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High-grade serous ovarian cancer is one of the deadliest gynecological malignancies
and remains a clinical challenge. There is a critical need to effectively define patient
stratification in a clinical setting. In this study, we address this question and determine
the optimal number of molecular subgroups for ovarian cancer patients. By studying
several independent patient cohorts, we observed that classifying high-grade serous
ovarian tumors into four molecular subgroups using a transcriptomic-based approach
did not reproducibly predict patient survival. In contrast, classifying these tumors
into only two molecular subgroups, fibrosis and non-fibrosis, could reliably inform
on patient survival. In addition, we found complementarity between transcriptomic
data and the genomic signature for homologous recombination deficiency (HRD) that
helped in defining prognosis of ovarian cancer patients. We also established that the
transcriptomic and genomic signatures underlined independent biological processes
and defined four different risk populations. Thus, combining genomic and transcriptomic
information appears as the most appropriate stratification method to reliably subgroup
high-grade serous ovarian cancer patients. This method can easily be transferred into
the clinical setting.

Keywords: HGSOC, fibrosis, mesenchymal, BRCA1/2, homologous recombination deficiency, prognosis

INTRODUCTION

Epithelial ovarian cancer is the fifth leading cause of cancer-related death among women, with
only 40% of patients achieving an average 5-year survival (Berns and Bowtell, 2012). Ovarian
cancers are predominantly classified by histological subtype (serous, endometrioid, mucinous,
clear cell or squamous), grade (low or high) and stage (early or advanced). Approximately 75%
of ovarian cancers are high-grade serous ovarian cancers. Standard treatment consists of surgical
cytoreduction combined with Taxanes- and platinum salts-based chemotherapy. Recently, targeted
therapies have also been included in treatment plans, such as anti-angiogenic drugs or poly-
ADP-ribose polymerase (PARP) inhibitors indicated for certain patients with BRCA1/2 mutations
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(Fong et al., 2009, 2010; Tutt et al., 2010; Gelmon et al., 2011;
Kaye et al., 2012; Ledermann et al., 2012; Liu et al., 2014; Oza
et al., 2015; Konecny and Kristeleit, 2016; McLachlan et al.,
2016; Miller and Ledermann, 2016). Novel targeted therapies
are being developed but their use remains limited, in part due
to their cost (Raja et al., 2012; Kmietowicz, 2015; Monk et al.,
2016; The Lancet, 2017). To increase the effectiveness of targeted
therapies, there is a need to develop accurate methods to define
novel patient stratifications that can be easily translated to the
clinical environment.

Ovarian cancers have a high frequency of homologous
recombination deficiency (HRD) due to germline or somatic
mutations in the BRCA1 or BRCA2 genes, methylation of
the BRCA1 or RAD51C promoter regions or other genetic
alterations (Rigakos and Razis, 2012; Muggia and Safra, 2014).
Patients carrying BRCA1/2 mutations have increased sensitivity
to platinum salts and longer survival than patients with no
BRCA1/2 mutations (Fong et al., 2009, 2010; Audeh et al.,
2010; Goundiam et al., 2015) and HRD sensitizes cells to PARP
inhibitors (Pujade-Lauraine et al., 2017). To assess HRD in
breast and ovarian cancer, the large-scale state transition (LST)
genomic signature can be used (Popova et al., 2012; Goundiam
et al., 2015). In addition to genomic characterization, previous
studies have identified distinct molecular subgroups of high-
grade serous ovarian cancers based on transcriptomic profiling
(Tothill et al., 2008; Cancer Genome and Atlas Research, 2011;
Mateescu et al., 2011; Sabatier et al., 2011; Bentink et al., 2012;
Verhaak et al., 2013; Konecny et al., 2014). Importantly, all
currently published studies observed one molecular subgroup,
referred to as Stromal, Fibrotic, Mesenchymal or Angiogenic,
that is invariably associated with poor patient survival (Tothill
et al., 2008; Mateescu et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013; Konecny et al., 2014). The first mechanism that
explains the Fibrotic/Mesenchymal subgroup, at least in part,
is regulation by the miR-200 family of microRNAs (Mateescu
et al., 2011; Batista et al., 2013, 2016). Genes inversely correlated
with expression of the miR-200 family constitute the fibrosis
signature that classifies ovarian cancers with mesenchymal
features (Mateescu et al., 2011; Batista et al., 2013, 2016).
Conversely, genes positively-correlated with miR-200 expression
constitute an oxidative stress signature that classifies the oxidative
stress ovarian cancer subgroup. This stress subgroup is associated
with a better prognosis and increased cancer cell chemosensitivity
(Leskela et al., 2011; Mateescu et al., 2011; Batista et al.,
2013, 2016; Brozovic et al., 2015). Notably, the accumulation
of miR-200 family members in ovarian tumors could be
used for early detection of the pathology, but determining
patient outcome through miR-200 expression remains highly
controversial, and a consensus is far from being achieved (Batista
et al., 2013; Muralidhar and Barbolina, 2015; Shi and Zhang,
2016). The ability to provide information on patient survival
remains a priority in the field but the number of molecular
subgroups required to define patient survival effectively is
unknown, impeding their use in clinical practice. In this study,
we address this question and define the optimal number of
ovarian cancer molecular subgroups for prognostic stratification
of patients.

MATERIALS AND METHODS

Clinical and Transcriptomic Data of
Ovarian Cancer Patients
Three cohorts of patients with high-grade serous ovarian
cancer were included in this study: Curie, AOCS and TCGA.
Curie cohort: Ovarian tumors were obtained from a cohort of
107 patients treated at the Institut Curie between 1989 and
2005. Clinical characteristics of the cohort have already been
described in Mateescu et al. (2011). For each patient, a surgical
specimen was taken, prior to any chemotherapeutic treatment,
for pathological analysis and tumor tissue cryopreservation.
The median patient age was 58 years old (with a range of
31–87 years). Ovarian carcinomas were classified according to
the World Health Organization histological classification of
gynecological tumors. The Curie transcriptomic dataset is from
Affymetrix Human Genome U133 Plus 2.0 arrays and is freely
available in the Gene Expression Omnibus1 under the accession
number, GSE26193. AOCS cohort: Clinical characteristics of
the 285 patients included in the AOCS cohort have been
previously described in Tothill et al. (2008), and transcriptomic
data, generated using Affymetrix Human Genome U133 Plus2.0
arrays, are freely available under the accession number, GSE9899.
TCGA cohort: Clinical characteristics of the 557 patients
included in the TCGA cohort, as well as transcriptomic data
generated using Affymetrix Human Genome U133A arrays, have
been previously described in Cancer Genome and Atlas Research
(2011) and can be downloaded from the NIH Genomic Data
Commons (GDC) data portal2. Most patients treated at Institut
Curie are from Caucasian origin and 91% of the patients, for
which the ethnicity variable is known in the TCGA cohort, are
also from Caucasian origin.

Description of Transcriptomic Signatures
Transcriptomic signatures defining the molecular classification
of ovarian cancers were retrieved from four original publications.
First, Tothill et al. (2008) identified 478 Affymetrix HG
U133 Plus 2.0 probe sets up-regulated in the C1 signature
and 2,230 probe sets up-regulated in the C2–C6 signature.
Second, Mateescu et al. (2011) identified 22 genes up-
regulated in the Stress/non-Fibrosis signature and 16 genes
up-regulated in the Fibrosis signature. Third, Bentink et al.
(2012) identified 100 Illumina probes up-regulated in the
M1 signature and 300 Illumina probes up-regulated in the
M2–M4 signature. Lastly, Verhaak et al. (2013) identified 37
genes up-regulated in the Mesenchymal signature and 63 genes
up-regulated in the Differentiated/Immunoreactive/Proliferative
signature. The different transcriptomic signatures coming
from these distinct studies are not overlapping in terms
of genes (as shown Supplementary Figures S1B,D),
enabling us to compare these different signatures as
distinct entities.

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
2https://portal.gdc.cancer.gov

Frontiers in Genetics | www.frontiersin.org 2 March 2020 | Volume 11 | Article 219

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26193
https://portal.gdc.cancer.gov
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00219 March 13, 2020 Time: 17:19 # 3

Kieffer et al. Relevance of Molecular Data in Ovarian Cancers

TABLE 1 | Comparative description of clinical parameters in the AOCS, Curie, and TCGA cohorts.

AOCS Curie TCGA

Total number of patients 285 107 557

Age (year) Median 59 58 59

Range 22–80 31–87 26–89

Histotype

Serous 264 (92.6%) 82 (76.6%) 557 (100%)

Endometrioid 20 (7.02%) 8 (7.5%)

Adenocarcinoma 1 (0.4%)

Mucinous 8 (7.5%)

Other 9 (8.4%)

Figo Substage

I 24 (8.4%) 21 (19.6%)

II 18 (6.3%) 10 (9.35%) 24 (4.3%)

III 217 (76.1%) 59 (55.14%) 381 (68.4%)

IV 22 (7.7%) 17 (15.9%) 79 (14.2%)

Not applicable 4 (1.4%) 73 (13.1%)

Grade

1 19 (6.7%) 7 (6.5%)

2 97 (34%) 34 (31.5%) 57 (10.2%)

3 164 (57.5%) 66 (62%) 420 (75.4%)

Not applicable 5 (1.8%) 80 (14.4%)

Surgery

Full 84 (29.5%) 38 (35.5%) 90 (16.2%)

Partial 164 (57.5%) 69 (64.5%) 342 (61.4%)

Not applicable 37 (13%) 125 (22.4%)

Clinical response RC – complete response 51 (47.7%) 276 (49.6%)

RP – Partial response 22 (20.6%) 57 (10.2%)

S – Stability 7 (6.5%) 25 (4.5%)

P – Progression 11 (10.3%) 37 (6.6%)

Not applicable 285 (100%) 16 (15%) 162 (29.1%)

Signature D-I-M-P

Differentiated 30 (28%) 148 (26.6%)

Immunoreactive 26 (24.3%) 129 (23.2%)

Mesenchymal 31 (29%) 118 (21.2%)

Proliferative 20 (18.7%) 138 (24.8%)

Not applicable 285 (100%) 24 (4.3%)

Mateescu’s Signature

Stress 150 (52.6%) 51 (47.7%) 326 (58.5%)

Fibrosis 135 (47.4%) 56 (52.3%) 220 (39.5%)

Not applicable 11 (2%)

Tothill’s Signature

C1 83 (29.1%) 107 (19.2%)

C2–C6 168 (58.9%) 443 (79.5%)

Not applicable 34 (11.9%) 7 (1.3%)

Bentink’s Signature

M1 128 (23%)

M2–M4 422 (75.8%)

Not applicable 285 (100%) 7 (1.3%)

Lst Signature

Low LST 238 (42.7%)

High LST 303 (54.4%)

Not applicable 285 (100%) 16 (2.9%)

AOCS, Curie, and TCGA cohorts have previously been described in Tothill et al. (2008), Cancer Genome and Atlas Research (2011), and Mateescu et al. (2011), respectively.
For the Curie cohort, tumor samples were obtained from a cohort of ovarian carcinoma patients treated at the Institut Curie from 1989 to 2012. For each patient, a surgical
specimen was taken, prior to any chemotherapeutic treatment, for pathological analysis and tumor tissue cryopreservation. The median patient age was 58 years old
(with a range of 31–87 years). Ovarian carcinomas were classified according to the World Health Organization histological classification of gynecological tumors.
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Enrichment of Biological Processes in
Transcriptomic Signatures
Gene ontology (GO) enrichment analysis was performed using
the DAVID bioinformatics resources (Version 6.7)3. For each
signature tested, the 10 most significant biological processes
(based on p-value) were selected. Reduce and Visualize Gene
Ontology (REViGO) software (Supek et al., 2011; accessed
January 2017)4, with a parameter similarity of 0.5, was used to
summarize information by removing redundant GO terms.

Classification of High-Grade Serous
Ovarian Cancer From the TCGA Cohort
According to Different Transcriptomic
Signatures
High-grade serous ovarian cancers from the TCGA (Cancer
Genome and Atlas Research, 2011) were studied (see Table 1
for cohort description). Genes that comprise the C1–C6 (Tothill
et al., 2008), Stress/Fibrosis (Mateescu et al., 2011), and M1–
M4 (Bentink et al., 2012) signatures were applied to the TCGA
transcriptomic data. This allowed us to classify high-grade serous
ovarian cancers from the TCGA cohort according to Tothill’s,
Mateescu’s, and Bentink’s signatures, and compare them to the
Differentiated/Immunoreactive/Mesenchymal/Proliferative (D-
I-M-P) classification, initially generated from the TCGA dataset
(Verhaak et al., 2013). Briefly, we first performed the hierarchical
clustering shown in Figure 1A based on DIMP signature
using Euclidean distance and Ward’s agglomeration method.
To compare this DIMP classification with the others, we next
performed similar hierarchical clustering by applying each of
the other signatures (Tothill et al., 2008; Mateescu et al., 2011;
Bentink et al., 2012) on the TCGA transcriptomic dataset by using
same parameters (Euclidean distance and Ward’s agglomeration
method). Only genes specific of each signatures were kept for the
clustering. For the four signatures, each resulting dendrogram
tree was next cut into two subgroups for classifying patients into
two subgroups according to each signature (Stress/Fibrosis for
Mateescu classification, C1/C2–C6 for Tothill classification and
M1/M2–M4 for Bentink classification). By this way, for each of
the four classifications studied, we have been able to determine
to which subgroup each patient belongs, as show Figures 1A,B.
The distribution of ovarian cancers from TCGA across the four
signatures can be found in Table 1. Patient classification was
thus independent of patient survival and strictly based on tumor
molecular signature. We also aimed at comparing the association
of patient clinical features with two distinct classifications, i.e.,
classification in two subgroups based on Mateescu’s signature
and classification in four subgroups based on Verhaac’s signature
using Fisher’s exact test (as shown in Table 2). No correction was
applied to p-values.

Expression of miR-200 Family Members
The predictive value of the miR-200 family was evaluated
because this miRNA family was shown to be associated

3https://david.ncifcrf.gov
4http://revigo.irb.hr

with the stress (non-Fibrosis)/Fibrosis classification (Mateescu
et al., 2011; Batista et al., 2013, 2016). Indeed, genes that
are inversely correlated with the miR-200 expression compose
the “Fibrosis” signature and classify ovarian cancers with
mesenchymal features. Conversely, genes positively-correlated
with miR-200 expression constitute the non-Fibrosis (oxidative
stress) signature and classify the “non-Fibrosis” ovarian cancer
subgroup. Expression of the miR-200 family members (miR-141,
miR-200a, miR-200b, miR-200c, and miR-429) was determined
using the level 3 expression data from the TCGA data portal.
Groups of low or high microRNA expression were defined using
their median as a threshold to perform survival analysis.

Large-Scale State Transition (LST)
Genomic Signature of HRD
Cytoscan HD SNP-array (Affymetrix) data were processed using
the Genome Alteration Print (GAP) methodology to obtain
absolute copy number profiles (Popova et al., 2009). DNA index
was calculated as the averaged copy number. Based on the DNA
index, tumor ploidy was set as near-diploid (DNA index < 1.3)
or near-tetraploid (DNA index ≥ 1.3). Detection of HRD was
determined by the number of LST, as previously described
(Popova et al., 2012). Briefly, LST was defined as a chromosomal
breakpoint (change in copy number or major allele counts)
between adjacent regions of at least 10 Mb. The number of
LST were then calculated after smoothing and filtering out copy
number variant regions < 3 Mb. Tumors were segregated into
near-diploid or near-tetraploid subgroups. Based on two ploidy-
specific cut-offs (15 and 20 LST per genome in near-diploid and
near-tetraploid tumors, respectively) tumors were classified as
LST high (LSTHi, equal or above the cut-off) or LST low (LSTLo,
below the cut-off). LSTHi represents the HRD genomic pattern
and LSTLo corresponds to the non-HRD profile.

Statistical Analysis
All statistical analyses were performed in the R environment
(Versions 3.3.2, 3.4.0, and 3.6.1)5. Fisher’s exact test was
used to determine any association between classes of ovarian
cancers and clinical parameters. Overall survival (OS) and
disease-free survival (DFS) were investigated using the Cox
proportional hazards model and Kaplan-Meier curves through
the R packages, survival and survminer. To identify differences
between survival curves, p-values were assessed by the log-
rank test. P-values ≤ 0.05 were considered to be statistically
significant. To take into account multiple testing, p-values
were adjusted using the Benjamini-Hochberg procedure using
pairwise_survdiff function from R package Survminer.

Code Availability
R scripts used to generate panels of the Figures, Supplementary
Figures and Tables are provided within the data source file of the
paper, available with the doi: 10.6084/m9.figshare.11663232.

5https://cran.r-project.org
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FIGURE 1 | Overlap between transcriptomic signatures used for classification of high-grade serous ovarian cancers. (A) A heatmap from hierarchical clustering
applied on the TCGA cohort. Rows represent genes and columns represent patients. Clustering is based on the 100 genes of the D-I-M-P signature (Verhaak et al.,
2013) using Pearson distance and Ward’s agglomeration method. The color saturation shows the magnitude of the deviation from the mean for each gene, with red
and blue indicating expression values above or below the mean, respectively. Colored bars below the heatmap represent tumor classifications obtained from the four

(Continued)
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FIGURE 1 | Continued
transcriptomic signatures (Tothill et al., 2008; Mateescu et al., 2011; Bentink et al., 2012; Verhaak et al., 2013), as indicated. The red bars correspond to the
Mesenchymal, C1, Angiogenic or Fibrosis subgroup, according to the classification considered. The blue bars correspond to C2–C6, non-Angiogenic and Stress
subgroups. For the D-I-M-P signature, blue bars correspond to Immunoreactive, black correspond to Proliferative and purple bars correspond to Differentiated
subgroups. (B, Left) Principal Component Analysis (PCA) applied on transcriptomic data from the TCGA cohort, using the 100 genes composing the D-I-M-P
signature (Verhaak et al., 2013). The color code represents the four D-I-M-P molecular subgroups: Mesenchymal (red, N = 118), Differentiated (purple, N = 148),
Proliferative (black, N = 138) and Immunoreactive (blue, N = 129). (Middle and Right) Further PCA with subgroups highlighted using Fibrosis (red, N = 220) or Stress
(blue, N = 326) (Mateescu et al., 2011); C1 (red, N = 107) or C2–C6 (blue, N = 443) (Tothill et al., 2008); Angiogenic (M1, red, N = 128) or non-Angiogenic (M2–M4,
blue, N = 422) (Bentink et al., 2012) signatures, as indicated. (C) Barplots showing the number of patients according to each combination of classes among the four
classifications (Verhaak/Mateescu/Tothill/Bentink).

RESULTS

The Fibrosis Subgroup of High-Grade
Serous Ovarian Cancers Exhibits
Conserved Functional Pathways Across
Studies
Although the genes defining ovarian cancer molecular
subgroups were different across studies (Tothill et al., 2008;

Cancer Genome and Atlas Research, 2011; Mateescu et al.,
2011; Sabatier et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013; Konecny et al., 2014), we observed that some of
the identified functions were consistent across the fibrosis
subgroups (Supplementary Figures S1A,B). Following a
GO enrichment analysis on previously published ovarian
cancer transcriptomic signatures (Tothill et al., 2008; Cancer
Genome and Atlas Research, 2011; Mateescu et al., 2011;
Bentink et al., 2012; Verhaak et al., 2013), we found consistent

TABLE 2 | The association between transcriptomic signatures and clinical parameters.

Fibrosis/non-Fibrosis classification

Non-fibrosis Fibrosis p-value

Grade p = 0.67

G2 32 (11.6%) 25 (12.8%)

G3 245 (88.5%) 170 (87.2%)

Stage p = 0.01

II 20 (7.1%) 4 (2%)

III–IV 260 (92.9%) 195 (98%)

Debulking p = 0.05

Full 60 (24%) 28 (15.8%)

Partial 190 (76%) 149 (84.2%)

Platinum resistance p = 0.38

Sensitive 153 (75.7%) 99 (71.3%)

Resistant 49 (24.3%) 40 (28.8%)

Primary therapy outcome p = 0.02

Complete response 172 (74.5%) 101 (63.1%)

Partial response 59 (25.6%) 59 (37%)

BRCA1/2 mutation p = 0.11

No 269 (84.6%) 171 (78.8%)

Yes 49 (15.4%) 46 (21.2%)

BRCA1 methylation p = 1

No 278 (87.4%) 190 (87.6%)

Yes 40 (12.6%) 27 (12.4%)

RAD51C methylation p = 0.39

No 312 (98.1%) 210 (96.8%)

Yes 6 (1.9%) 7 (3.2%)

LST signature (HRD) p = 0.29

Low 147 (46.2%) 89 (41.2%)

High 171 (53.8%) 127 (58.8%)

Ploidy p = 0.20

2 104 (32.7%) 83 (38.4%)

≥ 4 214(67.3%) 133 (61.6%)

(Continued)
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TABLE 2 | Continued

D-I-M-P classification

D I M P p-value

Grade p = 0.28

G2 13 (10.1%) 9 (8.8%) 17 (17%) 18 (13.4%)

G3 116 (89.9%) 93 (91.2%) 83 (83%) 116 (86.6%)

Stage p = 0.007

II 5 (3.7%) 12 (11.5%) 1 (1%) 6 (4.5%)

III–IV 129 (96.3%) 92 (88.5%) 101 (99%) 126 (95.5%)

Debulking p = 0.03

Full 33 (26.8%) 17 (19.5%) 10 (11%) 28 (23.5%)

Partial 90 (73.2%) 70 (80.5%) 81 (89%) 91 (76.5%)

Platinum resistance p = 0.70

Sensitive 70 (70%) 54 (78.3%) 53 (74.7%) 73 (74.5%)

Resistant 30 (30%) 15 (21.7%) 18 (25.4%) 25 (25.5%)

Primary therapy outcome p = 0.15

Complete response 78 (69.6%) 60 (69%) 49 (62%) 85 (77.3%)

Partial response 34 (30.3%) 27 (31%) 30 (38%) 25 (22.7%)

BRCA1/2 mutation p = 0.05

No 118 (79.7%) 103 (79.8%) 94 (79.7%) 124 (89.9%)

Yes 30 (20.3%) 26 (20.2%) 24 (20.3%) 14 (10.1%)

BRCA1 methylation p = 0.15

No 127 (85.8%) 110 (85.3%) 101 (85.6%) 128 (92.8%)

Yes 21 (14.2%) 19 (14.7%) 17 (14.4%) 10 (7.2%)

RAD51C methylation p = 0.38

No 144 (97.3%) 124 (96.1%) 115 (97.5%) 137 (99.3%)

Yes 4 (2.7%) 5 (3.9%) 3 (2.5%) 1 (0.7%)

LST signature (HRD) p = 0.0002

Low 62 (41.9%) 43 (33.3%) 48 (40.7%) 82 (59.4%)

High 86 (58.1%) 86 (66.7%) 70 (59.3%) 56 (40.6%)

Ploidy p = 4.6e-5

2 71 (48.0%) 39 (30.2%) 46 (39.0%) 31 (22.5%)

≥ 4 77 (52.0%) 90 (69.8%) 72 (61.0%) 107 (77.5%)

Contingency table showing the association between Fibrosis/non-Fibrosis (two subgroups, Mateescu’s classification), or D-I-M-P subgroups (four subgroups, Verhaac’s
classification), and clinical parameters. Data are from the TCGA cohort and the number of patients and frequencies in the population are indicated. Debulking status was
defined as full when no macroscopic residue was detected after surgery or as partial otherwise. Response to primary therapy was considered as partial if the patient
indicated with partial response, stable disease or progressive disease, considering both surgery efficiency and sensitivity to chemotherapies. P-values are calculated using
Fisher’s exact test without correction and significant p-values are indicated in bold.

enrichment in particular pathways, including cell adhesion,
extracellular matrix organization, and response to wounding
(Supplementary Figure S1A). It is important to note that
this molecular ovarian cancer subgroup was named differently
across studies, and referred to as C1 (Tothill et al., 2008),
Fibrosis (Mateescu et al., 2011), Angiogenic (Bentink et al.,
2012), or Mesenchymal (Verhaak et al., 2013; Konecny et al.,
2014) subgroups, but they all possess similar biological
features (mainly fibrosis and mesenchymal properties)
(Supplementary Figure S1A). However, apart from Fibronectin
1 (FN1), the transcriptomic signatures did not show any
overlap in gene expression (Supplementary Figure S1B).
In contrast to the C1/Fibrosis/Angiogenic/Mesenchymal
signature, none of the others signatures, defining C2–C6
(Tothill et al., 2008), Oxidative stress (Mateescu et al.,
2011), Anti-angiogenic (M2–M4) (Bentink et al., 2012), or

Differentiated-Immunoreactive-Proliferative (Verhaak et al.,
2013; Konecny et al., 2014) high-grade serous ovarian cancer
subgroups, showed overlap in either gene expression or pathways
(Supplementary Figures S1C,D).

We next sought to test if the ovarian cancer patients
identified by these different transcriptomic signatures
were the same (Figure 1). To do so, we studied the
TCGA cohort (Cancer Genome and Atlas Research, 2011;
Table 1 for cohort description) and classified each patient
using the four transcriptomic signatures (Tothill et al.,
2008; Mateescu et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013). Unsupervised analyses, including hierarchical
clustering (Figure 1A) and Principal Component Analyses
(Figure 1B), confirmed that there was a significant overlap
between tumor classification in C1, Fibrosis, Angiogenic,
and Mesenchymal subtypes. Indeed, patients classified
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as Mesenchymal were also mainly classified as Fibrosis,
C1 and M1, while patients classified as Stress, C2–C6
and M1–M4 can be equally classified as Proliferative,
Immunoreactive or Differentiated (Figure 1C). Therefore,
these different gene signatures not only identified the
same biological characteristics (mesenchymal properties,
accumulation of extra-cellular matrix components, and pro-
angiogenic features) but also identified the same patients
(Figures 1A–C). Almost all patients (91.5%) defined as
Mesenchymal (using Verhaak’s signature) were also classified
as Fibrosis (using Mateescu’s signature). However, 26% of
non-Mesenchymal patients (using Verhaak’s signature)
were identified as Fibrosis (using Mateescu’s signature),
suggesting possible misclassifications. Interestingly, the
overall survival and disease-free survival of those discordant
patients (non-Mesenchymal/Fibrosis) were similar to the
Mesenchymal/Fibrosis defined patients, but significantly
different from non-Mesenchymal/non-Fibrosis patients
(Supplementary Figure S2). This suggests that these patients
could be classified as Fibrosis, as defined by Mateescu’s
signature. These observations show that high-grade serous
ovarian cancers can be divided into two major molecular
subtypes according to transcriptomic profiles: Fibrosis
and non-Fibrosis.

High-Grade Serous Ovarian Cancers
Stratified Into Two Subgroups Are
Associated With Stage, Debulking, and
Clinical Response to Treatment
We next questioned if stratification of ovarian cancers into
four molecular subgroups (such as D-I-M-P, based on Verhaak’s
classification) could be more informative regarding clinical
features than classification into two subgroups (Fibrosis and
non-Fibrosis) (based on Mateescu’s classification). The non-
Fibrosis and Fibrosis subgroups were significantly associated with
stages (p = 0.01), debulking (p = 0.05) and primary therapy
outcome (p = 0.02) (Table 2). However, they were not associated
with grade, ploidy, sensitivity to platinum, BRCA1/2 mutations
or BRCA1 or RAD51C promoter methylation (Table 2). LST
signature, which is linked to HRD status (Fong et al., 2009,
2010; Audeh et al., 2010; Popova et al., 2012; Goundiam et al.,
2015), was also not significantly associated with the Fibrosis and
non-Fibrosis subgroups (Table 2). The four D-I-M-P subgroups
showed a significant association with stage (p = 0.007) and
debulking (p = 0.03), but not with response to treatment. In
addition, D-I-M-P was associated with ploidy (p = 4.6e-5),
BRCA1/2 mutations (p = 0.05) and LST signature (p = 0.0002) but
not with grade, platinum resistance and primary therapy outcome

TABLE 3 | Stratification of high-grade serous ovarian cancers into two subgroups provides a prognostic value, independent of stage and debulking.

OS univariate analysis OS multivariate analysis

HR CI 95% inf CI 95% sup p-value HR CI 95% inf CI 95% sup p-value

Signature

Non-Fibrosis Ref Ref

Fibrosis 1.43 1.13 1.82 0.003 ** 1.22 0.95 1.57 0.12

Stage

II Ref Ref

III 2.49 1.17 5.29 0.02 * 2.39 0.97 5.87 0.06

IV 3.28 1.49 7.25 0.003 ** 2.82 1.11 7.18 0.03 *

Debulking

Full Ref Ref

Partial 2.01 1.37 2.94 0.0004 *** 1.90 1.27 2.82 0.002 **

Age

<59 years Ref

>59 years 1.2 0.96 1.55 0.11

Signature

D 1.48 1.03 2.14 0.04 * 1.23 0.83 1.80 0.30

I Ref Ref

M 1.67 1.13 2.47 0.01 ** 1.12 0.74 1.69 0.59

P 1.40 0.96 2.03 0.08 1.17 0.79 1.72 0.43

Stage

II Ref Ref

III 2.49 1.17 5.29 0.02 * 2.44 0.99 6.00 0.05

IV 3.28 1.49 7.25 0.003 ** 2.72 1.06 6.96 0.04 *

Debulking

Full Ref Res

Partial 2.01 1.37 2.94 0.0004 *** 1.92 1.29 2.86 0.001 **

(Continued)
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TABLE 3 | Continued

DFS univariate analysis DFS multivariate analysis

HR CI 95% inf CI 95% sup p-value HR CI 95% inf CI 95% sup p-value

Signature

Non-Fibrosis Ref Ref

Fibrosis 1.37 1.08 1.73 0.01 * 1.28 0.99 1.65 0.05

Stage

II Ref Ref

III 1.93 1.12 3.31 0.02 * 1.67 0.89 3.12 0.11

IV 2.48 1.35 4.54 0.003 ** 2.03 1.02 4.04 0.05 *

Debulking

Full Ref Ref

Partial 1.69 1.23 2.32 0.001 ** 1.54 1.11 2.13 0.01 *

Age

<59 years Ref

>59 years 0.95 0.75 1.2 0.7

Signature

D 1.32 0.94 1.86 0.11 1.19 0.84 1.72 0.35

I Ref Ref

M 1.41 0.97 2.04 0.07 1.14 0.76 1.69 0.53

P 1.23 0.87 1.74 0.24 1.12 0.78 1.63 0.54

Stage

II Ref Ref

III 1.93 1.12 3.31 0.02 * 1.73 0.93 3.24 0.09

IV 2.48 1.35 4.54 0.003 ** 2.11 1.06 4.21 0.03 *

Debulking

Full Ref Ref

Partial 1.69 1.23 2.32 0.001 ** 1.54 1.11 2.14 0.01 **

Cox proportional hazards regression was performed on Fibrosis/non-Fibrosis or D-I-M-P subgroups and evaluated for overall survival (OS, Top) and disease-free survival
(DFS, Bottom). These analyses were either: adjusted for stage and debulking status (multivariate, Right) or unadjusted (univariate, Left). Age at diagnosis was not taken
into account for multivariate analysis as it was not significant at univariate level. HR, hazard ratio; CI 95% inf, lower limit of the 95% confidence interval; CI 95% sup, upper
limit of the 95% confidence interval. Significant p-values are indicated in bold. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

(Table 2). These results suggest that defining Mesenchymal
ovarian cancers by applying the D-I-M-P signature is less
informative than the Fibrosis classification.

Stratification Into Two Ovarian Cancer
Subgroups Provides a Reliable
Prognostic Value for Patient Survival
Taking into account the association between transcriptomic
signatures and clinical parameters, we next investigated if
these different transcriptomic signatures could be utilized as
independent prognostic factors, compared to stage and debulking
status, the two major variables of patient outcome used in clinics.
Based on univariate analyses using the Cox regression model, we
observed that the Fibrosis/non-Fibrosis signature was indicative
of both overall survival (OS) and disease-free survival (DFS),
with a shorter survival for the Fibrosis patients (Table 3). In
contrast, while the D-I-M-P signature was indicative of overall
survival, it had no prognostic value for disease-free survival in
the univariate analysis (Table 3). In the multivariate analysis,
none of the transcriptomic stratifications (either into two or four
subgroups) were associated with overall survival, independent of
stage and debulking (Table 3). Still, the Fibrosis – non-Fibrosis

signature was the only one to be independent of stage and
debulking and to provide additive prognostic value for disease-
free survival (Table 3).

In the Kaplan-Meier survival analyses, Fibrosis patients
exhibited significantly shorter overall survival (Figure 2A, Top)
and disease-free survival (Figure 2A, Bottom) than non-Fibrosis
patients in the three independent cohorts analyzed (Curie,
AOCS, and TCGA). Classification using the D-I-M-P signature
was initially only performed in the TCGA cohort (Verhaak
et al., 2013). Therefore, we used unsupervised clustering to
identify the four D-I-M-P subgroups in the Curie and AOCS
cohorts (Figure 2B). The classification into those four subgroups
was prognostic factor for overall survival and disease-free
survival in the AOCS cohort, but not in the Curie and TCGA
cohorts (Figure 2C). This shows that the D-I-M-P signature
does not provide a systematic prognostic value for survival of
ovarian cancer patients, but the division into two molecular
subgroups, Fibrosis and non-Fibrosis, is discriminant and
reliable. Because the Fibrosis/non-Fibrosis signature was defined
by genes correlated- or anti-correlated with miR-200 expression
(Mateescu et al., 2011; Batista et al., 2013, 2016), we also
evaluated their prognostic value. No microRNA, separately or in
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FIGURE 2 | Continued
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FIGURE 2 | High-grade serous ovarian cancers stratified into two transcriptomic subgroups exhibit a reliable prognostic value of patient survival. (A) Kaplan-Meier
curves showing 10-year overall survival (OS, Top) and disease-free survival (DFS, Bottom) of patients with Fibrosis (red) or non-Fibrosis (black) ovarian cancers.
Patients from the Curie cohort (56 Fibrosis and 51 non-Fibrosis), the AOCS cohort (135 Fibrosis and 150 non-Fibrosis) and the TCGA cohort (220 Fibrosis and 326
non-Fibrosis) were analyzed, as indicated. P-values were calculated using the Log-rank test. (B) Heatmap and hierarchical clustering applied on the Curie (Left) and
AOCS (Right) cohorts. Rows represent genes and columns represent patients. Clustering is based on the 100 genes of the D-I-M-P signature (Verhaak et al., 2013)
using Euclidean distance and Ward’s agglomeration method. The color saturation shows the magnitude of the deviation from the mean for each gene, with red and
blue indicating expression values above or below the mean, respectively. (C) Kaplan-Meier curves showing 10-year overall survival (OS, Top) and disease-free
survival (DFS, Bottom) of ovarian cancer patients according to D-I-M-P classification. Patients from the Curie (N = 30 Differentiated, N = 26 Immunoreactive, N = 31
Mesenchymal, and N = 20 Proliferative), the AOCS (N = 25 Differentiated, N = 42 Immunoreactive, N = 102 Mesenchymal, and N = 60 Proliferative) and the TCGA
(N = 148 Differentiated, N = 129 Immunoreactive, N = 118 Mesenchymal, and N = 138 Proliferative) cohorts were analyzed. P-values were calculated using the
Log-rank test.

combination, was sufficient as a prognostic marker for patient
survival (Supplementary Figure S3), indicating that expression
of the miR-200 family is not an applicable surrogate marker of
patient outcome. In conclusion, stratification of ovarian cancer
patients into two subgroups using the Fibrosis/non-Fibrosis
signature provides a reliable prognostic value for patient survival,
but using the D-I-M-P signature or miR-200 family member
expression levels do not.

LST Genomic Signature Identifies
Ovarian Cancer With HRD
High-grade serous ovarian cancers were analyzed according to
the LST genomic signature allowing us to stratify patients into
two subgroups: high LST (LSTHi) for HRD tumors (303 tumors,
56%) or low LST (LSTLo) for non-HRD tumors (238 tumors,
44%). As expected, LSTHi ovarian cancers were associated
with BRCA1/2 mutations, BRCA1 or RAD51C promotor
methylation and showed increased sensitivity to platinum-based
chemotherapy (Table 4). In contrast, the LST signature was not
significantly associated with grade, debulking status or primary
therapy outcome (Table 4). Univariate analyses, using the Cox
regression model, showed that LST signature was indicative
of better survival for LSTHi patients (p = 5.4 × 10−10 for
overall survival and p = 1.7 × 10−5 for disease-free survival).
BRCA1/2 mutations were also associated with better patient
outcome (p = 1.8 × 10−4 for overall survival and p = 0.01 for
disease-free survival), but methylation of BRCA1 and RAD51C
promoter regions were not. In multivariate Cox analyses adjusted
for BRCA1/2 mutations, LSTLo patients remained significantly
associated with shorter disease-free survival (HR = 1.6, CI95%
[1.2–2.1], p = 3.9 × 10−4, with HR, Hazard Ratio and CI,
Confidence Interval) and overall survival (HR = 1.95, CI 95%
[1.5–2.5], p = 6.7 × 10−7), whereas the presence of a BRCA
mutation was not associated with disease-free survival (p = 0.34)
and much less associated with overall survival (p = 0.04). This
shows that using the LST signature is more efficient for predicting
survival of ovarian cancer patients than testing the presence of
BRCA1/2 mutations.

Genomic and Transcriptomic Signatures
Provide Additive Prognostic Values for
Ovarian Cancer Patient Survival
As shown above, the LST signature was significantly
associated with HRD and platinum-sensitivity. In contrast,

the Fibrosis/non-Fibrosis signature was linked to stage and
clinical response to treatment, suggesting these signatures could
be complementary. Performing Principal Component Analyses
(PCA) on the TCGA transcriptomic data (Verhaak et al., 2013),
we observed that the Fibrosis/non-Fibrosis signature did not
overlap with the LST signature (Figure 3A, Top) and this
lack of association was also statistically confirmed (p = 0.29,
Table 2). Interestingly, the two signatures were not associated
with the same principal components (PC): Fibrosis/non-Fibrosis
signature was found associated with PC2 (p < 2.2 × 10−16) while
the LST signature was found associated with PC1 (p = 2.1 × 10−6)
(Figure 3A, Bottom). We then investigated if, together, they
could provide additive value regarding prognosis. Interestingly,
the genomic (LST) and transcriptomic (Fibrosis-/non-Fibrosis)
signatures were complementary and defined four distinct patient
subgroups with significantly different survival (Figure 3B).
In other words, Fibrosis and non-Fibrosis patients could be
subdivided into LSTHi and LSTLo subgroups. As expected,
the Fibrosis subtype was associated with poor prognosis, in
particular when combined to LSTLo, the non-HRD status
(Figure 3B). Reciprocally, the non-Fibrosis patients were
characterized by a better outcome, especially when associated
with the LSTHi subgroup (Figure 3B). Pairwise comparison
showed that each subgroup was significantly different from
each other, in term of overall survival and disease-free survival
(apart from the LSTLo/non-Fibrosis subgroup in the disease-free
survival analyses) (Table 5). These data show that combining
genomic and transcriptomic signatures improved stratification
of high-grade serous ovarian cancers and provided a significant
additive prognostic value. These two signatures (genomic
and transcriptomic) were independent for predicting disease-
free survival (LST: HR = 1.7, CI 95% [1.3–2.2], p = 10−5;
Fibrosis/non-Fibrosis: HR = 1.4, CI 95% [1.1–1.8], p = 6 × 10−3

by multivariate Cox regression analysis) and overall survival
(LST: HR = 2.2, CI 95% [1.7–2.8]; p = 4 × 10−10; Fibrosis/non-
Fibrosis: HR = 1.5, CI 95% [1.2–2], p = 1 × 10−3). In contrast
to the Fibrosis/non-Fibrosis signature, the D-I-M-P and LST
signatures were significantly associated (p = 0.02, Table 2). The
multivariate Cox analysis adjusted for the D-I-M-P and LST
signatures showed that the two signatures were independent for
predicting overall survival (LST: HR = 2.16, CI 95% [1.7–2.8],
p = 2.3 × 10−9; DIMP: HR = 1.57, CI 95% [1.1–2.3], p = 0.02).
In contrast, only the LST signature was significantly associated
with the disease-free survival (LST: HR = 1.71, CI 95% [1.3–2.2],
p = 2.3 × 10−5), while D-I-M-P was not. In conclusion, these
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TABLE 4 | Association between genomic signature and clinical parameters.

LSTLo LSTHi p-value

Grade p = 0.89

G2 27 (12.5%) 30 (11.8%)

G3 189 (87.5%) 224 (88.2%)

Stage p = 0.29

II 8 (3.7%) 16 (6.2%)

III–IV 210 (96.3%) 243 (93.8%)

Debulking p = 0.55

Full 39 (19.8%) 51 (22.4%)

Partial 158 (80.2%) 177 (77.6%)

Platinum resistance p = 0.0001

Sensitive 71 (56.3%) 124 (78.5%)

Resistant 55 (43.7%) 34 (21.5%)

Primary therapy outcome p = 0.07

Complete response 111 (65.3%) 164 (73.9%)

Partial response 59 (34.7%) 58 (26.1%)

BRCA1/2 mutation p = 2.0 × 10−15

No 229 (96.2%) 217 (71.6%)

Yes 9 (3.8%) 86 (28.4%)

BRCA1 methylation p = 1.9 × 10−19

No 238 (100%) 235 (77.6%)

Yes 0 (0%) 68 (22.4%)

RAD51C methylation p = 0.0008

No 238 (100%) 290 (95.7%)

Yes 0 (0%) 13 (4.3%)

Transcriptomic signature p = 0.29

Non-Fibrosis 147 (62.3%) 171 (57.4%)

Fibrosis 89 (37.7%) 127 (42.6%)

Ploidy p = 2.7 × 10−15

2 41 (17.2%) 150 (49.5%)

≥ 4 197(82.8%) 153 (50.5%)

Contingency table showing associations between the LSTLo/LSTHi subgroups and clinical parameters. Debulking status and response to primary therapy were defined
as in Table 2. These analyses were performed on the TCGA cohort. P-values were calculated using Fisher’s exact test and significant p-values are indicated in bold.

results demonstrate that combining genomic and transcriptomic
information is the most reliable method for stratifying high-grade
serous ovarian cancer patients.

DISCUSSION

Stratification of high-grade serous ovarian cancer patients
remains unclear. Previously, several ovarian cancer molecular
subgroups were identified according to transcriptomic signatures
(Tothill et al., 2008; Cancer Genome and Atlas Research, 2011;
Mateescu et al., 2011; Sabatier et al., 2011; Bentink et al.,
2012; Verhaak et al., 2013; Konecny et al., 2014) or genomic
(Fong et al., 2009, 2010; Audeh et al., 2010; Goundiam
et al., 2015). In this study, we define the optimal number
of ovarian cancer molecular subgroups with reproducible
prognostic value. The study of several independent cohorts
showed that classifying ovarian tumors into four molecular
subgroups, based on D-I-M-P signatures, does not reproducibly
inform on patient survival. In contrast, the subdivision of

patients into two molecular subgroups (Fibrosis/non-Fibrosis)
provided reliable prediction of patient survival. We also
identified a novel complementarity between transcriptomic
and genomic data. Indeed, transcriptomic profiling and HRD
status characterize specific biological processes and could
accurately reflect the different key components in ovarian tumors.
Furthermore, combining both genomic and transcriptomic
data identified four ovarian cancer patient subgroups with
distinct prognostic values and is, therefore, currently the most
appropriate method for stratifying high-grade serous ovarian
cancer patients.

Although several transcriptomic signatures in ovarian cancers
have been proposed (Tothill et al., 2008; Cancer Genome and
Atlas Research, 2011; Mateescu et al., 2011; Sabatier et al.,
2011; Bentink et al., 2012; Verhaak et al., 2013; Konecny et al.,
2014), there is no clear consensus for choosing a specific
one. This is mainly due to the lack of overlap in the gene
sets of these transcriptomic signatures (Tothill et al., 2008;
Cancer Genome and Atlas Research, 2011; Mateescu et al., 2011;
Sabatier et al., 2011; Bentink et al., 2012; Verhaak et al., 2013;
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FIGURE 3 | Combining genomic and transcriptomic signatures provide additive prognostic values for high-grade serous ovarian cancer patients. (A, Up) Principal
component analyses (PCA) applied on transcriptomic data from the TCGA cohort using Verhaak’s signature. On the left panel, the color code shows the non-Fibrosis
(blue, N = 326) and Fibrosis (red, N = 220) subgroups, using Mateescu’s signature (Mateescu et al., 2011). The right panel shows the same PCA representation but
subgroups are highlighted using the LST genomic signature (Popova et al., 2012). The color code represents LSTLo (blue, N = 238) and LSTHi (green, N = 303)
ovarian cancers. (Down) Contingency tables showing the repartition of patients regarding Mateescu or LST classification and the repartition against the two first
principal components. (B) Kaplan-Meier curves showing 10-year overall survival (OS, Left) and disease-free survival (DFS, Right), after stratification into four groups:
LSTLo/Fibrosis (red, N = 89), LSTLo/non-Fibrosis (green, N = 147), LSTHi/Fibrosis (blue, N = 127), and LSTHi/non-Fibrosis (black, N = 171). P-values are calculated
using the Log-rank test.

Konecny et al., 2014). The lack of overlap could be explained,
at least in part, by the heterogeneity in the techniques and
platforms used for detecting gene expression, and by the diversity
of unsupervised algorithms applied to molecular classifications.

There is a clearer consensus of molecular classifications in breast
cancer (Perou et al., 2000; Sorlie et al., 2001; Coates et al., 2015)
that could be due to the presence of confirmed biomarkers
(for example, hormonal receptors, and HER2 expression).
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TABLE 5 | Pairwise comparison of transcriptomic and genomic signatures for overall and disease-free survival.

LSTHi/Fibrosis LSTLo/Fibrosis LSTHi/Non-Fibrosis LSTLo/Non-Fibrosis

Overall Survival

LSTHi/Fibrosis –

LSTLo/Fibrosis 1.60 × 10−0.5 –

LSTHi/Non-Fibrosis 0.03 1.00 × 10−11 –

LSTLo/Non-Fibrosis 0.04 0.03 1.10 × 10−05 –

Disease Free Survival

LSTHi/Fibrosis –

LSTLo/Fibrosis 0.03 –

LSTHi/Non-Fibrosis 0.03 2.60 × 10−0.6 –

LSTLo/Non-Fibrosis 0.31 0.14 7.1 × 10−0.4 –

Differences in overall survival (Top) and disease-free survival (Bottom) between the four groups: LSTHi/Fibrosis, LSTLo/Fibrosis, LSTHi/Non-Fibrosis and LSTLo/Non-
Fibrosis. P-values are calculated using the Log-rank test and corrected for multiple testing using the Benjamini-Hochberg procedure.

The lack of consistency found in ovarian cancer classifications
highlights the importance of using appropriate methods for
stratifying high-grade serous ovarian cancer patients. Here, we
demonstrate that among the four transcriptomic signatures
analyzed (Tothill et al., 2008; Cancer Genome and Atlas Research,
2011; Mateescu et al., 2011; Bentink et al., 2012; Verhaak
et al., 2013), patient stratification into two subgroups, defined
as the Fibrosis/non-Fibrosis signature (Mateescu et al., 2011),
exhibits the most reliable prognostic value for patient survival
compared to the others. We did observe a significant overlap
in patient classification by applying the different transcriptomic
signatures analyzed, but we also detected some differences
between classifications. Indeed, Mesenchymal patients defined by
the D-I-M-P signature (Verhaak et al., 2013) were all identified
as Fibrosis using Mateescu’s signature (Mateescu et al., 2011).
In contrast, some patients defined as non-Mesenchymal by the
D-I-M-P signature were defined as Fibrosis using Mateescu’s
signature, and they also exhibited poor survival. Based on the
survival-data analyses, these observations suggest that some
non-Mesenchymal patients should be considered Mesenchymal,
as determined by the Fibrosis signature. This could also be
explained by the non-exclusive attribution to a subtype using the
D-I-M-P signature (40% of the tumor samples could be assigned
to two distinct subtypes in Konecny’s study) (Konecny et al.,
2014) and/or by the spatial heterogeneity of signatures caused
by the different geographic areas of sampling. Importantly,
classifications tested in these studies (Tothill et al., 2008; Cancer
Genome and Atlas Research, 2011; Bentink et al., 2012; Verhaak
et al., 2013) were defined using a similar methodology (non-
supervised analysis), but the Fibrosis/non-Fibrosis signature
was identified through mechanistic studies based on miR-
200-dependent profiling (Mateescu et al., 2011; Batista et al.,
2016). This may explain the heterogeneity seen between our
signature and others. In addition, our observations indicated
that expression of miR-200 family members, either separately or
combined, was not sufficient to predict patient survival. There
has been a long-lasting controversy about the prognostic value
of miR-200 with a number of studies displaying divergent results
(Batista et al., 2013; Muralidhar and Barbolina, 2015). Recently,
a meta-analysis including 7 articles with available data (553

patients) was conducted (Shi and Zhang, 2016). It is important
to note that the populations included in those studies were
quite small (from 55 to 100 patients) compared to the TCGA
cohort studied here (557 patients). In that meta-analysis, higher
expression of the miR-200 family was significantly associated with
improved survival, predominantly due to the impact of miR-
200c. This association was stronger in the Asian population. The
discrepancies between this meta-analysis and our findings may
be due to several reasons: inclusion of less Asian patients in the
TCGA cohort, multiple small studies using different microarray
protocols and significant heterogeneity across studies in the
meta-analysis. This indicates that the prognostic value of using
expression of the miR-200 family lacks reliability. Nonetheless,
circulating miR-200s could still be good indicators for early
detection of ovarian cancers or dynamic markers to follow-up
during chemotherapy, as suggested in previous studies (Taylor
and Gercel-Taylor, 2008; Kan et al., 2012; Sarojini et al., 2012;
Kapetanakis et al., 2015; Pendlebury et al., 2017).

In addition to transcriptomic data, we have here provided
new insight into genomic signatures of ovarian cancers. LST,
defined as chromosomal breaks between adjacent regions of
at least 10 Mb, constitute a robust indicator of HRD status
(Popova et al., 2012; Goundiam et al., 2015). This classification
was initially defined in breast cancers (Popova et al., 2012).
Triple-negative breast carcinomas and high-grade serous ovarian
cancers have some genomic instability patterns in common,
providing a strong rationale for applying this LST signature
on ovarian cancers. We and others have shown the impact
of HRD on favorable response to platinum salts and overall
survival (Fong et al., 2009, 2010; Audeh et al., 2010; Popova
et al., 2012; Goundiam et al., 2015; Manie et al., 2016). Here,
we confirm the clear prognostic value of the LST signature
in high-grade serous ovarian cancers with better survival
demonstrated for LSTHi patients. Moreover, the interest for
this classification will probably increase with the inclusion
of PARP-inhibitors in routine clinical practice. Currently, the
same therapeutic strategy, a combination of platinum and
taxane-based chemotherapy, is used for all patients suffering
from high-grade ovarian cancers. In the last decade, anti-
angiogenic therapies and PARP-inhibitors were approved for
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treatment of high-grade ovarian cancers, with a significant but
limited impact on survival. This benefit on survival may be
hidden by the molecular heterogeneity in tumors that drives
either beneficial or deleterious response to treatments. Recent
findings suggest that transcriptomic signatures could help in the
identification of patients who will benefit from anti-angiogenic
therapies (Gourley et al., 2014; Kommoss et al., 2017). In that
context, we propose stratification of ovarian cancer patients that
could help identify different sensitivity to treatment. The duality
of our signature considering both the genomic HRD profile
(LST signature) and the transcriptomic microenvironment
features (Fibrosis/non-Fibrosis signature) provides compelling
data for new therapies targeting the microenvironment (Thibault
et al., 2014). There is a tendency to limit reimbursement of
expansive new therapies if there is no biomarker predicting
treatment response. We provide a reliable method to identify
and subgroup high-grade serous ovarian cancer patients by
combining genomic and transcriptomic information. Thus, our
proposition of stratification could be used as a biomarker
for some therapies that may help clinicians define the most
appropriate therapeutic strategy.
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