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Background: Gliomas are the most common intracranial tumors and are classified as
I–IV. Among them, glioblastoma multiforme (GBM) is the most common invasive glioma
with a poor prognosis. New molecular biomarkers that can predict clinical outcomes in
GBM patients must be identified, which will help comprehend their pathogenesis and
supply personalized treatment. Our research revealed four powerful survival indicators in
GBM by reanalyzing microarray data and genetic sequencing data in public databases.
Moreover, it unraveled new potential therapeutic targets which could help improve the
survival time and quality of life of GBM patients.

Materials and Methods: To identify prognostic signatures in GBMs, we analyzed the
gene profiling data of GBM and standard brain samples from the Gene Expression
Omnibus, including four datasets and RNA sequencing data from The Cancer Genome
Atlas (TCGA) containing 152 glioblastoma tissues. We performed the differential
analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis, weighted gene co-expression network analysis (WGCNA) and Cox
regression analysis.

Results: After differential analysis in GSE12657, GSE15824, GSE42656 and
GSE50161, overlapping differentially expressed genes were identified. We identified 110
up-regulated DEGs and 75 down-regulated DEGs in the GBM samples. Significantly
enriched subclasses of the GO classification of these genes included mitotic sister
chromatid separation, mitotic nuclear division and so on. In KEGG pathway analysis,
the most abundant terms were ECM-receptor interaction and protein digestion and
absorption. WGCNA analysis was performed on these 185 DEGs in 152 glioblastoma
samples obtained from TCGA, and gene co-expression networks were constructed. We
then performed a multivariate Cox analysis and established a Cox proportional hazards
regression model using the top 20 genes significantly correlated with survival time. We
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identified a four-protein prognostic signature that could divide patients into high-risk
and low-risk groups. Increased expression of SLC12A5, CCL2, IGFBP2, and PDPN
was associated with increased risk scores. Finally, the K-M curves confirmed that these
genes could be used as independent predictors of survival in patients with glioblastoma.

Conclusion: Our analytical study identified a set of potential biomarkers that could
predict survival and may contribute to successful treatment of GBM patients.

Keywords: glioblastoma, GEO, TCGA, WGCNA, prognosis biomarkers

INTRODUCTION

Gliomas are the most common intracranial tumors and are
classified as grades I–IV according to World Health Organization
(WHO) Classification of Tumors of the Central Nervous
System (CNS). Among them, glioblastoma multiforme (GBM)
is the most common primary brain tumor in adults with a
poor prognosis (Reni et al., 2017). Patients with glioblastoma
multiforme usually survive for less than 15 months after diagnosis
and treatment. Therefore, it is crucial to develop appropriate
and effective biomarkers to predict the prognosis of patients
with glioblastoma. Various tumor related biomarkers have
been found in glioblastoma, including epidermal growth factor
receptor (EGFR), mutant form of the EGFR (EGFRvIII), vascular
endothelial growth factor (VEGF), p53 and Phosphate and tensin
homolog deleted on chromosome 10 (PTEN), Retinoblastoma
(RB1) and Isocitrate dehydrogenase (IDH) (Appin and Brat,
2015). Some of these markers can predict therapeutic effect
and clinical prognosis (Garrett-Bakelman and Melnick, 2013;
Network, 2013; Westphal and Lamszus, 2015). Methylation status
of the promoter of O-6-methylguanine-DNA methyltransferase
(MGMT) is related to the sensitivity of temozolamide therapy
and the prognosis of patients (Hegi et al., 2005; Wang et al.,
2018). Loss of heterozygosity (LOH) of 1p/19q is another
prognostic indicator, representing a better prognosis (Wiestler
et al., 2014; Zhao et al., 2014). However, these markers can only
be applied to specific parts of glioblastoma patients, and their
proportion is not high. It is still necessary to identify novel
molecular biomarkers that can predict the clinical outcome of
GBM patients, which could help comprehend their pathogenesis
and supply personalized treatment.

With the rapid development of sequencing technology and
bioinformatics, they have provided new ideas for the study of
clinical problems and related pathological mechanisms of various
cancers. The Gene Expression Omnibus (GEO), The Cancer
Genome Atlas (TCGA) and other public databases are broadly
integrated collections of microarray data and gene sequencing
data, enabling investigators to perform systematic analysis,
which can help improve the diagnostic methods and survival
prognosis of cancer patients. Considering different detection
methods used by different technological platforms, as shown
in Figure 1, various data processing and analysis methods are
being explored. In this study, the RobustRankAggreg (RRA)
(Kolde et al., 2012) method was used to combine the results of
several separate studies to improve statistical power. Meanwhile,
weighted gene co-expression network analysis (WGCNA) (Fuller

et al., 2007; Langfelder and Horvath, 2008) was adopted to
construct free-scale gene co-expression networks to identify core
genes associated with clinical outcomes. These core genes may
have important clinical significance and can be used as diagnostic
and prognostic biomarkers or therapeutic targets.

MATERIALS AND METHODS

Microarray Data
Gene profiling data of GBM and normal brain samples were
downloaded from the GEO1, a public functional genomics
data repository. Four datasets were selected for bioinformatics
analysis, including GSE12657 (GPL8300, Affymetrix Human
Genome U95 Version 2 Array),GSE50161 (GPL570, Affymetrix
Human Genome U133 Plus 2.0 Array) (Griesinger et al.,
2013), GSE42656 (GPL6947, Illumina HumanHT-12 V3.0
expression chip) (Henriquez et al., 2013) and GSE15824
(GPL570, Affymetrix Human Genome U133 Plus 2.0 Array)
(Grzmil et al., 2011). All raw data were downloaded from
the GEO database.

Microarray Data Normalization and
Probe Annotation
The microarray data were quantile normalized using the
“limma” package (Ritchie et al., 2015). After the data were
normalized, the probe data in the original format were
mapped to the gene symbols based on the annotation
information. If multiple probes correspond to a gene, the
average expression value of these probes was calculated as
the expression of the gene (Xu et al., 2018). For probes
with missing values, the “impute” package2 was used to fill
in missing values.

Download and Pre-processing of
RNA-seq Data From TCGA
RNA sequencing data of human glioblastoma samples were
available from the TCGA data portal3, which contained
152 glioblastoma tissues. These data were then constructed
into a matrix of RNA sequences, where gene symbols were
rows and patient barcodes were column names. The clinical

1http://www.ncbi.nlm.nih.gov/geo
2http://bioconductor.org/packages/release/bioc/html/impute.html
3https://cancergenome.nih.gov/
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FIGURE 1 | Flow chart of data collection and analysis.

metadata of 152 samples were also downloaded and filtered for
useful information.

Differential Analysis
Difference analysis was performed on four GEO datasets using
the R package “limma” (Ritchie et al., 2015). In order to determine
the best ranking results of the differential genes, a new robust
rank aggregation method was used, which was implemented as
the R package “RobustRankAggreg” (RRA)4 (Kolde et al., 2012).

GO and KEGG Enrichment Analysis
The enrichment analysis of the KEGG pathway and
Gene Ontology terms were performed through the R
package “clusterProfiler”5 (Yu et al., 2012; Yu et al., 2015).
Enriched ontological terms and pathways (P < 0.05) were
visualized as histograms.

Weighted Gene Co-expression Network
Analysis
The R software package “WGCNA” was used for weighted
gene co-expression network analysis (Langfelder and
Horvath, 2008). It is an algorithm for constructing co-
expression networks, defined by the similarity of gene
co-expression. First, we calculated the Pearson correlation
between each pair of differential genes and obtained a
similarity matrix (sij). Second, the similarity matrix was
converted into an adjacency matrix. The topological matrix
was created using topological overlap measure (TOM)
(Yip and Horvath, 2007). Finally, we chose the Dynamic
hybrid cut method to identify co-expression gene modules

4https://CRAN.R-project.org/package=RobustRankAggreg
5https://github.com/YuLab-SMU/clusterProfiler

(Langfelder et al., 2008). Details on the algorithm were
available on request.

Cox Regression Analysis
To validate the significance of the prognostic risk genes screened
above, we used univariate Cox proportional hazards regression
to assess the effect of expression of these genes on survival
time in GBM patients. Limited to the strength of computer
calculation, we used the top 20 genes significantly related to
survival time to perform the multivariate Cox analysis. Then,
statistically significant genes were used to construct a multivariate
cox regression model. The above analysis had used the R package
“survival”6 (Therneau and Grambsch, 2000). The R package
“survivalROC”7 was used to perform the receiver operating
characteristic curve (ROC) to evaluate the accuracy of the model
(Heagerty et al., 2000).

Statistical Analysis
All statistical tests and charts were performed using RStudio.
P < 0.05 was considered statistically significant. These graphics
were then integrated and displayed using Photoshop.

RESULTS

Screening for Differentially Expressed
Genes (DEGs)
The differential analysis in GSE12657, GSE50161, GSE42656, and
GSE15824 was performed by “limma” algorithm. Subsequently,
185 overlapping differentially expressed genes were identified by

6https://CRAN.R-project.org/package=survival
7https://CRAN.R-project.org/package=survivalROC
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FIGURE 2 | Visualization and enrichment analysis of differentially expressed genes. (A) The heatmap of the top 50 DEGs. (B) GO enrichment analysis of differentially
expressed genes. BP, biological process; CC, cellular component; MF, molecular function; (C) KEGG enrichment analysis of differentially expressed genes. The size
of the dot represents the count number of genes in one KEGG term.

“RobustRankAggreg,” of which 110 were up-regulated and 75
were down-regulated in GBM samples. The top 50 DEGs were
visualized as heatmap (Figure 2A).

GO and KEGG Enrichment Analysis of
DEGs
To explore the biological relevance of DEGs, Gene Ontology
(Ashburner et al., 2000) and KEGG (Ogata et al., 2000)
pathway enrichment analyses were performed. GO and
KEGG analysis predicted that these genes were involved
in several important physiological processes. These genes
were significantly enriched in the following subclasses of
GO classification:mitotic sister chromatid segregation (GO:
0000070 P = 2.67E-10), mitotic nuclear division (GO: 0140014
1.28E – 09), sister chromatid segregation (GO: 0000819
P = 2.44E – 09), extracellular matrix component (GO:
0044420 P = 2.69E – 09),proteinaceous extracellular matrix
(GO: 0005578 P = 4.39E – 09) and extracellular matrix
structural constituent (GO: 0005201 P = 1.57E – 06). The
KEGG pathway analysis showed that the most enriched terms
were ECM-receptor interaction (hsa04512 P = 4.18E – 07),
protein digestion and absorption (hsa04974, P = 9.33E – 07)
(Figures 2B,C).

Co-expression Network Construction
and Visualization
Afterward, the WGCNA analysis was performed to construct
gene co-expression networks. We analyzed the 185 DEGs
identified above in the data of 152 glioblastoma samples from
TCGA and divided the 185 genes into three modules (Figure 3).
The blue and turquoise co-expressed modules were identified
to further analysis (Figure 4A). In order to explore whether
different modules have different biological functions, enrichment
analysis was also performed on the modules. It was found that
the biological processes of the blue module mainly focused on
cell proliferation and division. However, the turquoise module
focused on signal molecule delivery (Figure 4B). Whereafter,
the co-expression networks of the modules were exported into
Cytoscape and visualized (Shannon et al., 2003). The nodes were
defined as individual genes in the networks, and the edges were
defined as the interactions between genes (Figure 4C).

Construction of the Cox Proportional
Hazards Regression Model Based on
Hub Genes and Kaplan–Meier Analysis
The selected DEGs were further used to perform univariate
Cox analysis. We then performed a multivariate Cox
analysis using the top 20 genes significantly correlated with
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FIGURE 3 | Weighted gene co-expression network of glioblastoma. (A) Gene dendrograms obtained by average linkage hierarchical clustering of 185 genes based
on consensus Topological Overlap with the corresponding module colors indicated by the color row. (B) The eigengene networks were shown as heatmap. The
deeper the color expressed a high adjacency.

survival time, and constructed a Cox proportional hazards
regression model from 152 patients with glioblastoma. Based
on the above model, the following formula was used to
calculate the risk score for predicting survival time: risk
score = (0.2239∗expression level of CCL2) + (0.3375∗expression
level of IGFBP2) + (0.1516∗expression level of
PDPN) + (0.2276∗expression level of SLC12A5) (Figure 5).
According to the median risk score, 152 patients were divided
into high-risk (N = 76) and low-risk (N = 76) groups. The
5-year survival rate in the high-risk group was significantly
lower than low-risk group. Increased expression of SLC12A5,
CCL2, IGFBP2, and PDPN was associated with increased risk
scores (Figure 6A). The area under the ROC curve was 0.701
(Figure 6B), indicating the high predictive value. Meanwhile,
K-M curves confirmed that these three genes (CCL2, IGFBP2,
and PDPN) could be used as independent predictors of survival
in patients with glioblastoma (Figures 6C–F).

DISCUSSION

High-throughput microarray technology provides insights into
pathogenesis, molecular heterogeneity and treatment response.
The biological conclusions are inconsistent due to differences
in detection platforms and laboratory protocols and noisy
microarray data. To overcome these limitations, it is considerable
to analyze these data set separately and then summarize different
lists of results. In our research, we identified 185 DEGs for
GBM derived from independent profiling datasets by applying
“limma” algorithm and “RRA” method. This method using a
probabilistic model probabilistic model makes the algorithm
parameter free and robust to outliers, noise and errors, and
facilitates the calculation of significance probabilities for all the
elements in the final ranking. This strategy has been widely
applied to identify disease-related genes (Kolde et al., 2012; Xiao,
2020; Xiong et al., 2018).

Subsequently, the WGCNA analysis was performed on RNA-
seq data obtained from TCGA on those 185 DEGs to identify
two co-expressed modules (blue and turquoise). WGCNA is a
recently developed method to construct a weighted gene co-
expression network and a new analytic approach to move beyond
single-gene comparisons (Giulietti et al., 2018). The WGCNA
algorithm has been used to identify disease-related genes,
biological pathways and therapeutic targets for diseases such
as familial combined hyperlipidemia, Osteoporosis, Autistic,
and Alzheimer disease (Goh et al., 2007; He et al., 2011;
Tang et al., 2017). It also has been used in neuroscience
and oncology. Michael C Oldham performed the WGCNA in
normal human brains to identify co-expressed gene modules
that reflected the underlying cellular composition of brain
tissue and system-level molecules related to neuroanatomy
(Oldham et al., 2006). The large number of tumor RNA-
seq data and other high-throughput data resources such as
TCGA provide a broad opportunity for the application of
WGCNA in cancer research. To date, there have been similar
studies on gliomas. Zhou and colleagues revisited the gene
expression profile data downloaded from GEO to identify
novel genes associated with pediatric pilocytic astrocytoma
using the WGCNA analysis. They identified nine network
modules associated with pilocytic astrocytomas. The further
functional analysis revealed that these genes were involved in
the regulation of cell differentiation (Zhou and Man, 2016). S.
Horvath used WGCNA to identify several gene co-expression
modules and revealed abnormal spindle-like microcephaly-
associated protein (ASPM) that might function as a potential
molecular target in glioblastoma (Horvath et al., 2006). In
addition, Upton A and his colleagues used the WGCNA
algorithm and further identified 92 genes that were associated
with different evolutionary stages of glioblastoma (Upton and
Arvanitis, 2014). In our research, the biological processes of the
blue module mainly focused on cell proliferation and division.
While, the turquoise module focused on signal molecule delivery.
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FIGURE 4 | Gene co-expression modules associated with glioblastoma. (A) Heatmap of genes belonging to the co-expression module. Corresponding module
eigengene values (y-axis) across samples (x-axis). (B) Relevant gene ontology categories of enriched genes in the blue and turquoise modules. (C) Visualization of
the gene co-expression network of the blue and turquoise modules.
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FIGURE 5 | Cox proportional hazards regression model. Purple depths of the third column reveal the risk score of the low-risk and high-risk groups. Green depths of
the fourth column display the survival status and time of 152 glioblastomas. The lowest column shows the heatmap of the model genes.

FIGURE 6 | Kaplan–Meier curves and receiver operating characteristic (ROC). (A) Kaplan–Meier curve showed that the mortality in the high-risk group was higher
than that in the low risk group (P < 0.001). (B) Time-dependent ROC curve indicated a higher predictive value. The area under the ROC curve (AUC) was 0.701.
(C–F) Kaplan–Meier curves of the four predictive indicators.
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These results help to understand the occurrence and development
of glioblastoma to some extent, and further research is needed.

Cox proportional hazards regression has been widely used
to examine the prognostic value of candidate predictors in
human diseases (Degnim et al., 2018; Liu et al., 2018). Aoki
K used the Cox proportional hazards regression model to
study the effects of genetic variation and clinicopathological
factors on the survival of diffuse low-grade gliomas (LGGs).
The authors reported subtype-specific genetic alterations
could stratify patients with different LGG subtypes (Aoki
et al., 2018). By constructing the Cox proportional hazards
regression model, we selected an optimal four-gene model
(SLC12A5 + CCL2 + IGFBP2 + PDPN) for prognosis
prediction. Among the genes in this model, solute carrier
family 12, member 5 (SLC12A5) was considered as a neuron
marker, but it has not been reported in glioma-related studies.
Chemokine ligand 2 (CCL2) is one of several cytokine genes
and could be secreted by astrocytoma cells and myeloid
cells. Importantly, CCL2 then recruits regulatory T cells
(Tregs) and myeloid-derived suppressor cells (MDSCs) through
CCR4 and CCR2 as significant contributors to the potently
immunosuppressive glioma microenvironment (Carrillo-de
et al., 2012; Braganhol et al., 2015; Chang et al., 2016; Lu
et al., 2017). Overexpression of Insulin-like growth factor
binding protein 2 (IGFBP2) has been reported to be involved
in the progression of many types of cancer. In gliomas,
IGFBP2 is considered to be an oncogene that causes glioma
progression through integrin/ILK/NF-kB pathway (Phillips
et al., 2016). According to reports, Podoplanin (PDPN) was
a novel candidate gene that might play an essential role in
glioblastoma pathogenesis and response to treatment (Sailer
et al., 2013; Krishnan et al., 2018). However, these genes and
the related signaling pathways and mechanisms involved are still
not clear enough.

Our research has some limitations. First, in order to reduce
intensity of computer operation, we used the top 20 genes
significantly related to survival time to perform the multivariate
Cox analysis. But constructing a model with more genes might
get more meaningful results. Second, due to the lack of survival
data in the GEO datasets, we did not validate the prognostic
value of the four-gene model. Third, the expression levels of
corresponding proteins have not been verified in tissue samples.
Finally, we used the “RRA” method to identify DEGs, and in
this process, the tumor heterogeneity might be ignored. We

might lose some key genes and pathways in the development
of gliomas in the integration analysis. In summary, in this
study, we tried to apply a new procedure to screen out some
new biomarkers that can help the diagnosis and treatment of
glioblastoma. Although the methods are not new, combining
them with new process may bring new perspectives. We identified
a four-gene (SLC12A5 + CCL2 + IGFBP2 + PDPN) Cox
proportional hazards regression model for prognosis prediction.
Although the specific mechanism remains to be studied, these
genes could be considered as risk factors for GBM patients and
novel therapeutic targets.
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