gene DNA demethylation, and when a gene needs
to be silenced, IncRNAs interact with Dnmts to establish and
maintain DNA methylation of a gene promoter (Bao et al,
2015; Hamazaki et al, 2015; Wang et al.,, 2015; Zhou et al,
2015; Kimura et al., 2017). Therefore, IncRNAs can interact
with the DNA methylation reprogramming-related enzymes to
regulate DNA methylation reprogramming and regulate gene
expression. LncRNAs can also alter gene expression by regulating
histone modification. Studies have demonstrated that IncRNAs

Donor cell

Gene silence

Gene activation

Continuous
silence

LncRNA mediated reprogramming

Cloned embryo

L

LncRNA

Epigenetic modification
enzymes

Hypomethylated DNA

® & 0 o o
Hypermethylated DNA

Open chromosome structure
and histone modification to
allow gene expression

Closed chromosome structure
and histone modification to
inhibit gene expression

)

Gene expression

Load

Gene silence

cloned embryos.

FIGURE 4 | Role of INcRNAs in the regulation of SCNT-mediated epigenetic reprogramming. LncRNAs interact with epigenetic modification enzymes to modulate
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recruit the TrxG proteins to catalyze H3K4me3 and enhance
gene transcription or PcG proteins to silence gene expression
through H3K27me3 (Tsai et al., 2010; Wang et al., 2011; Liu et al.,
2015). LncRNAs are also involved in the regulation of genomic
imprinting, as evidenced by the finding that every genomic
imprinting center contains at least one IncRNA, such as H19
and Meg3 in the H19/Igf2 and DIk1/Meg3 imprinting regions,
respectively, that regulates monoallelic parental-specific gene
expression through epigenetic silencing (Barlow and Bartolomei,
2014). During XCI, Xist has been displayed to recruit PcG
protein to certain gene loci, establish H3K27me3 modification
and DNA methylation, and lead to gene silencing on the X
chromosome (Lee, 2009; Inoue et al., 2017b). Therefore, IncRNAs
can determine epigenetic modification construction.

After SCNT, epigenetic and gene expression profiles undergo
substantial changes in cloned embryos. Naturally, lots of
differentially expressed IncRNAs exist during the development of
cloned embryos. However, research on key IncRNAs during the
SCNT process is very limited. Encouragingly, the existing studies
have suggested that IncRNAs can regulate the developmental
competence of cloned embryos (Inoue et al, 2010; Song
et al, 2017a; Ruan et al, 2018). Studies of parthenogenetic
and semi-cloned mice have shown that these animals also
express different levels of H19, which are associated with
variable patterns of epigenetic modification and gene expression
and influence developmental potential (Kono et al, 2004;
Zhong and Li, 2017). Additionally, in iPSCs, IncRNAs are
also shown to either promote or inhibit the reconstitution
of epigenetic modifications during nuclear reprogramming
(Kim et al., 2015). Therefore, IncRNAs could determine the
developmental competence of cloned embryos. Given the
importance of IncRNAs during SCNT-mediated epigenetic
reprogramming, exploring and clarifying the underlying
molecular mechanism of IncRNA-mediated epigenetic
reprogramming during SCNT could lead to improvements
in cloning efficiency (Figure 4).

FUTURE RESEARCH AND THE
APPLICATION OF SCNT

It is known to be difficult to produce cloned embryos, and
their developmental competence remains poor. Moreover,
studies on the factors that regulate epigenetic reprogramming
during SCNT, especially those investigating IncRNAs, are still
limited. To enhance the developmental potential of cloned
embryos, a systematic analysis of the factors and mechanisms
involved in SCNT is required. In recent years, with technological
advancements, particularly the application of single-cell
transcriptome sequencing, great progress has been made in
discovering and identifying the reprogramming factors related
to the development of cloned embryos. To date, lots of novel
genes and IncRNAs have been revealed (Bai et al, 2016;
Liu X. et al, 2016; Wu et al.,, 2018). However, the relevant
reprogramming factors, including the emerging IncRNAs that
regulate the developmental potential of cloned embryos, have
not yet been deeply explored. Therefore, more detailed studies

are needed to elucidate the molecular mechanisms underlying
SCNT-mediated epigenetic reprogramming in order to improve
cloning efficiency.

Efforts to improve cloning efficiency have also promoted
the application of SCNT technology. Presently, a series of
agriculturally and economically important animals can be cloned,
which could not only enable the protection of endangered
species but also accelerate the utilization of livestock. Gland
bioreactors can be created through SCNT to produce therapeutic
proteins. Animal models can also be generated through SCNT to
investigate the pathogenesis of human diseases. Moreover, with
the CRISPR/Cas9-mediated genome editing technology, SCNT
can produce desired animals or models for specific applications.
In short, if cloning efficiency is greatly improved, the application
of SCNT technology will be more extensive.

CONCLUSION

SCNT has important theoretical and practical research value.
In this review, we present our understanding of SCNT-
mediated nuclear reprogramming, especially the factors
contributing to low cloning efficiency, and that incomplete
epigenetic reprogramming leads to the low developmental
potential of cloned embryos. We further demonstrate that
the application of epigenetic modification methods can
improve cloning efficiency. We also describe the regulation
of epigenetic reprogramming by IncRNAs and provide a new
research perspective in the field of SCNT-mediated epigenetic
reprogramming. The elucidation of these mechanisms has
enhanced cloning efficiency and expanded the application
of SCNT technology in agriculture, regenerative medicine,
and other areas. We believe that with further advances in
technology, more molecular mechanisms will be revealed to
enhance the development of cloned embryos, and improved
cloning efficiency will promote the extensive application of
SCNT technology.
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