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Competing endogenous RNAs (ceRNAs) regulate each other by competitively binding

microRNAs they share. This is a vital post-transcriptional regulation mechanism and

plays critical roles in physiological and pathological processes. Current computational

methods for the identification of ceRNA pairs are mainly based on the correlation of

the expression of ceRNA candidates and the number of shared microRNAs, without

considering the sensitivity of the correlation to the expression levels of the shared

microRNAs. To overcome this limitation, we introduced liquid association (LA), a dynamic

correlation measure, which can evaluate the sensitivity of the correlation of ceRNAs

to microRNAs, as an additional factor for the detection of ceRNAs. To this end,

we firstly analyzed the effect of LA on detecting ceRNA pairs. Subsequently, we

proposed an LA-based framework, termed LAceModule, to identify ceRNA modules by

integrating the conventional Pearson correlation coefficient and dynamic correlation LA

with multi-view non-negative matrix factorization. Using breast and liver cancer datasets,

the experimental results demonstrated that LA is a useful measure in the detection of

ceRNA pairs and modules. We found that the identified ceRNA modules play roles in

cell adhesion, cell migration, and cell-cell communication. Furthermore, our results show

that ceRNAs may represent potential drug targets and markers for the treatment and

prognosis of cancer.

Keywords: ceRNA, microRNA, correlation, liquid association, modules

INTRODUCTION

MicroRNAs (length: ∼22 nt) are a kind of small non-coding RNAs (Yates et al., 2013). They
can interact with Argonaute protein to form the RNA-induced silencing complex. This complex
binds to target RNA sequences (termed microRNA response elements, MRE) with partial
complementarity, influencing the stability of target RNAs (Bartel, 2009; Yates et al., 2013). Recent
studies revealed that different RNAs with microRNA response elements that bind to the same
microRNAs can regulate each other by competitively binding to the microRNAs they share.
This is known as the competing endogenous RNA (ceRNA) model, and these RNAs are termed
ceRNAs (Salmena et al., 2011). CeRNAs can be messenger RNAs (mRNAs), long non-coding RNAs
(lncRNAs), pseudogene gene transcripts, and circular RNAs (circRNAs). The detection of ceRNA
can be used to explain the function of thousands of uncharacterized non-coding RNAs, and is
also considered the “Rosetta stone of a hidden RNA language” (Salmena et al., 2011; Thomson
and Dinger, 2016). In addition, ceRNAs play critical roles in post-transcriptional regulation. Thus,
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they are involved in numerous physiological and pathological
progresses, such as cancer (Salmena et al., 2011; Karreth and
Pandolfi, 2013; Tay et al., 2014; Qi et al., 2015). For example,
the tumor suppressor gene PTEN has been demonstrated to
compete for microRNAs shared with other transcripts, such as
ZEB2, CNOT6L, VAPA, VCAN, in many types of cancer (e.g.,
glioblastoma, melanoma, prostate cancer, and breast cancer) (Tay
et al., 2014; Poliseno and Pandolfi, 2015). Of note, PTENP1 (the
pseudogene of PTEN), regulates the RNA levels of its cognate
gene in prostate, melanoma, and clear-cell renal cell carcinoma
(Poliseno et al., 2010, 2011; Johnsson et al., 2013; Yu et al.,
2014). Furthermore, lncRNAs and circRNAs are also important
regulators in the ceRNA model (Schmitt and Chang, 2016;
Zhong et al., 2018). HULC, which is significantly upregulated in
hepatocellular carcinoma, can reduce the expression and activity
of miR-372 in liver cancer, which derepresses the translation of its
target gene PRKACB and induces phosphorylation of the cAMP
response element binding protein in liver cancer (Wang et al.,
2010). CircHIPK3 inhibits the activity of mir-124 and promotes
the expression of IL-6R by competitively binding to miR-124
(Zheng et al., 2016).

Owing to the large number of candidate ceRNA pairs and
high cost of biological experiments, computational methods have
become an efficient approach for the study of the ceRNA model
(Le et al., 2017). For example, Zhou et al. (2014) constructed
and investigated a ceRNA network in breast cancer; Sumazin
et al. (2011) proposed a method based on conditional mutual
information to infer candidate ceRNAs and analyze the ceRNA
network in glioblastoma. Paci et al. (2014) used sensitivity
correlation (SI) to infer the ceRNA network between lncRNAs
and mRNAs in breast cancer. In that model, SI equals the
difference between the Pearson correlation coefficient (PCC)
and the partial correlation coefficient of ceRNAs with respect to
their shared microRNAs. And List et al. (2019) further improved
this method. All these methods predict ceRNA pairs based on
two aspects: (1) ceRNAs should share a sufficient number of
microRNAs, which can be evaluated through statistical tests,
such as the hyper-geometric test (Salmena et al., 2011; Le et al.,
2017); and (2) the expression of ceRNAs should be positively
correlated, which can be estimated using the PCC (Chiu et al.,
2015), SI (Paci et al., 2014; Do and Bozdag, 2018), or conditional
mutual information (Sumazin et al., 2011). In addition, Zhang
et al. (2018) proposed LncmiRSRN to construct lncRNA-mRNA
ceRNA network via estimating the causal effects of lncRNAs on
mRNAs with the IDA method. Besides studying ceRNAs using
sequencing data, researchers also proposed mathematical models
to simulate the ceRNA process, such as the minimal model
(Figliuzzi et al., 2013), mass-action model (Ala et al., 2013), and
coarse-grained model (Yuan et al., 2015). Recently, Wei et al.
constructed a unified coarse-grained competition motif model
and uncovered the complexity and generality of the molecular
competition effect, including the ceRNAmodel (Wei et al., 2019).
In that study, the investigators proposed that the strength of
competition between ceRNAs is influenced by the abundance
of ceRNAs and their target microRNAs (Wei et al., 2019).
The strength of the correlation is maximized in the “R near-
equimolar” regime, and gradually decreases with concentration

of microRNAs away from the regime (Martirosyan et al., 2019;
Wei et al., 2019). This means that the strength of ceRNA
regulation varies based on the concentration of microRNAs.
Those results also indicated that the strength of ceRNA regulation
is sensitive to the expression levels of microRNAs around
the proper concentration. Intuitively, two RNAs may be co-
expressed due to some biological mechanisms. If they have an
additional ceRNA relationship, their co-expression should be
improved. When the levels of microRNA expression are low,
the regulation between ceRNAs is not obvious. Furthermore,
the ceRNA strength is sensitive to the expression levels of
microRNAs. Hence, the strength of the co-expression should
also be sensitive to these levels. We found the current studies
using RNA sequencing data did not consider this characteristic
of the ceRNA model. Hence, we propose that the sensitivity of
co-expression to the expression levels of microRNAs they share
may be a factor for predicting ceRNA relationships. We used
dynamic correlation measure, termed liquid association (LA), to
assess this sensitivity.

Unlike conventional correlations (e.g., PCC), dynamic
correlation focuses on the change in the correlation of two
variables following alterations in a third variable (Gunderson
and Ho, 2014; Yu, 2018). For example, LA is defined as the
mean of the derivative of the correlation between two objects
with respect to a third condition (Li, 2002). LA has been used
to identify disease candidate genes (Li et al., 2007) and human
age-associated genes (Yang et al., 2018), as well as discover key
microbial species and environmental factors of the microbial
community (Ai et al., 2019).

LA is an appropriate measure for the evaluation of the
correlation sensitivity of ceRNAs to microRNAs. In this study, we
firstly analyzed the effectiveness of LA in detecting ceRNA pairs.
Subsequently, we proposed a framework to investigate LA-based
ceRNA modules (LAceModule) by integrating the conventional
PCC and dynamic correlation LA with multi-view non-negative
matrix factorization (NMF). By performing further analysis in
breast cancer, we revealed that ceRNAs play roles in cell adhesion,
cell migration, and cell-cell communication. Our results also
showed that ceRNAs may represent promising drug targets and
markers for the treatment and prognosis of cancer.

RESULTS

LA for the Prediction of ceRNA Pairs
Current studies often use the PCC or SI to detect ceRNA pairs.
This approach ignores the sensitivity of the correlation between
RNAs to the expression levels of their shared microRNAs. To
overcome this limitation, we used LA (Li, 2002) to measure the
dynamic change of the correlation for a ceRNA pair depending
on the expression levels of their shared microRNAs. Suppose
that EXPR1 and EXPR2 represent the expression levels of two
ceRNA candidatesR1 andR2, respectively, while EXPMIC denotes
the sum of the expression levels of all their shared microRNAs,
MIC. We normalized EXPR1 and EXPR2 using the z-scoring
method such that E(EXPR1) = E(EXPR2) = 0, Var(EXPR1) =
Var(EXPR2) = 1, where E(·)and Var(·) represent the expectation
and variance of a random variable, respectively.
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Supposing the above, the PCC between R1 and R2 is:

ρ(R1,R2) =
E[(EXPR1 − E(EXPR1))× (EXPR2 − E(EXPR2))]√

Var(EXPR1)× Var(EXPR2)

= E(EXPR1 × EXPR2).

By conditioning, E(EXPR1 × EXPR2) = E(E(EXPR1 ×
EXPR2|EXPMIC)) = E(g(EXPMIC)), where g(EXPMIC) =
E(EXPR1×EXPR2|EXPMIC = expMIC) is the correlation between
R1 and R2 when the expression level of the shared microRNA
is expMIC.

The LA of R1 and R2 with respect to their shared microRNAs
is defined as LA(R1,R2|MIC) = E(g′(EXPMIC)), where
g(EXPMIC) = E(EXPR1 × EXPR2|EXPMIC = expMIC). According
to the Stein Lemma (Stein, 1981), if the sum of the expression
levels of all the shared microRNAs MIC follows the standard
normal distribution, LA(R1,R2|MIC) = E(EXPR1 × EXPR2 ×
EXPMIC), the calculation of LA can be simplified as shown below:

LA(R1,R2|MIC) =

N
∑

i=1
EXPR1i × EXPR2i × EXPMICi

N

where N is the number of sample. We performed data
transformation on EXPMIC using the Van der Waerden’s method
to ensure that EXPMIC follows the standard normal distribution.
For EXPMIC1 ,EXPMIC2 , · · · ,EXPMICN , we initially obtained their
ranks r1, r2, · · · , rN , and subsequently computed the transformed
value as follows:

EXPMIC1 = 8−1(
r1

N + 1
),EXPMIC2 = 8−1(

r2

N + 1
), · · · ,

EXPMICN = 8−1(
rN

N + 1
),

where 8(·) is the cumulative distribution function of the
standard normal distribution.

We downloaded the expression profiles of mRNAs, lncRNAs,
and microRNAs of 1,072 and 365 patients with BRCA and
LIHC, respectively, from The Cancer Genome Atlas (TCGA) to
investigate the effect of LA on the prediction of ceRNA pairs.
Non-expressed genes across all samples in a given type of cancer
were removed (Figure 1A). Subsequently, we downloaded 2,667
experimentally validated ceRNA pairs from the LncCeRBase
(Pian et al., 2018), miRSponge (Wang et al., 2015b), and
lncACTdb (Wang et al., 2015a) databases. Considering the tissue-
specific characteristics of ceRNAs and gene symbol mapping,
seven validated ceRNA pairs in breast cancer and six validated
ceRNA pairs in liver cancer were obtained (Table 1). All pairs
in our candidate ceRNAs set significantly shared microRNAs
(hypergeometric test, p < 0.05). For each disease, we considered
these ceRNA pairs as benchmarks and all pairs, which were
consisted of two genes in benchmarks and had sufficient number
of shared microRNAs, as candidate pairs. We use these two
datasets to evaluate the performance of LA-, PCC-, and SI-based
methods, respectively. In breast cancer, the area under curve
(AUC) values of the LA, PCC, and SI approaches were 0.58, 0.45,
and 0.24, respectively. In liver cancer, these AUC values were 0.46,
0.27, and 0.35, respectively (Figure 2A). PCC and SI are usually

used to identify ceRNA pairs, and our results indicate that LA also
has the ability to predict ceRNA pairs.

Identification of ceRNA Modules Using the
LAceModule
We proposed the LAceModule (Figure 1B), a framework based
on multi-view NMF (Liu et al., 2013) to systematically identify
ceRNA modules using LA. For each candidate ceRNA pair,
we computed the PCC value, LA value, and the degree of
significance of shared microRNAs (MS-P) (see section Materials
and Methods) to construct three matrices MPCC, MLA, and
MMS−P, respectively. Subsequently, when the MS-P values of
candidate ceRNA pairs were ≥0.05, we set their corresponding
PCC values and LA values to zero. Owing to the non-negativity
requirement in the multi-view NMF framework, we set negative
values inMPCC andMLA to zero. Considering that a ceRNA pair
should be co-expressed and sensitive to change in the expression
of their shared microRNAs, we set the values in the same entry
of MPCC and MLA of candidate ceRNA pairs to zero if either of
these values was zero. Finally, we integratedMPCC andMLA using
multi-view NMF to identify ceRNA modules.

For multi-view NMF, there are two observation views M =
{MPCC,MLA}, each of which is a G × G non-negative matrix,
where Gis the number of candidate ceRNAs. Each matrix in
M, Mv ∈ {MPCC,MLA}, can be factorized to Uv

G×K ≥ 0 and
(

Vv
G×K

)T ≥ 0 that Mv ≈ Uv(Vv)T and each row of (Vv)T can
be considered as the K-rank representation of the corresponding
candidate ceRNA point. Here, we attempted to identify a low-
rank representation that is suitable for both views, which is
defined as (V∗)T . We factorized each matrix inM and made each

(Vv)T as close as possible to (V∗)T . Therefore, we determined the
objective function as follows:

min

(

∥

∥

∥
MPCC − UPCC(VPCC)

T
∥

∥

∥

2

F
+
∥

∥

∥
MLA − ULA(VLA)

T
∥

∥

∥

2

F

+λPCC
∥

∥VPCC − V∗
∥

∥

2

F
+ λLA

∥

∥VLA − V∗
∥

∥

2

F

)

s.t. ∀1 ≤ k ≤ K,
∥

∥

∥
UPCC
·,k

∥

∥

∥

1
= 1,

∥

∥

∥
ULA
·,k

∥

∥

∥

1

= 1 and UPCC,ULA,VPCC,VLA,V∗ ≥ 0

where λPCC and λLA tunes the relative weight among different
views and between standardNMF error and disagreement among

(V∗)T ,
(

VPCC
)T
, and

(

VLA
)T
. We used an iterative procedure by

updating one variable, while maintaining the remaining variables
fixed to solve this optimization problem (see details in Materials
and Methods section). After computing the (V∗)T , we obtained
the module label of RNA i using argmaxj= 1,2,··· ,KV

∗
ij .

Of note, the LAceModule requires pre-determination of the
number of modules, K. We evaluated the clustering performance
to select an optimal K ranging from 10 to 400 with an increment
of 10 by considering four metrics (Figures 2B,C), namely the C-
index (Hubert and Schultz, 1976), McClain-Rao (McClain and
Rao, 1975), point biserial correlation coefficient (Milligan, 1981),
and silhouette coefficient (Rousseeuw, 1987). By simultaneously
considering four metrics on twomatrices, we selectedK = 360 in
BRCA and K = 370 in LIHC. To obtain robust ceRNA modules,
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FIGURE 1 | (A) Data preparation. We obtained the RNA-seq data of mRNAs and lncRNAs, as well as the microRNA-seq data of microRNAs. Subsequently, we

removed non-expressed and lowly expressed RNAs. Finally, we retained RNAs that were presented in the RNA-microRNA interaction datasets (here is Mirwalk2.0) as

candidate ceRNAs. (B) Overview of LAceModule. The inputs of LAceModule are candidate ceRNA expression profiles, microRNA expression profiles, and

RNA-microRNA interactions. For each candidate ceRNA pair, the PCC value, LA value, and significance degree of shared microRNAs (MS-P) value can be obtained.

For pairs with higher MS-P values (threshold is 0.05), negative PCC values or LA values should be removed (i.e., the PCC values and LA values of these pairs are set

to zero). Multi-view NMF is executed using the PCC matrix, LA matrix, and different K as inputs. The best K is selected by comparing four clustering evaluation

metrics. Subsequently, multi-view NMF procedures are repeated 10 times with the best K and different initial values. The final modules are obtained through

consensus clustering of the repeat results.

the LAceModule repeated the multi-view NMF procedures 10
times, and computed a consensus matrix to identify ceRNA
modules using the cluster-based similarity partitioning algorithm
(CSPA) (Strehl and Ghosh, 2003). Specifically, CSPA generates a
binary matrix for each result of the multi-view NMF clustering,
with “1” representing two associated genes in the same cluster
and “0” for not. The consensus matrix is the sum of these
binary matrices. ceRNA modules can be identified through
spectral clustering on this consensus matrix using the optimal K
selected above.

Comparison Between the LAceModule and
PCC/SI-Based Methods
We used NMF to replace the multi-view NMF and the PCC
matrix or SI matrix as input to compare the performance of
conventional and dynamic correlations in the detection of ceRNA
modules. In the PCCmatrix and SI matrix, negative values or the
correspondingMS-P values≥0.05 were set to zero.We also tested

K ranging 10–400, with an increment of 10, and evaluated the
clustering performance with the same indicators mentioned in
Section Identification of ceRNAmodules using the LAceModule.
We selected Ks equal to 350 and 360 for PCC-based and SI-
based results in BRCA, respectively, while Ks equal to 360 and
340, respectively, were selected for LIHC (Figures 2B,C). In the
following sections, we used “PCC+LA” to represent the modules
detected by the LAceModule, as well as “PCC” and “SI” to
represent the modules based on PCC or SI, respectively.

CeRNA pairs are highly co-expressed; hence, the fold change
of gene expression in a ceRNA module tends to be similar
in the disease and normal states. We analyzed the differential
expression of genes between normal tissues and tumor tissues
using the R packages edgeR (Robinson et al., 2010) (Materials
and Methods section) to obtain the fold change. Subsequently,
we calculated the entropy of fold change for each module. As
shown in Figure 2D, the entropy distribution of “PCC+LA” was
significantly lower than those of “PCC” (FDR= 0.0476 in BRCA,
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TABLE 1 | LA, PCC, and SI values of validated ceRNA pairs.

ceRNA1 ceRNA2 PCC LA SI MS-P* Disease

ENSG00000234741 ENSG00000171862 −0.058 0.040 −0.008 0.005 BRCA

ENSG00000251562 ENSG00000070831 0.043 −0.009 0.002 0.001 BRCA

ENSG00000251562 ENSG00000135446 −0.377 0.000 −0.003 0.022 BRCA

ENSG00000115414 ENSG00000026508 0.082 −0.003 −0.001 0.001 BRCA

ENSG00000108821 ENSG00000026508 −0.014 0.082 0.001 0.029 BRCA

ENSG00000171862 ENSG00000038427 0.379 0.075 −0.004 0.002 BRCA

ENSG00000038427 ENSG00000139687 0.368 0.058 0.000 0.003 BRCA

ENSG00000226950 ENSG00000168036 0.131 0.103 −0.003 0.012 LIHC

ENSG00000234741 ENSG00000150593 0.205 −0.205 −0.014 0.003 LIHC

ENSG00000234741 ENSG00000171862 −0.003 −0.107 −0.002 0.013 LIHC

ENSG00000241388 ENSG00000057663 0.035 −0.068 −0.005 0.033 LIHC

ENSG00000251164 ENSG00000148516 −0.093 0.097 −0.001 0.004 LIHC

ENSG00000251164 ENSG00000168615 −0.392 0.411 0.003 0.034 LIHC

*MS-P, statistical significance of shared microRNAs between RNAs.

FIGURE 2 | (A) The AUC value for predicting ceRNA pairs with LA, PCC, and SI in BRCA and LIHC. (B) Cluster evaluation of three methods on different matrices in

BRCA. (C) Cluster evaluation of three methods on different matrices in LIHC. (D) Comparison of the gene fold-change entropy in modules between different clustering

methods. (E) Comparison of the average validated microRNA of each pair in modules between different methods. (F) Comparison of the dispersion of dysregulated

genes in modules between different methods. Top row: ignoring the direction of dysregulation, bottom row: considering the direction of dysregulation. (*p < 0.05;

**p < 0.01; ***p < 0.001).
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FDR= 5.12E-06 in LIHC; Kolmogorov–Smirnov one-tailed test)
and “SI” (FDR = 8.16E-09 in BRCA, FDR = 5.12E-06 in LIHC;
Kolmogorov–Smirnov one-tailed test). By comparing “PCC” and
“SI,” we also found that the former was significantly lower than
the latter (FDR = 7.20E-05 in BRCA, FDR = 4.76E-02 in LIHC;
Kolmogorov–Smirnov one-tailed test). Similarly, if a gene in a
ceRNA pair is dysregulated, the other gene also tends to be
dysregulated. In addition, the direction of the dysregulation also
tends to be the same. This indicates that, when a gene in a ceRNA
pair is upregulated, the other gene also tends to be upregulated.
Therefore, we calculated the entropy of the dysregulated gene
ratio and the entropy of the different dysregulation direction
ratio of each module. The results are shown in Figure 2F; the
top row illustrates the dysregulated gene ratio without direction,
while the bottom row shows the dysregulated gene ratio with
direction. The results showed that the modules of “PCC+LA”
were significantly lower than those of “PCC” (top: FDR= 0.0246
in BRCA, FDR= 6.50E-03 in LIHC; bottom: FDR= 2.62E-02 in
BRCA, FDR = 7.82E-03 in LIHC; Wilcoxon one-tailed test) and
“SI” (top: FDR = 5.82E-12 in BRCA, FDR = 3.47E-24 in LIHC;
bottom: FDR = 6.88E-10 in BRCA, FDR = 2.59E-23 in LIHC;
Wilcoxon one-tailed test) in both situations. For “PCC” and “SI”,
the former performed better than the latter in two situations (top:
FDR = 5.39E-06 in BRCA, FDR = 9.15E-16 in LIHC; bottom:
FDR = 2.39E-04 in BRCA, FDR = 2.09E-15 in LIHC; Wilcoxon
one-tailed test).

CeRNAs are regulated through shared microRNAs. Therefore,
ceRNAmodules may tend to sharemoremicroRNAs in each pair.
We used experimentally validated mRNA-microRNA interaction
in miRTarBase (Chou et al., 2016) to evaluate the average
number of shared microRNAs in a pair. The results are shown in
Figure 2E. The modules of “PCC+LA” shared more microRNAs
on average than those of “PCC” (FDR = 1.84E-02 in BRCA,
FDR = 1.84E-02 in LIHC; Wilcoxon one-tailed test) and “SI”
(FDR= 1.05E-06 in BRCA, FDR= 2.62E-09 in LIHC; Wilcoxon
one-tailed test). Moreover, the modules of “PCC” shared more
microRNAs on average than those of “SI” (FDR = 8.46E-03 in
BRCA, FDR= 3.82E-05 in LIHC; Wilcoxon one-tailed test).

Collectively, the comparisons of gene fold change, gene
dysregulation ratio, and number of shared microRNAs suggest
that the integration of conventional and dynamic correlations
offers better detection of ceRNA modules than conventional
correlation alone.

Functional Analysis of ceRNA Modules in
Breast Cancer
We used the results of the BRCA dataset for further analysis.
For investigating the difference in ceRNA relationship between
tumor and normal states, we identified 348 ceRNA modules
in breast tumor tissues and 314 modules in normal breast
tissues using LAceModule. We used the g:Profiler (Reimand
et al., 2007) for function enrichment of ceRNA modules in the
disease and normal states. In Table 2, we listed the top five most
frequently enriched Gene Ontology (GO) terms in both states.
We analyzed the relationship of these GO terms (Figure 3A)
and found that the ceRNA modules are associated with cell

TABLE 2 | Most frequently enriched GO terms.

Term ID Domain Term name Count

Disease state

GO:00071551 BP Cell adhesion 15

GO:00226101 BP Biological adhesion 15

GO:00325011 BP Multicellular organismal process 13

GO:00069551 BP Immune response 11

GO:00071653 BP Signal transduction 11

GO:00096051 BP Response to external stimulus 11

GO:00325021 BP Developmental process 11

Normal state

GO:00100332 BP Response to organic substance 8

GO:00708872 BP Cellular response to chemical stimulus 8

GO:00713102 BP Cellular response to organic substance 8

GO:00071542 BP Cell communication 7

GO:00071653 BP Signal transduction 7

GO:00071662 BP Cell surface receptor signaling pathway 7

GO:00230522 BP Signaling 7

GO:00422212 BP Response to chemical 7

GO:00508962 BP Response to stimulus 7

GO:00517162 BP Cellular response to stimulus 7

1Disease state-specific GO terms, 2normal state-specific GO terms, and 3common GO

terms in both disease state and normal state.

adhesion (GO:0007155) specifically in disease tissues, compared
with the modules of the normal tissues. It is established that
activation of invasion and metastasis is an important hallmark
of cancer (Hanahan and Weinberg, 2011). Current research
studies suggest that the loss of cell adhesion is strongly associated
with tumor invasion and metastasis (Cavallaro and Christofori,
2001; Okegawa et al., 2004). This term and its parent term
biological adhesion (GO:0022610) are enriched in 15 modules.
In most of these modules, gene pairs have larger PCC and
LA values in diseased cells than in normal cells (Figure 3B,
Supplementary File 1). Similarly, the most frequently and
specifically enriched Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Supplementary Table 1) in the disease state
were cell adhesion molecules (CAMs) (KEGG:004514) and focal
adhesion (KEGG:04510), which play a pivotal role in tumor
metastasis and cell migration (Ridley et al., 2003; Okegawa et al.,
2004; Kim and Wirtz, 2013). In most of these modules, gene
pairs also have larger PCC and LA values in diseased cells than
in normal cells (Figures 3C,D, Supplementary Files 2, 3). These
results suggest that ceRNAs play important roles in the invasion
and metastasis of breast tumor cells, as previously indicated
(Yang et al., 2014; Hu et al., 2017; Zheng et al., 2018).

As shown in Table 3, we also investigated the most significant
terms. The most significant GO terms were obtained from
Module 199, and were associated with defense against other
organisms, such as viruses. Numerous studies have indicated
that the mouse mammary tumor virus, bovine leukemia virus,
human papillomavirus, and Epstein–Barr virus are associated
with breast cancer (Amarante and Watanabe, 2009; Alibek et al.,
2013; Lawson et al., 2018). As shown in Figure 4A, genes in this
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FIGURE 3 | (A) Top five most frequently enriched terms in disease and normal states. Red areas are considered common functions in disease and normal states.

Green areas are considered disease-specific functions. (B–D) Heatmap of PCC and LA values in disease and normal states (top right: disease state, bottom left:

normal state). (B) Module 13 enriched for GO:0007155 (C) Module 151 enriched for KEGG:045142. (D) Module 132 enriched for KEGG:04510. (PCG: protein-coding

gene).

module exhibit larger PCC and LA values. For the KEGG dataset,
the most significant pathways were obtained from Module
103 (Figure 4B); these pathways were significantly enriched for
oxidative phosphorylation, thermogenesis, Huntington’s disease,
and Parkinson’s disease.

Collectively, comparison of the functions of ceRNA modules
in breast tumor and normal tissues suggested that the ceRNA
relationship may rewire in different cell states and ceRNA
may exert an effect on the development or progression of
breast cancer.

ceRNA Modules Are Associated With
Aberrant Genetic and Epigenetic Regions
in Breast Cancer
According to the methods described in Materials and
Methods section, we obtained 1,829 dysregulated mRNAs,
264 dysregulated lncRNAs (Supplementary File 4,
Supplementary Table 2), 1,074 CNV genes, and 51 differentially
methylated genes. We considered these genes as BRCA-
associated genes. We identified BRCA-associated modules that

are enriched for both expression-dysregulated genes (p < 0.01);
and genes associated with aberrant CNV or DNA methylation
(p < 0.05). Totally, we obtained eight BRCA associated modules
(Table 4, Figure 5A, Supplementary File 5). The top five most
significant enriched functions and pathways of these modules
are shown in Figures 5B,C. We found that six of eight modules
are significantly enriched for breast cancer-associated functions
and pathways, such as immune response (Module 90 and
Module 309) (Bates et al., 2018), cell communication (Module
110) (Brooks and Wicha, 2015), cell cycle (Module 73) (Otto
and Sicinski, 2017), blood vessel morphogenesis (Module 45)
(Kakolyris et al., 2000), and sucrose process (Module 37) (Jiang
et al., 2016).

We also investigated the relationship between lncRNAs and
oncogenes in these modules. We downloaded the oncogene
dataset from ONGENE (Liu et al., 2017). We found that in
Module 45, LINC01485was correlated with AQP1, with PCC and
LA values of 0.397 and 0.087, respectively. AQP1 is related to
tumor cell migration, invasion, and angiogenesis (Tomita et al.,
2017). In Module 309, lncRNA HSPC324 (ENSG00000228401)
was highly co-expressed with oncogene KLF2, with PCC and
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TABLE 3 | Most significant GO terms and KEGG pathways.

Term ID Domain Term name FDR Precision Module ID

GO:0051607 BP Defense response to virus 3.81E-19 0.459 Module 199

GO:0009615 BP Response to virus 1.70E-18 0.486 Module 199

GO:0043207 BP Response to external biotic stimulus 8.96E-18 0.595 Module 199

GO:0051707 BP Response to other organism 8.96E-18 0.595 Module 199

GO:0098542 BP Defense response to other organism 8.96E-18 0.486 Module 199

KEGG:00190 KEGG Oxidative phosphorylation 3.07E-09 0.217 Module 103

KEGG:03010 KEGG Ribosome 2.30E-08 0.2 Module 228

KEGG:04714 KEGG Thermogenesis 2.33E-08 0.246 Module 103

KEGG:05016 KEGG Huntington’s disease 2.33E-08 0.232 Module 103

KEGG:05012 KEGG Parkinson’s disease 2.33E-08 0.203 Module 103

LA values of 0.642 and 0.012, respectively. KLF2 is a tumor
suppressor gene, which inhibits cell growth, migration, and
invasion in numerous types of cancer, such as colorectal cancer
(Wang et al., 2017), breast cancer (Zhang et al., 2015), and
prostate cancer (Wang et al., 2019). Our results indicate that these
lncRNAs may be new drug targets for cancer therapy.

ceRNA Modules Predict Survival in
Patients With Breast Cancer
MicroRNAs are clinically important in cancer. Therefore, we
used the top 15 most commonly shared microRNAs in BRCA-
associated modules to analyze their relationship with patient
outcome. We used a k-means algorithm to classify patients into
two groups based on the expression of the top 15 microRNAs
in each module, and performed a Kaplan–Meier analysis. We
found that half of the top 15 microRNAs sets in Module 45,
Module 110, Module 90, and Module 309, could significantly
distinguish patients (Figure 6A). By analyzing the microRNAs in
these modules, we found that 10 of 30microRNAs were shared by
more than three modules (Figure 6B, Supplementary Table 3).
In addition, half of those 10 microRNAs were derived from the
let-7 microRNA family. Many studies have suggested that the let-
7 family participates in the process of metastasis and resistance
to therapy in breast cancer (Cunningham et al., 2010; Chiu et al.,
2014). Our results also demonstrate that the let-7 microRNA
family can be a prognostic marker of breast cancer (Figure 6B,
Supplementary File 9).

In addition, we identified five ceRNA pairs (i.e., CDH5 with
FAM212B, CDH5 with GYG2 in Module 45, TRIB1 with IL33,
TRIB1with INMT, and TRIB1withMMRN1 in Module 110) that
can be used as prognostic markers of breast cancer in BRCA-
associated modules (Figures 6C,D, Supplementary File 9). In
our dataset, CDH5 is a hyper-methylated gene (six of eight sites
are hypermethylated in the promoter region), while TRIB1 is
duplicated or amplified in >14% of patients with BRCA. Recent
studies showed that CDH5 levels and CDH5 glycosylation are
biomarkers for metastatic breast cancer (Fry et al., 2016) and
TRIB1 plays a critical role in cell cycle and survival via NF-
κB signaling (Gendelman et al., 2017). Interestingly, we found
that these genes cannot individually act as prognostic markers
(Supplementary File 6). However, the gene sets of the ceRNA

pairs and their experimental validated shared microRNAs in
miRTarBase are effective markers for therapy and prognosis,
indicating that these ceRNAs may collaborate in breast cancer.

Furthermore, we also identified ceRNA modules that can
be considered prognostic markers for breast cancer. Similarly,
we used the expression of ceRNAs in each module to classify
patients into two groups via a k-means algorithm, and performed
a Kaplan–Meier analysis. In total, we found six modules that
can distinguish patients into two subgroups with significantly
different survival times (log-rank test, p < 0.01). As shown
in Figure 7 and Supplementary File 7, the patients with lower
expressions in Module 63 and Module 270, as well as those
with higher expression in Module 11, Module 25, Module 56,
and Module 204 had longer survival time. Notably, Module
11 consists of lncRNAs. Collectively, these results confirm that
ceRNAs play important roles in the treatment and prognosis
of BRCA.

DISCUSSION

CeRNAs play critical roles in post-transcriptional regulation
and are thus involved in many physiological and pathological
progresses. An increasing number of non-coding RNAs that are
able to influence their ceRNA partners via the ceRNAmechanism
have been detected. Computational methods are an efficient
approach for the detection and analysis of ceRNA relationships.
By integrating the basic hypothesis and latest studies of ceRNA,
we introduced dynamic correlation LA as one of the factors for
detecting ceRNA pairs. Moreover, we integrated the multi-view
NMF method with conventional PCC to detect ceRNA modules.
Our results indicated that LA is effective in detecting ceRNA
pairs and modules. The results of subsequent analysis showed
that ceRNAs play important roles in breast cancer, especially in
cell adhesion, cell migration, and cell-cell communication. Our
results also demonstrated that ceRNAs may represent promising
drug targets and markers for the treatment and prognosis
of cancers.

In multi-view NMF, the parameters λ s balances the weight
of different views. We set λCOR = 1, and test λLA ∈
{1, 2, 3, 4, 5, 10, 15, 20, 25} in the BRCA dataset. The results
showed that there is no significant difference among these
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FIGURE 4 | Heatmap of PCC and LA values with most significant GO (A) and KEGG (B) terms in disease and normal states (top right: disease state, bottom left:

normal state, PCG: protein-coding gene, lncRNA: long-non-coding RNA).

parameters (Supplementary File 8), indicating that our method
is not sensitive to these parameters.

The simplified calculation of LA demands that the distribution
of the third variable follows standard normal distribution. We

used the Van der Waerden’s method to transform the microRNA
expression profile to ensure it follows the standard normal
distribution. We tested the performance of this method. We got
a number of random data, which followed the negative binomial
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TABLE 4 | BRCA-associated ceRNA modules.

Module ID Differentially

expressed

gene p-value

Methylation

gene p-value

CNV gene

p-value

LncRNA count

Module 37 1.26E-5*** 0.20 4.7E-2* 2

Module 45 0*** 1.3E-2* 0.89 1

Module 56 0*** 9.7E-3** 0.62 6

Module 73 8.86E-7*** 1 2.6E-2* 0

Module 90 0*** 2.2E-3** 0.81 2

Module 110 0*** 0.16 3.3E-3** 0

Module 128 2.24E-6* 2.1E-2* 0.51 0

Module 309 0*** 2.1E-2* 0.96 7

Level of significance: *p < 0.05; **p < 0.01; ***p < 0.001.

distribution. The sizes of the data set ranged from 10 to 2,000,
with an increment of 20. We transform them by using Van der
Waerden’s method, respectively. Then we got another random
data set following the standard normal distribution. whose size
ranged from 1,000 to 100,000 with an increment of 1,000. We
tested if the distribution of each pair between these two sets
was similar by using Kolmogorov–Smirnov test. The result was
shown in Supplementary File 10. The result suggested that the
distribution of each pair has no significant difference.

LA is very convenient for the measurement of dynamic
correlation. However, according to the results reported by Wei
(Wei et al., 2019), the ceRNA strength forms a sharp peak
around the most optimal microRNA concentration, indicating
very large deviation of correlation. In this study, we used LA
as a characteristic of ceRNA regulation. When the data contain
the microRNA concentration ranging from the lower situation
to higher situation, or symmetrically distributed on both sides of
the most optimal microRNA concentration, the value of LA may
be close to zero (according to the definition of LA). A solution
to this problem is to measure the mean of the absolute value
of the deviation, LA′ (R1,R2|MIC) = E

(∣

∣g′ (EXPMIC)
∣

∣

)

, instead
of LA(R1,R2|MIC) = E(g′(EXPMIC)), where g

′(EXPMIC) is the
deviation of correlation corresponding to EXPMIC. Moreover,
LA is developed based on linear correlation PCC. However,
real systems are more likely non-linear. Additional studies are
warranted to determine the method for the calculation of the
dynamic correlation of non-linear correlation.

Furthermore, besides the positive correlation and dynamic
correlation, ceRNA pairs may have additional unknown features,
which are also worthy of further investigation. The multi-
view NMF framework has potential to integrate all these
features for more accurate identification of ceRNA modules
(Wang et al., 2018).

MATERIALS AND METHODS

Datasets
We downloaded the RNA-seq data of mRNAs and lncRNAs, as
well as the microRNA-seq data of patients with breast invasive
carcinoma (BRCA) and liver hepatocellular carcinoma (LIHC)

from TCGA (Weinstein et al., 2013). For patients with BRCA, we
obtained the fragments per kilobase of exon model per million
reads mapped (FPKM) values and read counts of mRNAs and
lncRNAs from 1,090 tumor samples and 113 normal samples;
we also obtained the read counts of mature microRNAs from
1,077 tumor samples and 104 normal samples. For patients with
LIHC, we obtained the FPKM values and read counts of mRNAs
and lncRNAs from 370 tumor samples and 50 normal samples;
we also obtained the read counts of mature microRNAs from
371 tumor samples and 50 normal samples. Both microRNA-
mRNA and microRNA-lncRNA interactions were downloaded
from the mirwalk2.0 database (Dweep and Gretz, 2015), which
incorporates predicted interactions curated in at least two of 13
different RNA-microRNA interaction databases, such as DIANA
(Maragkakis et al., 2011) and miRDB (Wang and El Naqa,
2008). For further analysis, we downloaded the copy number
variation data and DNAmethylation data of patients with BRCA
from TCGA.

Data Preparation
Figure 1A shows the process of data preparation. Firstly, we
only included samples that have complete mRNA, lncRNA, and
microRNA expression data. We obtained 1,072 disease samples
and 113 normal samples of BRCA, as well as 365 disease
samples and 50 normal samples of LIHC. Subsequently, we
excluded lowly expressed mRNAs, lncRNAs, and microRNAs.
We only retained mRNAs with FPKM values >1 in >80% of
disease or normal samples, lncRNAs with FPKM values >0.8
in >50% of disease or normal samples, and microRNAs with
counts per million mapped reads values >100 in >50% of
disease or normal samples (Mullokandov et al., 2012). Notably,
we also excluded RNAs without interactions curated in the
mirwalk2.0 database. Finally, we obtained 1,128 lncRNAs, 1,1172
mRNAs, and 137 mature microRNAs in BRCA, as well as 621
lncRNAs, 8,783 mRNAs, and 138 mature microRNAs in LIHC.
All retained mRNAs and lncRNAs were considered candidate
ceRNAs.We transformed the expression profiles of the candidate
ceRNAs through log(FPKM+1) and those of mature microRNAs
through log(CPM + 1).

Conventional Correlation Between RNAs
Current methods use conventional correlations as factors to
predict ceRNA pairs. PCC and SI are most commonly used. We
calculated the PCC value of a candidate ceRNA pair (e.g., R1, R2)
as follows:

ρ(R1,R2) =
E[(EXPR1 − E(EXPR1))× (EXPR2 − E(EXPR2))]√

Var(EXPR1)× Var(EXPR2)

where EXPR1 and EXPR2 represent the paired expression of R1
and R2, respectively. For the SI value of R1 and R2, we initially
added the expression of shared microRNAs between R1 and R2.
Subsequently, we calculated the partial correlation with respect
to their shared microRNAs as follows:

ρ(R1,R2|MIC) =
ρ(R1,R2)− ρ(R1,MIC)× ρ(R2,MIC)
√

1− ρ2(R1,MIC)×
√

1− ρ2(R2,MIC)
,
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FIGURE 5 | (A) The modules that are enriched for breast invasive carcinoma (BRCA)-associated genes. (B) GO enriched terms of BRCA-associated modules.

(C) KEGG enriched terms of BRCA-associated modules.
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FIGURE 6 | (A) The log-rank test p-values of the top15 most frequently shared microRNAs in modules enriched for BRCA-associated genes; the red dashed line

indicates the level of –log(0.05). (B) Upset plot of microRNAs in Module 45, 90, 110, and 309. Subplot: the Kaplan-Meier curves of five microRNAs from the let-7

family. (C) The ceRNA pair markers for BRCA therapy and prognosis and their target microRNAs in miRTarBase. (D) Kaplan–Meier curves of ceRNA pair markers.

whereMIC indicates the shared microRNAs between R1 and R2.
Finally, we computed the SI value as follows:

SI(R1,R2) = ρ(R1,R2)− ρ(R1,R2|MIC)

Statistical Significance of Shared
MicroRNAs Between RNAs
CeRNAs are thought to usually share numerous microRNA
targets. We used the hypergeometric test to calculate the
significance of shared microRNAs for a given ceRNA pair (e.g.,
R1 and R2). The significance p-value can be obtained as follows:

p(R1,R2) = 1−
q−1
∑

i=0

(

T
i

)

×
(

Q− T
b− i

)

(

Q
b

)

where Q is the total number of considered microRNAs, T is the
number of microRNAs targeting candidate R1, b is the number
of microRNAs targeting candidate R2, and q is the number of
microRNAs targeting both candidates R1 and R2.

Solution of the Objective Function
According to the multi-view NMF framework, we obtained the
objective function as follows:

min

(

∥

∥

∥
MPCC − UPCC(VPCC)

T
∥

∥

∥

2

F
+
∥

∥

∥
MLA − ULA(VLA)

T
∥

∥

∥

2

F

+λPCC
∥

∥VPCC − V∗
∥

∥

2

F
+ λLA

∥

∥VLA − V∗
∥

∥

2

F

)

s.t. ∀1 ≤ k ≤ K,
∥

∥

∥
UPCC
·,k

∥

∥

∥

1
= 1,

∥

∥

∥
ULA
·,k

∥

∥

∥

1

= 1 and UPCC,ULA,VPCC,VLA,V∗ ≥ 0

where λPCC, λLA tunes the relative weight among different
views and between the standard NMF error and disagreement

among (V∗)T ,
(

VPCC
)T

and
(

VLA
)T
. We used an iterative

update procedure by updating one variable and maintaining the
remaining variables fixed to solve this optimization problem. The
specific iteration rules are listed as follows:

1. fixing V∗, VPCC, and VLA, updating UPCC and
ULA, respectively:
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FIGURE 7 | Kaplan–Meier curves of prognosis marker modules (Left) and the corresponding expression profiles (Right).

UPCC
i,k ← UPCC

i,k

(

MPCCVPCC
)

i,k
+ λPCC

N
∑

j=1
VPCC
j,k

V*
j,k

(

UPCC
(

VPCC
)T
VPCC

)

i,k
+ λPCC

M
∑

l=1
UPCC
l,k

N
∑

j=1

(

VPCC
j,k

)2

ULA
i,k ← ULA

i,k

(

MLAVLA
)

i,k
+ λLA

N
∑

j=1
VLA
j,k

V*
j,k

(

ULA
(

VLA
)T
VLA

)

i,k
+ λLA

M
∑

l=1
ULA
l,k

N
∑

j=1

(

VLA
j,k

)2

2. fixing V∗, UPCC, and ULA, updating VPCC and
VLA, respectively:

VPCC
j,k ← VPCC

j,k

(

(

MPCC
)T
UPCC

)

j,k
+ λPCCV

∗
j,k

(

VPCC
(

UPCC
)T
UPCC

)

j,k
+ λPCCV

PCC
j,k

VLA
j,k ← VLA

j,k

(

(

MLA
)T
ULA

)

j,k
+ λLAV

∗
j,k

(

VLA
(

ULA
)T
ULA

)

j,k
+ λLAV

v
j,k

3. fixing VPCC, VLA, UPCC, and ULA, updating V∗:

V∗ =
λPCCV

PCCQPCC + λLAV
LAQLA

λPCC + λLA
,

where

QPCC = Diag

(

G
∑

i=1
UPCC
i,1 ,

G
∑

i=1
UPCC
i,2 , · · · ,

G
∑

i=1
UPCC
i,K

)

QLA = Diag

(

G
∑

i=1
ULA
i,1 ,

G
∑

i=1
ULA
i,2 , · · · ,

G
∑

i=1
ULA
i,K

)

More details can be found in Liu et al. (2013).

Disease-Associated Genes Filter
We retained the patients with both tumor and normal samples
and used them to identify differentially expressed genes using
the R package edgeR software (Robinson et al., 2010). We
set genes with FDR < 0.05,

∣

∣log FC
∣

∣ > 1 as differentially
expressed genes.

Apart from the differentially expressed genes, we investigated
the BRCA-associated copy number variation (CNV) genes
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and differentially methylated genes to further investigate the
BRCA associated modules. This was based on the notion
that the expression of these genes may be altered and
reflect the ceRNA interactions. We calculated the level of
copy number variation for each gene in each sample using
GISTIC2.0 software (Mermel et al., 2011), and identified
genes that did not equal two in >5% of samples as
CNV genes.

For DNA methylation, we used Illumina 450K methylation
data. We initially identified differentially methylated sites
(DMS) using Limma (Ritchie et al., 2015). The sites, which
showed statistical significance with a FDR < 0.05 and had
mean methylation differences between disease and normal
states >0.2, were marked as DMS. Subsequently, we isolated
the sites located in the regions between 2,000bp upstream
and downstream of the start position of ceRNA candidate
genes and mapped them to related genes. For genes related
to more than one DMS and more than three-quarters
of these DMSs exhibit the same direction of change in
methylation, we set these genes as differential methylation genes
(Kim et al., 2012).
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