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Poultry feed constitutes the largest cost in poultry production, estimated to be up to
70% of the total cost. Moreover, there is pressure on the poultry industry to increase
production to meet the protein demand of humans and simultaneously reduce emissions
to protect the environment. Therefore, improving feed efficiency plays an important role
to improve profits and the environmental footprint in broiler production. In this study,
using imputed whole-genome sequencing data, genome-wide association analysis
(GWAS) was performed to identify single-nucleotide polymorphisms (SNPs) and genes
associated with residual feed intake (RFI) and its component traits. Furthermore, a
transcriptomic analysis between the high-RFI and the low-RFI groups was performed
to validate the candidate genes from GWAS. The results showed that the heritability
estimates of average daily gain (ADG), average daily feed intake (ADFI), and RFI were
0.29 (0.004), 0.37 (0.005), and 0.38 (0.004), respectively. Using imputed sequence-
based GWAS, we identified seven significant SNPs and five candidate genes [MTSS
I-BAR domain containing 1, folliculin, COP9 signalosome subunit 3, 5′,3′-nucleotidase
(mitochondrial), and gametocyte-specific factor 1] associated with RFI, 20 significant
SNPs and one candidate gene (inositol polyphosphate multikinase) associated with
ADG, and one significant SNP and one candidate gene (coatomer protein complex
subunit alpha) associated with ADFI. After performing a transcriptomic analysis between
the high-RFI and the low-RFI groups, both 38 up-regulated and 26 down-regulated
genes were identified in the high-RFI group. Furthermore, integrating regional conditional
GWAS and transcriptome analysis, ras-related dexamethasone induced 1 was the only
overlapped gene associated with RFI, which also suggested that the region (GGA14:
4767015–4882318) is a new quantitative trait locus associated with RFI. In conclusion,
using imputed sequence-based GWAS is an efficient method to identify significant SNPs
and candidate genes in chicken. Our results provide valuable insights into the genetic
mechanisms of RFI and its component traits, which would further improve the genetic

Frontiers in Genetics | www.frontiersin.org 1 April 2020 | Volume 11 | Article 243

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00243
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00243
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00243&domain=pdf&date_stamp=2020-04-03
https://www.frontiersin.org/articles/10.3389/fgene.2020.00243/full
http://loop.frontiersin.org/people/628140/overview
http://loop.frontiersin.org/people/572359/overview
http://loop.frontiersin.org/people/567566/overview
http://loop.frontiersin.org/people/556541/overview
http://loop.frontiersin.org/people/687417/overview
http://loop.frontiersin.org/people/401041/overview
http://loop.frontiersin.org/people/701122/overview
http://loop.frontiersin.org/people/319336/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00243 April 2, 2020 Time: 17:57 # 2

Ye et al. Genetic Mechanisms Underlying RFI in Chickens

gain of feed efficiency rapidly and cost-effectively in the context of marker-assisted
breeding selection.

Keywords: imputed WGS data, GWAS, transcriptome analysis, feed efficiency, chickens

INTRODUCTION

Poultry feed consistutes the largest cost of poultry production,
estimated to be up to 70% of the total cost (Willems et al.,
2013). Moreover, there is pressure on the poultry industry to
increase production to meet the protein demand of humans and
simultaneously reduce emissions to protect the environment.
Therefore, improving feed efficiency (FE) plays an important
role to improve the profits and the environmental footprint
in broiler production. Residual feed intake (RFI) is defined as
the difference between actual and expected feed intake required
for animal maintenance and growth (Chambers et al., 1963).
It has been widely used in the genetic improvement of FE in
livestock since it has superior sensitivity and accurateness in
measuring feed efficiency. The RFI methodology separates the
broiler breeder energy efficiency into two components: systematic
sources of variation related to in individual maintenance and
all other sources of variation in energy efficiency (the residual)
(Romero et al., 2009). Compared with the genetic improvement
of feed conversion ratios, the improvement of RFI may have a
simultaneous positive effect on productivity and feed efficiency
(Aggrey et al., 2010). In addition, RFI has a moderate heritability
in broilers and responds to selection (Pakdel et al., 2005;
Aggrey et al., 2010; Zhang et al., 2017). Although the traditional
selection for RFI has made substantial genetic gain, the genetic
mechanisms are still unclear (Tallentire et al., 2016). Therefore,
the genetic dissection of RFI and its component traits [average
daily gain (ADG) and average daily feed intake (ADFI)] would
further improve the genetic gain of feed efficiency rapidly and
cost-effectively.

Over the past decade, the genome-wide association analysis
(GWAS), based on single nucleotide polymorphism (SNP) chip
data to identify the genetic mechanisms of FE, has been widely
implemented in livestock, especially in cattle (Seabury et al., 2017;
Higgins et al., 2018; Schweer et al., 2018) and pig (Do et al., 2014;
Bai et al., 2017; Horodyska et al., 2017). These GWAS studies
revealed many candidate genes and provided useful information
for genomic breeding programs to select more efficient animals
in livestock. However, the RFI-related GWAS studies are still
scarce in chicken. Yuan et al. (2015) performed a GWAS using
600 K SNP array and identified a haplotype block on GGA27
harboring a significant SNP (rs315135692) associated with RFI.
Also, using GWAS with 600 K SNP array, our previous study
showed that the effective SNPs related with RFI were located in
a 1-Mb region (16.3–17.3 Mb) of GGA12 but did not identify
causal variant SNPs or genes associated with RFI (Xu et al., 2016).
The poor power of our previous GWAS study may be due to
the small population size and lower maker density. Nowadays,
it is possible to perform GWAS with whole-genome sequencing
(WGS) data with the rapid development of high-throughput
sequencing technology. Compared with SNP chip data, WGS

data would cover all SNPs including causal mutations. Thus,
performing GWAS using WGS data is expected to improve the
power of test efficiency and identify the causal mutations of
complex traits, and this expectation has been confirmed in dairy
cattle populations (Daetwyler et al., 2014). However, sequencing
1000s of individuals of interest is still too expensive. Hence, it
is an attractive and less expensive approach to obtain WGS data
using genotype imputation (Li et al., 2009).

In this study, WGS data were obtained by a two-step
imputation approach (from 55 to 600 K and then imputed
to WGS) using a combined reference panel. Using imputed
WGS data, GWAS was performed to identify SNPs and genes
associated with RFI and its component traits. In addition, a
transcriptomic analysis was performed to identify differentially
expressed genes (DEGs) between high- and low-RFI groups to
validate the candidate genes of RFI from the GWAS results and
give biological evidence to candidate genes. The aims of this study
were to pinpoint the associated loci and genes that contribute to
the phenotypic variability in feed efficiency and provide valuable
insights into the genetic mechanisms of RFI.

MATERIALS AND METHODS

Population and Phenotyping
A chicken population derived from a yellow-feather dwarf broiler
breed that was maintained for 25 generations by Wens Nanfang
Poultry Breeding, Co., Ltd. (Xinxing, China) was used in this
study. This population includes 1,600 birds (800 males and 800
females) and was the third batch of the 25th generation of this
chicken population. These birds came from a mixture of full-sib
and half-sib families from mating 30 males and 360 females of
the 24th generation. After hatching, all birds were maintained
in a closed building under controlled environmental conditions
and provided with a standard diet until they were 4 weeks of age.
The chickens were then randomly assigned to six pens by gender
(three pens for males and three pens for females) for growth
performance testing from 5 to 13 weeks of age. They received
food and water ad libitum during all stages. Finally, the remaining
1,338 birds were slaughtered at 91 days of age for carcass trait
recording. ADG and ADFI per individual were calculated for the
period from 45 to 84 days. The RFI was calculated as follows:

RFI = ADFI− (b0+ b1×MMBW+ b2× ADG)

where b0 was the intercept, MMBW is mid-test body weight
(MBW raised to the power of 0.75), and the MBW was the
predicted body weight on day 21 of the test. b1 and b2 are the
partial regression coefficients for MMBW and ADG, respectively.
The descriptive statistics of the analyzed traits could be found in
Table 1. For more details about this population, please refer to Xu
et al. (2016) and Zhang et al. (2017).
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TABLE 1 | Basic descriptive statistics of the analyzed traits.

Trait1 N Mean SD C.V. Minimum Maximum W2 P-value

ADG, g/d 626 28.95 4.87 16.82% 4.66 44.65 0.99 0.003

ADFI, g/d 626 108.59 14.36 13.22% 69.79 155.92 1.00 0.054

RFI, g 626 0 8.83 − −32.05 26.00 0.99 0.003

1These traits were average daily gain (ADG), average daily feed intake (ADFI), and residual feed intake (RFI).
2W means Shapiro–Wilk statistic.

Genotyping, Genotype Imputation, and
Quality Control
After the traits have been recorded systematically, a total of
644 male birds were randomly selected for genotyping. These
birds were 15 male parents and 629 male offspring. Of these
644 birds, 450 birds were genotyped with the 600 K Affymetrix

R©

Axiom
R©

HD genotyping array (Kranis et al., 2013), and the
remaining 194 birds were genotyped with the Affy 55K array
(Liu et al., 2019). The 600 K SNP chip contained 580,961
SNPs probes across 28 autosomes, two linkage groups (LGE64
and LGE22C19W28_E50C23), and two sex chromosomes. The
55 K SNP chip contained 52,184 SNP probes across 28
autosomes and a sex chromosome (chrZ). After converting the
genome coordinates to a chicken reference genome (galGal5),
28 autosomes and a sex chromosome (chrZ) were extracted for
further analysis. In the process of quality control of genotype,
SNPs with minor allele frequency (MAF) of more than 0.5%,
genotyping call rate of more than 97%, and Hardy–Weinberg
equilibrium test P-value of more than 1 × 10−6 were retained.
Finally, 547,020 and 51,984 SNPs were left for the 600 K and the
55 K chip data, respectively. In addition, a total of 23,213 SNPs
was shared between the 600 K and the 55 K SNP chips.

Genotype imputation was performed with a two-step
approach from 55 to 600 K and then imputed to WGS. Before
the genotype imputation, pre-phasing was executed in Beagle 4.1
with default parameter (Browning and Browning, 2016). Firstly,
using 450 birds with 600 K chip data as a reference panel, these
194 birds were imputed from 55 to 600 K chip data using Beagle
4.0 with pedigree and then merged with the 600 K chip data of
these 194 birds and 450 birds using VCFtools. Secondly, all of the
644 birds with 600 K chip data were imputed to WGS data using
a combined reference panel Beagle 4.1 with default parameter.
The combined reference panels included 24 key individuals from
the yellow-feather dwarf broiler population and 311 birds with
WGS data from diverse chicken breeds. These 24 key individuals
were selected by maximizing the expected genetic relationships
(Ye et al., 2018). These 311 birds were downloaded from 10
BioProjects in ENA or NCBI. The combined reference panels
contained 36,840,795 SNPs probes across 28 autosomes and a sex
chromosome (chrZ). More detailed information could be found
in our previous study (Ye et al., 2019).

After the genotype imputation was performed, the quality
control of the imputed WGS data was conducted using PLINK
v1.90b4.3 (Purcell et al., 2007) with the criteria of SNP call
rate > 95%, individual call rate > 97%, MAF > 0.5%, and Hardy–
Weinberg equilibrium P-value > 1.0e-6. In addition, individuals
with existing Mendelian errors would be excluded. Finally, the

remaining 626 individuals and 11,173,020 SNPs were used for
further analysis.

Genetic Parameter Estimations
The genomic heritability was calculated using the average
information restricted maximum likelihood (AI-REML) method
implemented in the software DMU v6.0 (Madsen et al., 2014).
The statistical model was:

y = Xb+ Zg + e

where y is a vector of phenotypic values of all individuals, b is the
vector of fixed effects including batch effect, and g was the vector
of the animal additive genetic effect [g ∼ N

(
0, σ2

gG
)

, σ2
g is the

additive genetic variance, where G is the marker-based genomic
relationship matrix], e is the residual term [e ∼ N(0, σ2

e I), σ2
e is

the residual variance and I was an identity matrix], and X and Z
are incidence matrices relating the fixed effects and the additive
genetic values to the phenotypic records; G is calculated using
600 K chip data as follows (VanRaden, 2008):

G =
MMT

2
∑m

i=1 pi(1− pi)

where M is a matrix of centered genotypes, m is the number of
markers, and pi is the minor allele frequency of SNP i.

Genome-Wide Association Analyses
Using Imputed WGS Data
Before GWAS was performed, the population structure of this
chicken population was calculated by PLINK. Slight population
stratification was found (Supplementary Figure S1), so we added
top five principal components as covariates into the GWAS
model to adjust the population structure. The univariate tests
of association were performed using a mixed model approach
implemented in the GEMMA v0.98.1 software (Zhou and
Stephens, 2014). All sequence variants after quality control were
tested for associations. The model was:

y = Xb+ Zg + Sa+ e

where y is a vector of phenotypic values of all individuals, X
and Z are incidence matrices relating the fixed effects and the
additive genetic values to the phenotypic records, b is the vector
of fixed effects including batch effect and top five principal
components, g is a vector of the genomic breeding values of all
individuals, a is the additive effect of the candidate variants to
be tested for association, S is a vector of the variants’ genotype
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indicator variable coded as 0, 1, or 2, and e is the residual
term, e ∼ N(0, σ2

e I). Genomic breeding values were assumed to
be distributed as g ∼ N(0, σ2

gG), where G is the standardized
relatedness matrix calculated by GEMMA using 600 K chip data.
The Wald test was applied to test the alternative hypotheses of
each SNP in the univariate models. The variance contribution
to additive genomic variance by a SNP was calculated as
follows:H2

S = 2p
(
1− p

)
β2, where H2

S is the additive genomic
variance explained by a SNP, p is the allele frequency, and β is
the SNP effect as estimated from the GWAS results.

The Manhattan plot and quantile–quantile plot (QQ plot)
were generated by the qqman package (Turner, 2018) in R.
The threshold of genome-wide significant P-values was adjusted
based on the effective number of independent tests for Bonferroni
method. The imputed WGS data was pruned to 1,082,126
independent SNPs using PLINK with the command (–indep-
pairwise 25 5 0.2) for estimating the effective number of
independent tests. Finally, the effective number of independent
tests were set to 200,629, estimated by sampleM (Gao et al.,
2008). Therefore, the genome-wide suggestive and significant
P-values were 4.98 × 10−6 (1.00/200, 629) and 2.49 × 10−7

(0.05/200, 629), respectively. For evaluating the extent of the
false positive signals of the GWAS results, a genomic inflation
factor (λ) was calculated as the median of the resulting chi-
squared test statistics divided by the expected median of the
chi-squared distribution with one degree of freedom (i.e., 0.454).
Haploview 4.1 software (Barrett et al., 2005) was used to analyze
the linkage disequilibrium around the significant SNPs. For
identifying the independent signals precisely, the most significant
SNPs were added as covariates into the univariate models in step-
wise conditional analyses. In addition, the gene information file
of chicken was downloaded from Ensembl gene build 94, and
candidate genes were annotated using the software SnpEff version
4.3t (Cingolani et al., 2012).

Transcriptomic Analysis Identifies
Differentially Expressed Genes
Associated With RFI
Raw reads of four samples (sample45561 and sample46307
with high RFI and sample45012 and sample46732 with low
RFI) were downloaded from our previous study (Xu et al.,
2016). The raw reads were processed to clean reads by filtering
the low-quality reads and adaptor dimers. Clean reads were
mapped to the chicken reference genome (galGal5) using HISAT2
v2.0.5 with the default parameter. Then, the alignments were
assembled into full and partial transcripts using StringTie, and
the transcripts for each sample were quantified using the GAL5.
Finally, differential gene expression analysis was made with
Ballgown in R environment (Pertea et al., 2016). In this study,
differentially expressed transcripts or genes were identified based
on an adjusted P-value less than 0.05 (false discovery rate of
5%) and the absolute value of log2-transformed of fold change
more than or equal to 1. Function and pathway enrichment
was performed with the R language package [clusterProfiler
(Yu et al., 2012)]. Using the Benjamini–Hochberg method,
the P-values of the KEGG pathway and the GO terms were
adjusted for multiple testing (Benjamini and Hochberg, 1995). An

adjusted P-value less than 0.05 was set as significant. In addition,
the genome annotation information file was downloaded from
Ensembl gene build 94.

Validation of Candidate Genes Based on
Differentially Expressed Genes
The identification of candidate genes of lead SNPs from GWAS
results was performed basing on their corresponding genomic
positions. The candidate gene regions were defined as extended
50-kb flanking regions both upstream and downstream of the
lead SNP position. If there are no genes in the candidate gene
regions, the nearest genes both upstream and downstream of
the lead SNP position were selected as the candidate genes.
To identify the causal genes or quantitative trait loci (QTLs),
the overlap genes or regions between the candidate genes from
sequence-based GWAS and DEGs were compared.

Significant SNPs Compared With
Reported QTLs
To compare the results from sequence-based GWAS with
reported QTLs, significant and suggestively significant SNPs were
selected to compare with the QTLs. These QTLs, all of which
affect ADG, ADFI, and RFI, were selected from the Animal
QTLdb (Hu et al., 2007), respectively. QTLs closest to the
significant SNPs were extracted.

RESULTS

Basic Descriptive Statistics of Analyzed
Traits and Genetic Parameter
Estimations
To achieve the genetic improvement of feed efficiency in broiler
chickens, three traits were considered for analysis, including
ADG, ADFI, and RFI. The basic descriptive statistics of these
traits are shown in Table 1. The Shapiro–Wilk statistic of these
traits was closed to 1 and the approximate P-values were less than
0.054, which indicated compliance with Gaussian distribution.
The standard deviation (SD) of RFI, ADG, and ADFI were
8.83, 4.87, and 14.36, respectively. In addition, the coefficient
of variation (CV) was 13.22% for ADFI and 16.82% for ADG.
Therefore, these traits showed substantial phenotypic variation
(Table 1). Using the AI-REML method, estimates of heritability,
phenotypic correlation, and genetic correlation among ADG,
ADFI, and RFI were calculated and shown in Table 2. The results
show that the heritability estimates of ADG, ADFI, and RFI were
0.29 (0.004), 0.37 (0.005), and 0.38 (0.004), respectively. Genetic
parameter analyses have shown that ADFI was both positively
and highly interrelated with ADG and RFI. In addition, RFI is
poorly correlated with ADG both in genetic relationship and in
phenotypic correlation.

Imputed Sequence-Based GWAS for
ADG
Using the univariate model, sequence-based GWAS was
performed for ADG, and the Manhattan and QQ plots of
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TABLE 2 | Genetic parameters of the analyzed traits estimated by DMU with 600 K chip data in chicken.

Trait ADG ADFI RFI

ADG 0.29 (0.004) 0.65 −0.01

ADFI 0.68 (0.09) 0.37 (0.005) 0.63

RFI 0.17 (0.16) 0.75 (0.07) 0.38 (0.004)

ADG, average daily gain; ADFI, average daily feed intake; RFI, residual feed intake. These diagonal values (mean ± SE), lower triangles values (mean ± SE), and upper
triangles values are heritability estimates, genetic correlations, and phenotypic correlations for the analyzed traits, respectively.

FIGURE 1 | Manhattan plots and Q–Q plots of imputed sequence-based genome-wide association study (GWAS) for ADG (A), ADFI (B), and RFI (C). The
Manhattan plots indicate –log10(observed P-values) for markers (y-axis) against their corresponding position on each chromosome (x-axis), while the Q–Q plots
show the expected –log10(P-values) vs. the observed –log10(P-values). The horizontal blue and red lines represent the genome-wide significant threshold
(4.98 × 10-6) and genome-wide suggestive significant threshold (2.49 × 10-7), respectively. Lambda represents genomic inflation factor.

GWAS results of ADG are shown in Figure 1A. Both 20
significant SNPs (Table 3) and 24 suggestive significant
SNPs (Supplementary Table S1) associated with ADG were
identified using the threshold of suggestive and significant
P-values (4.98 × 10−6 and 2.49 × 10−7). These SNPs were

located on these chromosomes (GGA1, GGA3, GGA6, GGA14,
GGA25, and GGA27). All significant SNPs were in high linkage
disequilibrium (Supplementary Figure S2) and located in a
region that ranged from 535.4 to 538.9 kb on GGA6. After
a stepwise conditional analysis, the P-value of significant or
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TABLE 3 | Information on significant SNPs associated with ADG, ADFI, and RFI.

Trait SNPs Chr. Position Allele MAF Bate (SE) H2
S −log10(P-value) Candidate or

nearest genes
Annotation

ADG 6:5354190 6 5354190 T/G 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs731666382 6 5363742 T/C 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs731606971 6 5366469 G/C 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs733679573 6 5366491 T/C 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs315729276 6 5366673 G/T 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs732899645 6 5367289 T/G 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG 6:5367311 6 5367311 T/G 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs315794025 6 5367445 G/T 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs739465741 6 5368822 G/C 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs731318403 6 5368918 A/T 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG 6:5376152 6 5376152 T/A 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG 6:5382202 6 5382202 T/C 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs731882620 6 5386041 G/T 0.009 −7.32 (1.39) 0.96 6.74 IPMK Intergenic

ADG 6:5386085 6 5386085 A/G 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG 6:5388772 6 5388772 C/G 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs736396454 6 5389064 A/G 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG 6:5389116 6 5389116 A/G 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG 6:5389139 6 5389139 G/A 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs732888314 6 5389223 C/T 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADG rs741516185 6 5389362 G/A 0.008 −8.1 (1.44) 1.04 7.53 IPMK Intergenic

ADFI rs15997392 25 1147989 A/G 0.248 −5.42 (1.01) 10.96 6.9 COPA Intron

RFI rs313664593 2 1.39E + 08 A/G 0.014 −10.5 (1.96) 3.04 6.93 MTSS1 Intron

RFI rs313288641 14 4767015 G/A 0.107 −4.41 (0.85) 3.72 6.61 FLCNCOPS3 5 prime UTRUpstream

RFI rs314690911 14 4779635 A/G 0.142 −4.04 (0.75) 3.98 6.96 COPS3NT5M UpstreamUpstream

RFI rs741733192 14 4782376 G/A 0.144 −3.98 (0.75) 3.91 6.82 COPS3NT5M UpstreamUpstream

RFI rs314351418 14 4782740 G/A 0.144 −3.98 (0.75) 3.91 6.82 COPS3NT5M UpstreamUpstream

RFI rs317155749 27 1212264 G/A 0.460 2.86 (0.54) 4.06 6.85 GTSF1 Intron

RFI rs735238610 27 1220239 A/G 0.462 2.86 (0.54) 4.07 6.81 GTSF1 Intron

ADG, average daily gain; ADFI, average daily feed intake; RFI, residual feed intake; H2
S, the additive genomic variance explained by a SNP.

suggestive SNPs near the lead SNP would decrease below
the suggestive threshold (Supplementary Figure S3). All
significant SNPs were located in the intergenic region; the
nearest gene was inositol polyphosphate multikinase (IPMK)
(Table 3). Additionally, the genomic inflation factor of ADG was
1.024, which indicated that the results of the GWAS of ADG
were acceptable.

Imputed Sequence-Based GWAS for
ADFI
Using the univariate model, sequence-based GWAS was
performed for ADFI, and the Manhattan and QQ plots of the
GWAS results of ADFI are shown in Figure 1B. Both one
significant SNPs (Table 3) and 140 suggestive significant SNPs
(Supplementary Table S1) associated with ADFI were identified
using the threshold of suggestive and significant P-values
(4.98 × 10−6 and 2.49 × 10−7). These SNPs were located
on these chromosomes (GGA1, GGA3, GGA4, GGA14, and
GGA25). The most significant SNPs were located at 1,147,989-bp
position of GGA25. High linkage disequilibrium between SNPs
of significant regions was found on GGA25 (Supplementary
Figure S4). After a stepwise conditional analysis, the P-value of

significant or suggestive SNPs near the lead SNP (rs15997392)
would decrease below the suggestive threshold (Supplementary
Figure S5). A total of seven genes were found in the region,
which extended to 50-kb flanking regions both upstream and
downstream of lead SNP (rs15997392) position (Supplementary
Figure S5). The independent significant SNP (rs15997392) was
an intron variant in coatomer protein complex subunit alpha
(COPA) (Table 3). Additionally, the genomic inflation factor of
ADFI was 1.024, which indicated that the results of the GWAS
were acceptable.

Imputed Sequence-Based GWAS for RFI
Using the univariate model, sequence-based GWAS was
performed for RFI, and the Manhattan and QQ plots of the
GWAS results of RFI are shown in Figure 1C. Both seven
genome-wide significant SNPs (Table 3) and 100 suggestively
significant SNPs (Supplementary Table S1) associated with
RFI were identified using the threshold of suggestive and
significant P-values (4.98 × 10−6 and 2.49 × 10−7). These
significant SNPs were mainly located on these chromosomes
(GGA2, GGA14, and GGA27). The most significant SNP was
located at 4,779,635 bp on GGA14, which explained 5.46%
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of the phenotypic variance of RFI. Using SnpEff software,
five candidate genes associated with RFI were identified and
annotated (Table 3). These are MTSS I-BAR domain containing
1 (MTSS1), folliculin (FLCN), COP9 signalosome subunit
3 (COPS3), 5′,3′-nucleotidase, mitochondrial (NT5M), and
gametocyte-specific factor 1 (GTSF1). After LD analysis, the high
linkage disequilibrium between significant SNPs was found on
GGA14 and GGA27 (Supplementary Figures S6, S7). To find
the independent SNPs in a chromosome, a stepwise conditional
analysis was performed by adding the lead SNP to the model
as a fixed effect. The P-value of significant or suggestive SNPs
near the lead SNP would decrease below the suggestive threshold
(Figure 2A). Extended 50-kb flanking regions both upstream
and downstream of the lead SNP position of the GWAS results
in five genes [ENSGALG00000004816, COP93, NT5M, MED9
(mediator complex subunit 9), and ras-related dexamethasone-
induced 1 (RASD1)] were indicated on GGA14 (Figure 2A)
and six genes [ENSGALG00000027009, ENSGALG00000045610,
ENSGALG00000027214, GTSF1, golgi SNAP receptor complex
member 2 (GOSR2), and ENSGALG00000037637] on GGA27
(Figure 2B). In addition, the significant SNP of GGA2 was

an isolated signal, which suggested that it may be a false
positive significant site. Therefore, only two independent SNPs
(rs314690911 and rs317155749) were suggested to have a
significant association with RFI in this chicken population. Both
substitution variants of rs314690911 (A to G) and rs317155749
(G to A) led to a significant decrease in the RFI phenotypic value
(Figure 3). Additionally, the genomic inflation factor of RFI was
1.002, which is close to 1.00, reflecting that the results of GWAS
were acceptable.

Validation of Candidate Genes From
GWAS Results Based on Differentially
Expressed Genes
To validate the list of candidate genes from the GWAS
results, we performed transcriptomic analysis to identify DEGs
between the high-RFI and low-RFI groups in chicken. There
were 64 genes differentially expressed between the high-RFI
and low-RFI groups with the gene expression fold change
ranging from −5.33 to 5.20. Compared with the low-RFI
group, both 38 up-regulated genes and 26 down-regulated

FIGURE 2 | Regional association plot of the lead SNP associated with RFI at GGA14 and GGA27. The left panel of the figure shows the association results for RFI
on chromosome 14 (A) before and (B) after conditional analysis on rs314690911. The right panel of the figure shows the association results for RFI on chromosome
27 (C) before and (D) after conditional analysis on rs317155749. The regional association plot indicates –log10(observed P-values) for markers (y-axis) against their
corresponding position on each chromosome (x-axis). The horizontal blue and red lines represent the genome-wide significant threshold (4.98 × 10-6) and
genome-wide suggestive significant threshold (2.49 × 10-7), respectively. The lead SNPs are denoted by a large black circle. The SNPs are represented by a colored
circle according to the degree LD between the lead SNP. These green lines represent these genes located on this chromosome.
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FIGURE 3 | Genotype effect plot of lead SNP among three types at GGA14 and GGA27. (A) Genotype effect plot of lead SNP (rs314690911) among three types at
GGA14. (B) Genotype effect plot of lead SNP (rs317155749) among three types at GGA27.

FIGURE 4 | Differentially expressed genes (DEGs) between high- and low-RFI groups in chicken. The volcano plot indicates −log10 (observed P-values) for genes
(y-axis) against their corresponding log2(|fold change|) of echo gene (x-axis). The horizontal red dotted line represents the significant threshold (0.05). The red, blue,
and gray points represent up-regulated, down-regulated, and non-regulated genes in high-RFI groups, respectively.

genes were identified in the high-RFI group. All of the
significant DEGs between the high-RFI and low-RFI groups
are shown in Figure 4 and Supplementary Table S2, and
the top 10 DEGs were monoamine oxidase A (MAOA), heat
shock protein 90 beta family member 1 (HSP90B1), cytochrome
P450 family 2 subfamily C polypeptide 23a (CYP2C23a),

liver-enriched antimicrobial peptide 2 (LEAP2), RASD1, ABI
family member 3 binding protein (ABI3BP), and ADAMTS
like 5 (ADAMTSL5). After functional and pathway enrichment
analysis, two molecular function (carbon–carbon lyase activity
and unfolded protein binding) and one cellular component
(endoplasmic reticulum lumen) categories were significantly
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enriched (Supplementary Table S3). Comparing the DEGs from
the transcriptomic analysis (Figure 4) with these candidate genes
that are located on the expanding 50-kb flanking regions both
upstream and downstream of the independent SNPs rs314690911
and rs317155749 (Figure 2), RASD1 was the only one overlapped
gene, which suggested a new QTL (GGA14:4767015–4882318)
truly associated with RFI (Figure 2).

Comparison Between Significant SNPs
From GWAS and Reported QTLs
Single-nucleotide polymorphisms less than the threshold of the
genome-wide significant P-values (4.98 × 10−6) were selected
to compare with the reported QTLs. These QTLs were collected
from the Animal QTL database based on their physical locations.
For RFI, only two QTLs located on GGA4 and GGAZ were
extracted, and the nearest distance of QTL between significant
SNPs was 24,435,812 bp on GGAZ (Supplementary Table S4).
For ADG, a total of four QTLs located on autosomes (GGA 1, 3, 6,
and 27) were extracted, and the nearest distance of QTL between
significant SNPs was 2,588,827 bp on GGA 27 (Supplementary
Table S4). For ADFI, a total of six QTLs located on autosomes
(GGA 1, 3, and 4) were extracted, and the nearest distance
of QTL between significant SNPs was 1,504,353 bp on GGA 4
(Supplementary Table S4). No significant SNP located inside the
reported QTL was found.

DISCUSSION

Feed efficiency plays an important role to improve profits and
the environmental footprint in broiler production. The genetic
dissection of RFI and its component traits would provide valuable
insights for genetic improvement. In this study, a chicken
population with imputed WGS data was used to perform GWAS
to exploring the genetic mechanisms of feed efficiency. To the
best of our knowledge, this is the first time that GWAS for
RFI in chicken was performed using imputed sequence data,
and transcriptomic analysis to identify DEGs between high-RFI
and low-RFI groups in chicken was performed to validate these
candidate genes.

GWAS With Imputed Whole Genome
Sequence Data
Recently, GWAS with imputed WGS data has been widely
used in livestock species, especially in cattle (Daetwyler et al.,
2014; Iso-Touru et al., 2016; Littlejohn et al., 2016). This is
because genotype imputation would improve the power of
GWAS (Marchini and Howie, 2010) and reduce the cost of
genotyping. However, genotype imputation from SNP array
to WGS data not only increased the marker density but also
brought imputation error. Imputation errors will affect the
probability of causal SNPs, which were determined by performing
GWAS. Therefore, it is necessary to ensure high imputation
accuracy before performing GWAS. To obtain higher imputation
accuracy, genotype imputation with two-step approach was
performed using a combined reference panel in this study. After
ensuring quality control of the imputed WGS data, the average

imputation accuracy (Beagle R2) of all SNPs was 0.871 ± 0.177
and ranged from 0.357 to 0.926 for different chromosomes
(Supplementary Table S5). This high imputation accuracy was
full enough to ensure the confidence of the GWAS results. This
high imputation accuracy obtained may due to performing the
imputation with a two-step approach (Kreiner-Moller et al.,
2015) and using a combined reference panel (Ye et al., 2019).
Compared with our previous study, which performed GWAS for
RFI using 426 chickens with 600 K array data (Xu et al., 2016),
new significant SNPs and genes were identified because more
individuals (626 birds) and higher marker density (imputed WGS
data) were utilized to perform GWAS. Although the power of
GWAS was improved in this study, it is still difficult to pinpoint
the causative variant because many significant SNPs existed with
a high degree of linkage disequilibrium and had almost equally
significantly associated variations, such as the significant SNPs
of ADG on GGA6 (Table 3). Also, many markers’ effect were
overlapped or overestimated due to LD (Table 3). Therefore, a
stepwise conditional analysis was very necessary to find truly
significant loci.

Candidate Genes for Residual Feed
Intake and Its Component Traits
After performing sequence-based GWAS, a lot of candidate
genes were annotated as being associated with RFI and its
component traits (Table 3 and Supplementary Table S1). For
RFI, two independent significant SNPs (rs314690911 and SNP
rs317155749) were identified via conditional GWAS. One was
a variant upstream of COPS3, and the other is an intron
variant of GTSF1. To our knowledge, the COPS3 gene was
initially revealed to have a negative regulation on constitutive
photomorphogenesis in Arabidopsis thaliana, which encodes the
third subunit of the eight-subunit COP9 signalosome complex
(Kwok et al., 1998). Also, COPS3 plays an important role
in both tumorigenesis and progression. Previous research had
shown that the amplification of COPS3 was strongly associated
with a large tumor size (P = 0.0009) (Yan et al., 2007).
The other is GTSF1, which came from the Uncharacterized
Protein Family 0224 (UPF0224), could encode a 167-amino
acid protein, and played an important role in liver cancer.
Compared with those of the GTSF1-positive group, the sizes
and the weights of the tumors of liver cancer in the GTSF1-
negative group were decreased significantly (P < 0.05) (Gao
et al., 2018). Moreover, RASD1 was the only one overlapped
gene between the GWAS results and the DEGs between the
high-RFI and the low-RFI groups. RASD1 is a highly conserved
member of the Ras family of monomeric G proteins that was
initially identified as a dexamethasone-inducible gene in AtT-20
mouse pituitary tumor cells (Kemppainen and Behrend, 1998).
Vaidyanathan et al. (2004) indicate that RASD1 often promotes
cell growth. Moreover, the current literature demonstrates that
Rasd1 expression could be induced by a diversity of physiological
stimuli and has many biological effects such as the regulation
of circadian timekeeping, anxiety-related behavior, adipocyte
differentiation, and hormone release (Bouchard-Cannon and
Cheng, 2017). For ADG, all significant SNPs were located in the
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intergenic region, and IPMK was the nearest gene (Table 3).
IPMK is a member of the IPK-superfamily of kinases, which
plays an important role at the nexus of signaling, metabolic,
and regulatory pathways (Kim et al., 2016). For example, IPMK
is involved in the hypothalamic control of food intake via
AMP-activated protein kinase signaling pathways (Lee et al.,
2012). For ADFI, the most significant SNPs are located at
1147989-bp position of GGA25, which was an intron variant in
COPA. COPA encodes the α-COP subunit of the coat protein I
seven subunit complex that is involved with intracellular coated
vesicle transport (Watkin et al., 2015). COPA mutations have
recently been revealed to cause autoimmune interstitial lung,
joint, and kidney disease (COPA syndrome). Moreover, the COP9
signalosome is a subunit of a highly conserved complex of
COPS3. Therefore, we guess that the interaction of COPS3 and
COP9 would impact on feed intake and further on RFI.

Combined GWAS and Transcriptomic
Analysis to Identify Candidate Genes
Nowadays, the combination of GWAS and transcriptomic
analysis is an efficient method to identify the causal mutations of
complex traits in livestock. In cattle, a previous study integrated
RNA-Seq data and sequence-based GWAS data to explore the
genetic mechanisms of mastitis resistance and milk production
(Fang et al., 2017). In swine, using both the GWAS and the
gene expression profile data, two genes (UBA domain containing
1 gene and Epsin 1 gene) were identified to be significantly
associated with streptococcus Suis serotype 2 resistance (Ma et al.,
2018). In chicken, integrating GAWS and transcriptome analysis,
a new finding about the molecular mechanism underlying the
formation of white/red earlobe color in chicken was revealed
(Luo et al., 2018). In this study, combining imputed sequence-
based GWAS and transcriptome analysis between the high-RFI
and low-RFI groups, we also found an overlapped gene (RASD1)
significantly associated with RFI (Figures 2, 4). This finding also
suggested that imputed sequence-based GWAS was an efficient
method to identify significant SNPs.

Comparison Between GWAS Results and
Reported QTLs
Comparing the GWAS results with the reported QTLs, we found
no significant SNP located inside the reported QTL in this study
(Supplementary Table S4). This is mainly due to the number of
reported QTLs, associated with RFI, ADFI, and ADG, which are
still very limited in QTLdb, especially for RFI. In QTLdb, only
40 QTLs were reported to be associated with RFI and 17 QTLs
located in the range from 16433894 to 17287377 bp on GGA12.
Moreover, the different genetic backgrounds also would result in
different QTL regions.

CONCLUSION

Using imputed sequence-based GWAS is an efficient method
to identify significant SNPs and candidate genes in chicken. In
this study, using imputed sequence-based GWAS, we identified
seven significant SNPs associated with RFI, 20 significant SNPs

associated with ADG, and one significant SNP associated with
ADFI. Furthermore, by combining regional conditional GWAS
and transcriptome analysis between the high-RFI and the low-
RFI groups, an overlapped gene (RASD1) was identified to
be associated with RFI, which also suggested that a new QTL
(GGA14: 4767015–4882318) was truly associated with RFI. Our
results provide valuable insights into the genetic mechanisms of
RFI and component traits in chickens.
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