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Biological data are accumulating at a faster rate, but interpreting them still remains a

problem. Classifying biological data into distinct groups is the first step in understanding

them. Data classification in response to a certain treatment is an extremely important

aspect for differentially expressed genes in making present/absent calls. Many feature

selection algorithms have been developed including the support vector machine

recursive feature elimination procedure (SVM-RFE) and its variants. Support vector

machine RFEs are greedymethods that attempt to find superlative possible combinations

leading to binary classification, which may not be biologically significant. To overcome

this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed

as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t

statistic to discover the differentially significant features along with good performance

in classification. The “sigFeature” R package is centered around a function called

“sigFeature,” which provides automatic selection of features for the binary classification.

Using six publicly available microarray data sets (downloaded from Gene Expression

Omnibus) with different biological attributes, we further compared the performance

of “sigFeature” to three other feature selection algorithms. A small number of

selected features (by “sigFeature”) also show higher classification accuracy. For further

downstream evaluation of its biological signature, we conducted gene set enrichment

analysis with the selected features (genes) from “sigFeature” and compared it with the

outputs of other algorithms.We observed that “sigFeature” is able to predict the signature

of four out of six microarray data sets accurately, whereas the other algorithms predict

less data set signatures. Thus, “sigFeature” is considerably better than related algorithms

in discovering differentially significant features from microarray data sets.

Keywords: feature selection, machine learning, support vector machine, microaaray, cancer, RNA-Seq,

bootstrap, GSEA
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INTRODUCTION

Feature selection is described as a process in which a subset of
relevant features is selected from a larger data set. These features
are used for model construction. On the basis of the model
created, one can separate or classify the classes present in a data
set (James et al., 2013). Based on the combination of selection
algorithms and model building, feature selection methods are
normally classified into three classes such as Filter methods,
Wrapper methods, and Embedded methods. All the feature
selection algorithms used in this article belong to Wrapper
methods. A subset of features is used in Wrapper methods, and
a model is trained with those features. The user then decided to
add or remove features from the subset based on the inferences
from the previous model. Generally, microarray data sets are
high-dimensional in nature. It is obvious that not all the features
contribute to the prediction variable. Removing low-importance
features will not only increase the accuracy but also reduce
the complexity of the model and its overfitting. Therefore, the
training time for the very large data sets can also be reduced.
Usually, the feature selection algorithms (Allison et al., 2006)
are used for different tasks such as classification, clustering, and
regression analysis (Jović et al., 2015). Feature selection algorithm
is widely used in analyzing different types of biological data set,
for example, whole-genome expression data set (Ramaswamy

et al., 2001; Frank et al., 2006; Zheng et al., 2006), protein mass
spectra data set (Hilario et al., 2006), whole-genome sequencing
data set (Das et al., 2006), and so on.

Differential expression analysis technologies on different data

sets such as RNAseq andmicroarrays provide a great opportunity
for the researchers to quantify the expression levels of thousands

of cellular genes concurrently. This advantage led to its rampant
use in clinical settings. A general approach is to employ t statistic
(along with multiple hypothesis tests) on microarray data sets to
obtain the statistically significant differentially expressed genes
(DEGs). However, the DEGs produced by most of the methods
often contain biologically irrelevant data lacking discriminatory
power to classify the groups present in the data set. This is also the
same with the clinical data. It is therefore essential to develop an
appropriate algorithm to identify biologically significant DEGs
together with excellent classification precision in a tumor versus
normal tissue contrast (Galland et al., 2010) or in distinct tumor
subtypes (Bonome et al., 2008).

Over the past few years, many feature selection algorithms
have been developed for microarray data analysis. However,
most of the binary (two-class) feature selection algorithms focus
mostly on classification accuracy of the selected features, which
often fails to be biologically relevant leading to inaccurate
downstream data analysis (Golub et al., 1999; Guyon et al., 2002;
Lee et al., 2003; Zhang et al., 2006a,b; Zhou and Mao, 2005;
Li et al., 2012; Mishra and Mishra, 2015). So, a better classifier
that has the ability to select features with greater discriminatory
power and more biological insight is required for clinical practice
(Roepman et al., 2005, 2006). We have used expression values
of different cancer types [e.g., breast cancer (GSE3744), oral
cancer (GSE25099), ovarian cancer (GSE26712), squamous cell
carcinoma (GSE2280), lung cancer (GSE7670), and brain cancer

(GSE4290)] to test and compare “sigFeature” algorithm with
other algorithms.

In this study, we have created a novel feature selection
algorithm “sigFeature” that is based on support vector machine
(SVM) and t statistic. Our algorithm not only selects features
with higher classification accuracy but also determines the
differentially expressed features (genes) seamlessly. After
comparing “sigFeature” with three selection algorithms
such as “SVM-RFE,” “SVM-T-RFE,” and “SVM-BT-RFE”
(Supplementary Data Sheet 1) using the aforementioned data
sets, “sigFeature” stands apart in terms of feature classification,
as well as differentially expressed features in almost all the
classes studied. We further tested “sigFeature” for determining
its ability to predict the biological signatures of the example
data sets. It was found that when gene set enrichment analysis
(GSEA) analysis (Subramanian et al., 2005) was done on the
output of “sigFeature,” the biological features of the samples
were predicted accurately. “sigFeature” is proven to be better
than other algorithms when tested with GSEA with the
selected features.

MATERIALS AND METHODS

We have chosen six publicly available microarray data sets
randomly for testing and comparison with our tool. All the
feature selection algorithms are applied precisely for cancer
classification. In addition to most feature selection methods
embedded with an estimation of the classifier, “sigFeature” is
inherently a multivariate method. “sigFeature” evaluates the
relevance of several features considered together. A univariate
method, on the other hand, assesses the significance of each
feature individually. The latter is often computationally easier,
but the former is more sophisticated from the data analysis point
of view, as genes are known to communicate in many respects
and are often coregulated. We also used the selection approach
of the ensemble feature that relies on various subsamples of the
original data to create different signatures. Using GSEA analysis,
the selected robust signatures are finally analyzed to determine its
biological signature.

Microarray Data Sets
Table 1 summarizes the main characteristics of the microarray
data sets downloaded from GEO (Gene Expression Omnibus).
The data sets share common characteristics such as very low
samples/dimensions (or features) ratio.

All these data sets are preprocessed using the
following procedures.

Data Normalization
The purpose of data normalization is to minimize the variation
in data due to various non-biological factors and make them
comparable in one scale. These data sets are normalized by
“quantile” normalization method using the “Bioconductor”
package “Limma” (Ritchie et al., 2015). The goal of the “quantile”
normalization method (Bolstad et al., 2003) is to make the
distribution of sample intensities equal for each array in a set
of arrays.
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TABLE 1 | Description of the data sets.

Data set Samples Probes Classes SDR Types Reference

GSE3744 47 54675 2 0.00086 Breast cancer Richardson et al., 2006

GSE25099 79 17881 2 0.00441 Oral cancer Peng et al., 2011

GSE26712 195 22283 2 0.00875 Ovarian cancer Bonome et al., 2008

GSE2280 27 22283 2 0.00121 Squamous cell carcinoma O’Donnell et al., 2005

GSE7670 66 (54*) 22283 2 0.00296 Lung cancer Su et al., 2007

GSE4290 180 54613 2 0.00329 Brain cancer Sun et al., 2006

*Total 27 paired samples are used in this example.

Samples/dimensions ratio (SDR) refers to the ratio between the number of samples and the number of dimensions (or features).

Support Vector Machines
Generally, SVMs are used for classification and regression
analysis as supervised learning methods. Support vector
machines are also used for selecting features from a data
set [e.g., SVM recursive feature elimination (SVM-RFE)]. For
feature selection, we have used SVM in “sigFeature,” with some
modification to obtain the desired weight values for each feature.
In this section, we have explained how SVM effectively operates,
because our algorithm is built upon the basic principle of SVM.

Support vector machine uses kernel functions to perform
classification efficiently on non-linear data. It implements
implicit mapping in the high-dimensional input feature vectors
into high-dimensional spaces. This produces a linear hyperplane,
which can separate two groups of data meaningfully (Butte,
2002). The hyperplane in higher dimensional spaces is chosen to
be maximally distant from both groups so that examples from
separate classes are separated as much as possible. New examples
are then classified based on their orientation to the hyperplane.
The hyperplane can be expressed as a vector (Equation 1, linear
SVM) that acts as a reference frame to map the position of each
sample in higher dimensional spaces and is summed to yield a
discriminate score, which is used to classify the sample into one
of the two groups.

f (x) =

d
∑

j=1

wjxj + b (1)

Assuming a training data set {(x1, y1), ..., (xn, yn),xi ∈ ℜd, yi ∈
(−1, 1)}, where x = (x1, ..., xd) is a d-dimensional input vector,
and y is the class label, and w = (w1, ...,wd) are coefficients of
the hyperplane, and b represents the intercept of the hyperplane.
Support vector machines are used in different feature selection
algorithms, for example, “SVM-RFE,” “SVM-T-RFE,” and “SVM-
BT-RFE.” A detailed description of those algorithms is given in
the Supplementary Data Sheet 1.

Support Vector Machine–Recursive
Feature Elimination
In 2002, Guyon et al. (2002) introduced a feature selection
method known as SVM-RFE for classification of cancer. The
“SVM-RFE” is a weight-based method. The weight vector
coefficients of a linear SVM are applied at each stage as a
feature ranking criterion. The most informative features are

those that correspond to the largest weight. Thus, a sequential
backward feature elimination procedure is used by “SVM-
RFE” for selecting the feature with the smallest weight that
is subsequently stored into a stack. This iteration process is
continued until the last feature variable remains. The “SVM-RFE”
algorithm and our newly developed feature selection algorithm
both belong to the Wrapper method, and both algorithms
select the feature by eliminating feature recursively. The main
difference is there in calculating the ranking score for the
ith feature.

Significant Feature Selection (sigFeature)
“SVM-RFE” (Guyon et al., 2002) algorithmwas originally written
for selecting features in binary classification problem. Some
researchers (Li et al., 2012; Mishra and Mishra, 2015) enhanced
“SVM-RFE” for further betterment of the feature selection
process. Li et al. (2012) and Mishra and Mishra (2015) used
different mathematical equitation in their algorithms to calculate
the ranking score for the ith feature. For more information, see
Supplementary Data Sheet 1.

Generally, the expression data set contains a large number of
probes sets and a small number of sample sizes. It is observed that
the number of samples in each class is unequal in the data set. In
our approach, the features to be selected for classification need
to contain maximum discriminatory power between the classes.
Considering the imbalance in sample size (no. of samples class 1
6= class 2) into consideration, we characterize the accompanying
measure as below (Equation 2):

1δ =
1

n+

∑

x+∈class1

f (x+)−
1

n−

∑

x−∈class2

f (x−) (2)

In class +1 and −1, the total number of samples is considered
as n+ and n−, respectively. The value 1δ denotes the separation
between the two classes. The larger the value of 1δ, the better is
the separation between the two classes. Considering equation (2)
and denoting the difference of the jth feature of the two classes
such as |t+j | and |t−j |, we get Equation 3:

1δ =

d
∑

j=1

wj|t
+
j | −

d
∑

j=1

wj|t
−
j | =

d
∑

j=1

wj(|t
+
j | − |t−j |) (3)

The jth element of w (weight vector) is considered, as wj and
d is the total number of features. In special cases, where one
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class has only one sample, and the other class has more than one
sample, t, the significant differences between the two classes can
be calculated by using standard single sample t statistic where |t+j |

stands for class+1 and |t−j | stands for class−1.

where|t+j | =

∣

∣

∣

∣

∣

∣

(x̄+j − µ+
j )

√

(s+j )
2
/n+

∣

∣

∣

∣

∣

∣

and|t−j | =

∣

∣

∣

∣

∣

∣

(x̄−j − µ−
j )

√

(s−j )
2
/n−

∣

∣

∣

∣

∣

∣

(4)

where x̄+j and x̄−j stands for mean, s+j and s−j are standard

deviation, µ+
j andµ−

j stand for the specified population mean of

the jth feature, and n+ and n− are the number of samples present
in each class (+1 class and−1 class), respectively.

1δ = wj ∗ (|t
+
j | − |t−j |) (5)

X0 = [x1, x2, .....xk, ...xl]
T If both classes have more than one

sample, then the separation value 1δ can be calculated by the
equation as below:

1δ = wj ∗

∣

∣

∣

∣

∣

∣

(x̄+j − x̄−j )
√

((s+j )
2
/n+)+ ((s−j )

2
/n−)

∣

∣

∣

∣

∣

∣

(6)

From the above equation, the maximum separation would be
affected when the expression values of an individual feature in
both classes reject the null hypothesis Ho and move on in the
direction of a specified alternative hypothesisHa.

1δ = wj ∗ P[tj(v) < −|u|ortj(v) > |u|] (7)

where v is the level of flexibility parameter for the corresponding
reference distribution, and u is the observed (positive)
estimation of the test statistic on the basis of the level
of flexibility v. Unlike “SVM-RFE,” in “sigFeature” we
select important features by incorporating the product
of weights and the corresponding differences between
the classes. The pseudo code of the algorithm is given
as below.

Robust Selection of Features Using the
Ensemble Selection Procedure
We have further embedded the recent concept of ensemble
feature selection techniques to improve the stability of feature
selection algorithms (Abeel et al., 2010). Like ensemble
learning for classification, the technique of selection of features
uses the same idea. A number of different selectors of
features are used in this method (ensemble), and finally,
the output of these separate selectors is aggregated and
returned as the final result. Using our newly developed
algorithm “sigFeature,” we focus on the analysis of ensemble
feature selection technique to select robust features. The
other feature selection algorithms (“SVM-RFE,” “SVM-T-RFE,”
and “SVM-BT-RFE”) included in this work for performance
comparison with “sigFeature” select robust features in a
similar way.

Algorithm: 1 sigFeature

Inputs:
Training examples X0 = [x1, x2, .....xk, ...xl]

T

Class labels y = [y1, y2, .....yk, ...yl]
T

Initialize:
Subset of existing features s = [1, 2, ...n]
Feature ranked list r = []
Repeat until s = []

Confine training examples to good feature inventories
X = X0(:, s)
Train the classifier (training data set)
α = SVM − train (X, y)
Enumerate the weight vector of dimension length(s)
W =

∑

k

αkykxk

Enumerate the ranking criteria (for all i)
ci = wi ∗ P[ti(v) < −|u|orti(v) > |u|]
Find the feature with the negligible ranking criterion
f = sort(c)
Reform feature ranked list:
r = [s(f ), r]
Remove the feature with the smallest ranking criterion
s = s(1 : f − 1, f + 1 : length(s))

Output:
Feature ranked list r.

We chose our training set with 40 subsampling sets consisting
of 90% of the original data set. The remaining 10% of the
data can be used to evaluate classification performance as an
independent validation set. The main motto behind this is to
generate a variety of feature selection protocols using “sigFeature”
algorithm. Because the “sigFeature” algorithm is deterministic,
performing it on different training samples is the only way
to generate diversity in selection. To this end, we use the
bootstrapping method, a well-established statistical technique
for reducing variance (Efron, 1992). In statistics, bootstrap is
a method that relies on random sampling with replacement.
Within each layer, a simple random sample is selected from the
n−1 clusters within the n clusters of the layer. The process can
be repeated “N” times by producing N new samples. Bootstrap
weights are generated in each layer for infinite populations (“with
replacement” sampling) by sampling with replacement from
the primary sampling unites. The weights of the bootstrap are
used to measure values of “N” that are used to determine the
variance. By drawing different bootstrap samples of the training
data (with replacement), we can apply “sigFeature” algorithm
to each of these bootstrap samples and thus obtain a variety of
feature rankings. Then, we have an ensemble (Ensemble feature
selection) composed of t feature selectors, EFS = {F1,F2,... Ft},
so we assume that each Fi gives the ranking feature, fi =

(f 1i , ..., f
N
i ), where f

j
i indicates the rank of feature j in bootstrap

i. Rank 1 is assigned for the best feature, and the worst is
ranked N. In order to aggregate the various rankings obtained
by bootstrapping the training data, we have chosen a complete
linear aggregation (CLA) in a final signature. A general formula
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obtained by summing the ranks over all bootstrap samples for the
ensemble ranking f is as follows:

f =

(

t
∑

i=1

wif
1
1 , .....,

t
∑

i=1

wif
N
1

)

(8)

where wi denotes a bootstrap-dependent weight.
Then, the ensemble ranking f is obtained by simply summing

the ranks above all samples of the bootstrap.
The s features with the highest summed rank are selected from

f to select the final set of features for a size s signature.

Stability Measurement of the Selected
Features
Stability measurement is an essential part of the classification
performance. It is therefore necessary to incorporate stability,
else any feature selection algorithm may always return the
same features regardless of any input sample combinations. We
used Kuncheva index (KI) statistical analysis described below to
measure stability of the selected features.

Let us consider a data set X = {x1, ...., xM} with M samples
andN features. After that, the sample set is subsampled randomly
with k times of size [xM] (0 < x < 1). We randomly selected k=
40 in our data analysis and x = 0.9. Consequently, on each of
the k subsamplings, feature selection is performed, and a marker
set of a given size is selected, further referred to as a signature.
The relative stability Stot can then be defined as the average
of all pair-like comparisons between all the signatures on the
k subsamplings.

Stot =
2
∑k

j=1

∑k
j=i+1 KI(fi, fj)

k(k− 1)
(9)

wherefi is the signature obtained by the subsampling method
i(1 ≤ i ≤ k). KI(fi, fj) denotes the KI. A stability index defined
as follows between fi and fj (Kuncheva, 2007).

KI(fi, fj) =
rN − s2

s.(N − s)
=

r − (s2/N)

s− (s2/N)
(10)

where s = |fi| = |fj| refers to the signature size, and r = |fi
⋂

fj|
refers to the number of common elements in both signatures.
The KI meets −1 < KI(fi, fj) ≤ 1, and the higher its value,
the greater the number of features commonly selected in both
signatures. In this index, the s2/N term corrects a bias due to
the chance to select common features between two randomly
selected signatures.

Classification Performance
(Cross-Validation)
In 2002, Ambroise and McLachlan (2002) introduced a new
cross-validation technique for evaluation of feature (gene)
selection algorithms. In this technique, the feature selection is
performed on a subset of samples, which are obtained from the
total sample sets, and the validation is performed on the other
subsample set to acquire an impartial execution test. In this
research work, we recruited external 10-fold cross-validation data
set to assess the performance of the selected features.

FIGURE 1 | Bootstrap distribution plot and normal Q-Q plot for the data set

GSE2280. We used 40 bootstraps (with replacement) with 90% of the total

samples (GSE2280) to randomize the array of subsamples.

FIGURE 2 | Kuncheva index plot for the data set GSE2280. The stability of the

features is measured based on CLA methods for different feature selection

algorithms. We used 40 bootstraps (with replacement) and eliminated

E = 1% features.

GSEA for Prediction of Biological Signature
in the Test Data Sets
An important attribute of a selected feature is its potential
to predict the biological signature of any data set. In GSEA,
we used the Molecular Signatures Database (MSigDB V
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FIGURE 3 | Histogram plots for pairwise stability comparison of the features. Distribution plots of the pairwise stabilities for the data set GSE2280 where different

algorithms produce the feature lists. In each iteration of the algorithms, we used 40 bootstraps, eliminated E = 1% features, used a signature size of 10%, and

selected the CLA aggregation model.

7.0) to compare selected features using the aforementioned
algorithms for further downstream evaluation. MSigDB V 7.0
is a compilation of annotated gene sets. For this analysis,
Cancer Gene Neighborhoods (CGN), Cancer modules (CM), and
Oncogenic signatures (C6) gene sets were used during GSEA
(Subramanian et al., 2005), with the first 500 selected features
generated by each of the algorithms including “sigFeature.”
Briefly, CGN is a collection of gene sets defined by expression
neighborhoods centered on 380 cancer associated genes, whereas
CM is an assemblage of 456 gene set “modules” observed to
significantly change during various oncogenic conditions (Segal
et al., 2004), and finally, C6 is a collection of gene sets (oncogenic
signatures, 189 gene sets) that represent signatures of biological
pathways that are generally deregulated in carcinogenesis.

Implementation and Availability
All the algorithms (“sigFeature,” “SVM-RFE,” “SVM-T-RFE,” and
“SVM-BT-RFE”) are implemented in R script. The “sigFeature”
package is available in Bioconductor and GitHub repository
(https://bioconductor.org/packages/sigFeature). We use SVM by
using a CRAN package named “e1071” (Meyer et al., 2018). The
R script for the algorithm “SVM-RFE” (Guyon et al., 2002) is
publicly available. Because there are no fast implementations of

“SVM-T-RFE” and “SVM-BT-RFE” accessible so far, we used the
“e1071” package to implement these two algorithms in R.

RESULTS

The experimental evaluations on the six different types of
cancer microarray data sets have been reported here. We
also analyzed the RNA-Seq data set (Canine mammary gland
tumors, GSE119810) for reestablishing the robustness of the
newly developed algorithm (detailed results are available in
Supplementary Data Sheet 3). Finding a robust feature list
(Roepman et al., 2005) from a large sample pool without any
sample biasness is a very tedious work. In order to compare
the list of features produced by “sigFeature” algorithm with the
features obtained from other algorithms discussed (e.g., “SVM-
RFE,” “SVM-T-RFE,” “SVM-BT-RFE”), a comparable model for
the selection method needs to be followed. We resampled 90%
of the total data using bootstrap method (with replacement),
and the resampling was done 40 times (bootstrapping graphics
is shown in Figure 1). The remaining 10% samples are used to
evaluate the features selected. For the assessment of the combined
significance of marker sets, the latest classification performance
has already been provided. The results show that both stability
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FIGURE 4 | Tenfold external cross-validation error plot. The classification

performances of the top features are shown here, which are selected by

different feature selection algorithms. We used 40 bootstraps and eliminated

E = 1% features.

and accuracy of the classification are quite significant on the
data set compared to stability measurement and classification
of the selected features of other algorithms such as “SVM-RFE,”
“SVM-T-RFE,” and “SVM-BT-RFE.” The results of the variance
in pairwise stability between two signatures are also discussed.
The complementary performance of the various feature selection
algorithms of consensus building from different individual
signatures is carefully evaluated. We performed the t-test of the
selected features individually between the classes in the data
set to see the significant difference of the groups. The features
that are more distinctly different will assist further downstream
assessment. Thus, the GSEA is used to observe the contribution
by using these robust features in discovering the cancer signature.

Stability of the Selected Features
We compared the feature of each of the algorithms and analyzed
the stability of each of the six cancer data sets used in this
study. Figure 1 shows the results of the data set GSE2280
using a default configuration with the bootstrap number of 40,
and all feature selection algorithms have been applied, with
E = 1% at each iteration. Results of the other data sets are
represented in Supplementary Figures (Figure 2.1 to Figure 6.4.2
in Supplementary Data Sheet 2). To minimize the execution
time taken by each algorithm, the default configuration is used.
The KI measures the robustness of the selected signatures
(marker sets), and the external cross-validation error is used
to measure the classification performance (Figure 2). Kuncheva
index is generally calculated between two feature vectors. The
more the KI is closer to 1, the more the vectors are similar. It
can be observed in the literature (Kuncheva, 2007) that the CLA
methods significantly improve the baseline (only SVM-RFE) in

terms of both stability and classification performance. Methods
of ensemble are better able to eliminate noisy and irrelevant
dimensions. So we chose to produce the robust feature using
the CLA method in our present study. One important issue in
stable feature selection is how tomeasure the “stability” of feature
selection algorithms, that is, how to qualify selection sensitivity
for training set variations. The measure of stability can be used
in various contexts. On the one hand, evaluation of various
algorithms in performance comparison is indispensable. On the
other hand, in feature selection algorithms, which take stability
into account, it can be used for internal validation. We have
chosen a feature list as a reference list in our steady measurement
experiment, and the remaining feature lists are measured based
on the reference feature list. Finally, the stability value of pairwise
experiment is represented as a plot of histogram (Figure 3).

Classification Performance Results
The results of the classification of the GSE2280 microarray
data set are illustrated here, and outputs for other data sets
are included in Supplementary Data Sheet 2. We used different
publicly available algorithms (“SVM-RFE,” “SVM-T-RFE,” and
“SVM-BT-RFE”) to compare the performance of the selected
feature with “sigFeature” for this data set. From the 90% of the
total data set, the feature lists are selected, and the 10% of samples
are used for testing the selected feature. We also subsampled
by iterating 40 times the 90% of the total samples using the
bootstrapping (with replacement) method to remove the sample
biasness. After that, we use the improved ensemble selection
method (“CLA”) to find out the robust feature list. Using the
feature list, the classification performance is tested on the test
sample set. The graphical representation of the result is shown
in Figure 4. In order to find the best classification accuracy,
we have adjusted the parameters cost and gamma (Figure 5).
The gamma parameter intuitively defines the extent to which
the influence of a single example of training reaches, with low
values meaning “far” and high values meaning “close.” The cost
parameter offers proper classification of training examples to
maximize the decision function margin. The “SVM-BT-RFE,”
an individual ranking method, performs more badly than other
algorithms evaluated in this study because this algorithm selects
many redundant features, which give minimal preferential power
to the classification issue. The classification performance here
depends on many conditions. The major factors are the number
of samples in a data set and the numeric values corresponding to
the expression of each gene in that data set.

Differentially Significant Features
In order to obtain a meaningful biological insight, the selected
features must have a significant difference between the sample
groups present in the data sets. In this experiment, we
compare the characteristics (significant difference between the
groups) of the features produced by “sigFeature” with other
algorithms. Thus, we compare the p-values of each feature (top
n = 1,000), which are produced by the different algorithms.
Although individual feature lists are produced by each subset
(40 bootstraps), we average the p-value by its position in the
feature list. In each data set, it may not create an equal number
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FIGURE 5 | Three-dimensional representation of cost, gamma, and classification accuracy. The Cost and gamma values are selected to determine the best

performance in the classification of features selected (top 1,000 features by CLA) by different selection algorithms.

of sample size in both classes. We use default t-test (two-sided)
using an R function named t-test()and computed the unadjusted
p-values. Then the unadjusted p-values produced are used to plot
a histogram, depicted in Figure 6 to observe the frequency of
the unadjusted p-values associated with the rank feature. The
histogram plot shows the area proportional to the unadjusted
p-value frequency.

GSEA Results
The features identified by newly developed “sigFeature” (top five
hundred features by CLA) and other three algorithms SVM-
RFE, SVM-T-RFE, and SVM-BT-RFE were analyzed by the
aforementioned workflow to check whether they are able to
predict the biological attribute of the six microarray data sets
from which they were derived.

The first data set GSE2280 is a critical data set as it
originates from oral cancer patients with lymphatic metastasis.
Interestingly, “sigFeature” was able to significantly (p ≤

0.05) predict two gene sets “Neighborhood of RAP1A” and
“Neighborhood of UBE2N.” Both genes were strongly involved

in regulation of tumor metastasis. The monomeric G protein,
RAP1A, acts as a switch during transduction of cellular signaling
and generally regulated by its binding to either guanosine
triphosphate (GTP) or guanosine diphosphate. It functions to
regulate the function of cell adhesions and junction proteins
and mediate cellular migration and polarization to promote
metastasis in prostrate tumors, ovarian tumors, melanoma, lung
cancer, glioma, bladder cancer, leukemia, and also oral cavity
(Bailey et al., 2009; Chen et al., 2013; Lu et al., 2016; Yi-
Lei et al., 2017). Moreover, UBE2N encodes a protein that
is a member of the E2 ubiquitin–conjugating enzyme family
and helps to catalyze the synthesis of non-canonical “Lys-63”-
linked polyubiquitin chains leading to transcriptional activation
of genes involved in tumor proliferation and metastasis (Gallo
et al., 2017; Vallabhaneni et al., 2017). Among the other
algorithms, SVM-RFE only enriched the term “Neighborhood
of RAN” that is related to signature of cancer metastasis.
RAN is also a GTPase, which regulates the nucleocytoplasmic
import and export of proteins and RNAs, and reported to
be involved in the metastasis of renal cell carcinoma and
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FIGURE 6 | Histogram plots of unadjusted p-values. The comparison of the average unadjusted p-values is shown, which are calculated individually using the top

1,000 features between classes. The list of features is made using 40 bootstrap subsets where the feature selection algorithms remove E = 1% features at

each iteration.

pancreatic cancer (Abe et al., 2008; Deng et al., 2014). No other
algorithms were able to identify such intricate aspect in the given
data set.

Data set GSE4290 is derived from glioma patients. The feature
identified by “sigFeature” was able to enrich computational gene
sets “Genes in the cancer module 83” and “Genes in the cancer
module 151.” Interestingly, thesemodules were composedmostly
of data sets derived from primary neuro tumors and related
cell lines. Hence, it appears that “sigFeature” is able to partially
identify its biological attributes correctly compared to other
algorithms that failed to do so.

In case of data set GSE7670, expression of genes was obtained
from lung cancer samples and cell lines. Feature selected by
only SVM-T-RFE was not able to predict its biological nature.
Other algorithms along with “sigFeature” are able to predict its
true biological origin by enrichment of oncogenic signature (C6)
“Module_5 Lung genes.”

Data set GSE26712 is based on ovarian cancer. Feature
selected by “sigFeature” also predicted its biological origin with
the enrichment of oncogenic signature (C6) “Module_1 Ovary
genes.” Among the other algorithms, only SVM-RFE–derived
feature was able to predict that the data set is of ovarian origin
by enrichment of the same module.

Data set GSE3744 is composed of breast carcinoma
samples. Only SVM-BT-RFE was able to partially
predict the true biological nature of the data set. The
feature enriched the term oncogenic signature (C6)
“KRAS.600.LUNG.BREAST_UP.V1_UP” that comprised
the genes that were up-regulated in epithelial lung and breast
cancer cell lines overexpressing an oncogenic form of KRAS
gene. The “sigFeature” and other given algorithms could not
predict the biological nature of the data set. We needed further
in-depth inquiry to define the appropriate reason why those
algorithms were unable to detect the cancer signature.

Next, data set GSE25099 has the characteristic of oral
squamous cell carcinoma. In this case, “sigFeature” and the
other algorithms could not identify the biological signature,
as they could not enrich any gene set containing features
related to oral cancer. For further clarification, a differential
expression analysis was performed between case and control
samples, and a signature list was generated using a cutoff
value of p < 0.05 and a fold change of ±1.5. This list of
signatures was also unable to predict the cancer signature in the
GSEA assessment.

Overall, the analysis revealed that “sigFeature” is able to
predict the signature of three out of six data sets with
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FIGURE 7 | Histogram plots of unadjusted p-values (using top 1,000 robust features). The comparison of unadjusted p-values is shown, which are calculated by

using the top 1,000 features (from the robust feature list) individually between the classes.

TABLE 2 | Results of GSEA.

Final score (out of 6) GSE3744 GSE25099 GSE26712 GSE2280 GSE7670 GSE4290

sigFeature 4 No No Yes Yes Yes Yes

(partially)

SVM-RFE 3 No No Yes Yes Yes No

SVM-BT-RFE 2 Yes

(partially)

No No No Yes No

SVM-T-RFE 1 No No No No No No

absolute precision, whereas the fourth one partially (Table 2).
Comparable proficiency was observed only with SVM-RFE
(three of six). Support vector machine BT-RFE could get
one out of six right and partially correct about the other,
whereas SVM-T-RFE failed in case of all the data sets. Thus,
it appears from the comparative analysis that selection of
biologically relevant feature is a crucial achievement of the newly
developed “sigFeature.”

Next, we have tested the same t-test with robust list of
features produced in each algorithm of selection. The p-
values are graphically displayed below in Figure 7. The average
unadjusted p-value generated by the top characteristics (n =

1,000) selected by the “sigFeature” algorithm is much more
significant than the unadjusted p-value generated by the other

selection algorithm. Also for the robust feature lists, the similar
result is found.

DISCUSSION

In this article, we proposed a novel feature selection algorithm
using “SVM-RFE” and t statistic (called “sigFeature”) to select
significant features. We also tested the “sigFeature” algorithm on
six publicly available microarray data sets, containing different
biological attributes, and compared it with already existing
similar type of algorithms (such as “SVM-RFE,” “SVM-T-
RFE,” and “SVM-BT-RFE”). The plots show that the sigFeature
algorithm’s initial goal of selecting significant feature along with
excellent classification accuracy is being met. The top features
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chosen by the sigFeature algorithm are very considerably distinct
from those chosen by other feature selection algorithms used
in this research work. Thus, the average p-value plot indicates
significant results for the features chosen by our algorithm.
We compared the p-value produced by the top 1,000 features
using those algorithms; it shows that more significant p-value
s are generated by the features that are selected by “sigFeature”
algorithm than others.

We could also predict robust biomarkers with a concrete
focus on microarray studies on six cancer diagnosis data sets
using sigFeature algorithm. The stability of the markers is
appropriate for both reproducibility and biological validation.
However, stability alone is not a nice performance measure,
as it is easy to improve stability by considering some fixed
sets of features. Moreover, the ensuing predictive model is
probably poor in the classification of new samples. The CLA
technique is an experimental methodology for evaluating the
strength of biomarker lists in combination with the predictive
results of classification designs based on them. This CLA
protocol repeatedly considers some samples for selectingmarkers
as well as estimating classifiers from autonomous samples
used to assess the efficiency of classification. The external
10-fold cross-validation error is more convenient to evaluate
the predictive performance of data sets with unbalanced class
proportions, a common situation for microarray experiments.
“sigFeature” shows promising performance compared to other
feature selection algorithms.

Finally, performing GSEA analysis using specified cancer
gene sets of MSigDB, we obtained a concrete evidence to
show that features selected by “sigFeature” have the potential
to identify biological attributes of data sets more accurately.
Here, “sigFeature” was able to predict the signature of three
out of six data sets with complete accuracy, whereas the
fourth one partially. Comparable expertise was observed with
SVM-RFE, whereas the rest have put up a comparatively
poor show.

Thus, we can conclude that the proposed algorithm identifies
features leading to more accurate classification and generation of
differentially significant features.
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