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As crossbreeding is extensively used in some livestock species, we aimed to evaluate

the performance of single-step GBLUP (ssGBLUP) andweighted ssGBLUP (WssGBLUP)

methods to predict Genomic Estimated Breeding Values (GEBVs) of crossbred animals.

Different training population scenarios were evaluated: (SC1) ssGBLUP based on

a single-trait model considering purebred and crossbred animals in a joint training

population; (SC2) ssGBLUP based on a multiple-trait model to enable considering

phenotypes recorded in purebred and crossbred training animals as different traits; (SC3)

WssGBLUP based on a single-trait model considering purebred and crossbred animals

jointly in the training population (both populations were used for SNPweights’ estimation);

(SC4) WssGBLUP based on a single-trait model considering only purebred animals in the

training population (crossbred population only used for SNP weights’ estimation); (SC5)

WssGBLUP based on a single-trait model and the training population characterized by

purebred animals (purebred population used for SNP weights’ estimation). A complex

trait was simulated assuming alternative genetic architectures. Different scaling factors

to blend the inverse of the genomic (G−1) and pedigree (A−1
22 ) relationship matrices were

also tested. The predictive performance of each scenario was evaluated based on the

validation accuracy and regression coefficient. The genetic correlations across simulated

populations in the different scenarios ranged from moderate to high (0.71–0.99). The

scenario mimicking a completely polygenic trait (h2
QTL

= 0) yielded the lowest validation

accuracy (0.12; for SC3 and SC4). The simulated scenarios assuming 4,500 QTLs

affecting the trait and h2
QTL

= h2 resulted in the greatest GEBV accuracies (0.47; for SC1

and SC2). The regression coefficients ranged from 0.28 (for SC3 assuming polygenic

effect) to 1.27 (for SC2 considering 4,500 QTLs). In general, SC3 and SC5 resulted in

inflated GEBVs, whereas other scenarios yielded deflated GEBVs. The scaling factors

used to combine G−1 and A−1
22 had a small influence on the validation accuracies, but a

greater effect on the regression coefficients. Due to the complexity of multiple-trait models

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00263
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00263&domain=pdf&date_stamp=2020-04-09
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:britol@purdue.edu
https://doi.org/10.3389/fgene.2020.00263
https://www.frontiersin.org/articles/10.3389/fgene.2020.00263/full
http://loop.frontiersin.org/people/835600/overview
http://loop.frontiersin.org/people/887821/overview
http://loop.frontiersin.org/people/909009/overview
http://loop.frontiersin.org/people/836367/overview
http://loop.frontiersin.org/people/778979/overview
http://loop.frontiersin.org/people/36535/overview


Alvarenga et al. ssGBLUP Approaches for Crossbred Evaluation

and WssGBLUP analyses, and a similar predictive performance across the methods

evaluated, SC1 is recommended for genomic evaluation in crossbred populations with

similar genetic structures [moderate-to-high (0.71–0.99) genetic correlations between

purebred and crossbred populations].

Keywords: crossbred performance, ssGBLUP, simulated dataset, training population design, WssGBLUP

INTRODUCTION

Crossbreeding schemes are paramount for some livestock
production systems in enabling the exploitation of
complementarity among genetically-divergent breeds and
heterosis effects (Wei and van der Werf, 1994). In tropical
countries, crosses between two cattle sub-species are widely
used to combine climatic adaptability (e.g., from Bos taurus
indicus; Zebu breeds) and productive performance (e.g., from
Bos taurus taurus; Taurine breeds) traits (Gregory and Cundiff,
1980; Mendonça et al., 2019). Genetic selection is performed
on purebred animals in these production systems, aiming to
optimize the performance of crossbred progeny. However, this
poses various challenges to the breeding programs. For instance,
there are large differences in additive and non-additive genetic
parameters in traits measured in purebred or crossbred animals
(Bijma and van Arendonk, 1998), which might constrain the
pooling of all animals into a single training population for
genomic analysis (Ribeiro et al., 2019). However, the large
majority of livestock breeding programs do not account for non-
additive genetic effects when estimating breeding values, and
most economically important traits in livestock are not largely
influenced by non-additive genetic effects (Varona et al., 2018).

Recording large-scale phenotypes on crossbred animals
raised in commercial herds is usually a challenge, especially
for hard- or expensive-to-measure traits, such as individual
feed intake (Ibánêz-Escriche et al., 2009). Over time, several
methods to perform genetic evaluations accounting for
purebred and crossbred information have been proposed
(Bijma and van Arendonk, 1998; Nayee et al., 2016; Junqueira
et al., 2017). For instance, Wei and van der Werf (1994)
proposed a model of breeding value prediction for both
purebred and crossbred animals that maximizes the genetic
response in crossbred animals, even for unknown, or
inappropriate values of correlations of purebred and crossbred
performances, and crossbreeding heritability. However, in the
genomic era, Ibánêz-Escriche et al. (2009) have suggested
that genomic information can increase the response to
selection for crossbred performance even when selecting only
purebred animals.

Genomic selection (Meuwissen et al., 2001) has been
proven to be a useful tool to increase genetic gain, especially
for difficult or expensive-to-measure and/or low-heritability
traits. In this context, several methods have been proposed
to calculate Genomic Estimated Breeding Values (GEBV) for
livestock, such as the single-step Genomic Best Linear Unbiased
Prediction (ssGBLUP; Misztal et al., 2009; Aguilar et al.,
2010; Christensen and Lund, 2010). The ssGBLUP enables

combining the pedigree-based relationship matrix (A) with the
genomic relationship matrix (G) into a hybrid matrix (H).
This increases the accuracy and reduces the prediction bias
of GEBVs when compared to those yielded from multi-step
genomic predictions (Aguilar et al., 2010; Lourenco et al., 2015;
Guarini et al., 2018). Recent studies have evaluated the use of
purebred information to predict crossbred performance using
the ssGBLUP method (Lourenco et al., 2016; Tusell et al.,
2016; Pocrnic et al., 2019). In this context, Lourenco et al.
(2016), using simulated crossbred pig datasets, concluded that
the highest GEBV accuracies were attained when using a training
population combining both purebred and crossbred animals’
datasets. However, the ssGBLUP assumes equal variances for
all Single Nucleotide Polymorphisms (SNPs), which may not
be the most appropriate assumption from a biological point
of view (Meuwissen et al., 2001; VanRaden, 2008; Goddard
and Hayes, 2009). In a recent study, Porto-Neto et al. (2014)
reported that nine out of ten traits evaluated were influenced
by major genes. Consequently, methods that account for
locus-specific variance (e.g., weighted ssGBLUP, WssGBLUP;
Zhang et al., 2016) have been proposed. The main aim
of these methods is to increase the predictive performance
of GEBVs using computationally efficient tools that can be
easily implemented in commercial breeding programs. In the
WssGBLUP method, different SNP weights are used when
calculating the Gmatrix.

The WssGBLUP has been successfully applied to several
genomic prediction studies (Zhang et al., 2016; Lourenco
et al., 2017; Guarini et al., 2019). However, to our best
knowledge, there are no reports evaluating the prediction
ability of WssGBLUP in crossbred animals, especially in F1
populations. Therefore, we aimed to compare the predictive
performance of ssGBLUP and WssGBLUP using different
training populations (based on purebred and/or crossbred
animals) and alternative statistical models (single- or multiple-
trait). One alternative for evaluating the predictive performance
of genomic models is comparing GEBVs and True Breeding
Values (TBVs). However, in practice, the TBVs are usually
unknown and therefore simulated datasets can be advantageous
when comparing models and genomic prediction approaches. In
this context, we evaluated five simulated scenarios mimicking
beef cattle populations (two purebred lines and four F1
populations), in which the trait under evaluation differed in
terms of the number of Quantitative Trait Loci (QTLs) and the
trait heritability (h2) explained by them (h2QTL). Furthermore,
the impact of the genetic distance between training and
validation populations used in the crossbreeding scheme was
also investigated.
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MATERIALS AND METHODS

Only (computationally) simulated datasets were used in this
study. Therefore, the approval of an Institutional Animal Care
and Use Committee was not required.

Simulated Population
Datasets of purebred and crossbred animals were simulated based
on a beef cattle production system. The purebred populations
were simulated to mimic Bos taurus indicus (Line1; Zebu cattle)
or Bos taurus taurus (Line2; Taurine cattle) animals. Crossbred
animals (F1) were originated from the crossing between females
from Line1 and males from Line2. Phenotypes and TBVs were
simulated for a trait with a h2 equal to 0.33 and phenotypic
variance equal to 0.13. This was done to mimic the trait residual
feed intake (RFI; an indicator of feed efficiency), which is a
very important trait in beef cattle breeding programs (Branco
et al., 2014) and has a similar genetic architecture compared
to many other economically important (quantitative) traits
in livestock.

The historical population consisted of 1,020 generations
(Figure 1). During the first 1,000 generations (i.e., from
generation −1,020 to generation −20), 2,000 individuals (1,000
males and 1,000 females) were randomly mated (Brito et al.,
2011; Lourenco et al., 2016). From generation −19 to generation
zero, a first “bottleneck” (i.e., population reduction) was created
by reducing the total number of individuals from 2,000 to
1,500 (750 males and 750 females), which were also randomly
mated. Thereafter, a second “bottleneck” was created by randomly
sampling 100 males and 100 females from generation zero (1,500
individuals) of the historical population. These 200 individuals
were used to create the expansion population (POP) containing
64,000 individuals. The population reductions (“bottlenecks”)
were simulated to create an initial level of linkage disequilibrium
(LD), which will be further explained.

Animals in POP were subjected to random selection, mating,
and culling for eight generations. To increase the number of
animals in POP, we assumed that each female had five offspring,
with the same proportion of males and females. At the end of
the eighth generation, 64,000 animals were available in POP,
which was then used to create Line1 and Line2. Line1 was
developed based on 32,000 females and 640 males, and Line2
was developed based on 3,200 females and 64 males; all of them
were randomly selected from the eighth generation of POP. In
subsequent generations of Line1 and Line2, each female had one
offspring (with the same probability of being male or female),
and the replacement ratio for sires and dams was 0.60 and 0.20,
respectively. Selection and culling in both Line1 and Line2 were
performed based on the lowest and highest Estimated Breeding
Values (EBVs), respectively. EBVs were estimated based on the
Best Linear Unbiased Prediction method (Henderson, 1975),
through an Animal Model and considering the True Additive
Genetic Variance. After 10 generations in Line1 (Bos taurus
indicus), and 30 in Line2 (Bos taurus taurus), the average LD
values (between adjacent SNPs) were similar to those reported
for Bos taurus indicus (r2 = 0.20) and Bos taurus taurus (r2 =

0.33) (Villa-Angulo et al., 2009). Both LD values were assessed

in the last generation using the distance between SNPs up
to 0.05 cM.

The F1 population originated from the random mating of
3,000 females from Line1 with 60 males from Line2. A total
of four F1 populations were created and they differed with
regards to the parental generation used in the crossbreeding
scheme. Parental animals of the F1 populations were from: (i)
F1-1: generations seven and 27; (ii) F1-2: eight and 28; (iii)
F1-3: nine, and 29; (iv) F1-4: ten and 30; in Line1 and Line2,
respectively. The differences in the generation of Line1 and Line2
(e.g., seven for Line1 and 27 for Line2) are due to the simulation
scheme designed to mimic the current pattern of LD and genetic
distance between Nellore and Angus, represented by Line1 and
Line2, respectively.

Simulated Genotypes
The genomic prediction was performed using simulated
genotypes for animals from generations six to eight (for Line1),
generations 26 to 28 (for Line2), and all F1 individuals.
Animals from the last two generations of the purebred lines
(i.e., generations nine and ten for Line1, and 29 and 30 for
Line2) were not included in the analyses in order to maintain
a genetic distance between training and validation populations
(described below). The simulated genotypes consisted of 52,886
bi-allelic SNPs distributed across 29 chromosomes (autosomes),
mimicking the bovine genome. The size of the whole genome
was ∼2,696.54 cM. The number of SNPs and the size of
each chromosome was defined based on information retrieved
from the Illumina Bovine 50K Beadchip (https://support.
illumina.com/downloads/bovinesnp50v2.html), as suggested by
Matukumalli et al. (2009). The SNPs were evenly spaced within
each chromosome and the initial allele frequency for SNPs
and QTLs were equal to 0.50 in the first generation of the
historical population.

Different h2QTL and numbers of QTLs were used in this study:

(i) h2QTL equal to zero, to represent a completely polygenic trait

(SIM1); (ii) h2QTL equal to 1/3 of the trait h2 (i.e., h2QTL equal to

0.11), and 198 QTLs (SIM2); (iii) h2QTL equal to 1/3 of the trait

h2 and 4,500 QTLs (SIM3); (iv) h2QTL equal to the trait h2 (i.e.,

0.33), and 198 QTLs (SIM4); (v) h2QTL equal to the trait h2 and
4,500 QTLs (SIM5). The heritability only due to the QTL effects,
h2QTL, represents the proportion of the total genetic variation
of a trait that is due to a limited number of QTLs (i.e., 198
or 4,500) out of all the markers simulated. In other words, it
does not indicate the complete inheritance mode of the trait,
but the proportion of the total genetic variance explained by the
simulated QTLs. The number of QTLs (198) was defined based
on a systematic review performed for RFI in beef cattle (Duarte
et al., 2019). In addition, simulations considering 4,500 QTLs
were also performed, assuming that not all QTLs for RFI are
currently known.

The effect of each QTL was sampled from a Gamma
distribution with a shape parameter of 0.40. The mutation rate
for both SNPs and QTLs was considered as 10−5 per generation
and locus. The QTL effect captured by the SNP marker can
potentially change across populations and generations due to
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FIGURE 1 | Simulated population scheme representing bottleneck in historical population, breed differentiation, and origin of F1 for all simulated scenarios. The Bos

taurus indicus population is represented by Line1, Bos taurus taurus is represented by Line2.

the population-specific allele frequency and LD levels between
SNP markers and QTLs. In order to minimize the effects of
the simulation (starting values) in the results, ten independent
replicates were carried out for each scenario. Simulations were
performed using the QMSim software (Sargolzaei and Schenkel,
2009).

Genotypic Quality Control
Genotypic quality control was performed independently for each
population (Line1, Line2, and F1 populations) and replicated.
The genotype quality control kept SNPs with minor allele
frequency (MAF) higher 0.05, and departure from the Hardy–
Weinberg Equilibrium (estimated as the difference between
expected and observed frequency of heterozygous) lower than
0.15. Only common SNPs across populations were kept for
further analyses. A summary of the descriptive statistics for
Line1, Line2, and F1 in each scenario is shown in Table 1.
Detailed descriptive statistics for each replicate are shown in
the Supplementary Material (Tables S1A–S1E). The PREGSF90
software (Aguilar et al., 2014) was used to perform the genotypic
quality control.

Genetic Connectedness Between
Populations
Principal Component Analysis (PCA)
In order to better assess the population composition of the
animals and to graphically display the results, we performed a
PCA by decomposition of the genomic relationship matrix (G).
Principal components were assessed using the flag “–pca” of
PLINK 2.0 (Chang et al., 2015).

Consistency of Gametic Phase
The consistency of gametic phase was defined by the Pearson
correlation of signed LD (measured by r) values between two
populations [Line1 vs. Line2; Line1 vs. F1 (F1-1, F1-2, F1-3, and
F1-4); Line2 vs. F1 (F1-1, F1-2, F1-3, and F1-4)]. The LD level
between two SNP markers was measured by r2, in which r2 =

D2

f (A)f (a)f (B)f (b) ; where D = f (AB)−f (A) f (B), and f (AB), f (A),

f (a), f (B), and f
(

b
)

are observed frequencies of haplotype AB
and alleles A, a, B, and b, respectively (Hill and Robertson, 1968).
The LD levels were obtained by the flag “–r2 dprime” using the
PLINK 2.0 software (Chang et al., 2015). The signed r value was
obtained by taking the square root of the r2 value and assigning
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TABLE 1 | Mean and standard deviation (inside parentheses) of phenotypes (X ), inbreeding coefficients (F), average allele A frequency (ρA), average linkage disequilibrium

(LD), and number of markers before (SNPbeforeQC), and after (SNPafterQC ) genotypic quality control for Line1, Line2, and F1 populations, in the different scenarios (SIM).

SIM Pop. X F ρA
aLD SNPbeforeQC

bSNPafterQC

SIM1 Line1 −0.75 (0.136) 0.02 (0.009) 0.33 (0.107) 0.20 (0.005) 48,261 44,834

Line2 −2.83 (0.131) 0.12 (0.026) 0.30 (0.125) 0.30 (0.010)

F1 −1.84 (0.130) 0.02 (0.013) 0.33 (0.110) 0.21 (0.007)

SIM2 Line1 −0.72 (0.135) 0.02 (0.009) 0.34 (0.107) 0.19 (0.006) 48,241 43,995

Line2 −2.69 (0.125) 0.13 (0.026) 0.29 (0.126) 0.31 (0.009)

F1 −1.76 (0.127) 0.02 (0.014) 0.33 (0.109) 0.21 (0.005)

SIM3 Line1 −0.73 (0.136) 0.02 (0.009) 0.34 (0.107) 0.19 (0.006) 48,261 44,097

Line2 −2.80 (0.130) 0.13 (0.026) 0.29 (0.126) 0.31 (0.017)

F1 −1.82 (0.130) 0.02 (0.013) 0.33 (0.110) 0.21 (0.008)

SIM4 Line1 −0.69 (0.129) 0.02 (0.010) 0.34 (0.106) 0.19 (0.005) 48,250 42,142

Line2 −1.98 (0.099) 0.15 (0.030) 0.28 (0.129) 0.36 (0.034)

F1 −1.37 (0.111) 0.02 (0.016) 0.33 (0.109) 0.22 (0.007)

SIM5 Line1 −0.74 (0.136) 0.02 (0.009) 0.34 (0.106) 0.19 (0.006) 48,229 42,410

Line2 −2.70 (0.120) 0.14 (0.027) 0.28 (0.129) 0.36 (0.025)

F1 −1.76 (0.126) 0.02 (0.015) 0.32 (0.109) 0.22 (0.007)

SIM, Simulated dataset; Pop., Population; SIM1, simulated dataset with heritability explained by the quantitative trait loci (h²QTL) = 0; SIM2, simulated dataset with h²QTL = 0.11 and

198 QTLs; SIM3, simulated dataset with h²QTL = 0.11 and 4,500 QTLs; SIM4, simulated dataset with h²QTL = 0.33 and 198 QTLs; SIM5, simulated dataset with h²QTL = 0.33 and

4,500 QTLs; Line1, Line1 population at six, seven and eight generations; Line2, Line2 population at 26, 27, and 28 generations. All parameters were estimated considering all the ten

independent replicates.
aLD was calculated between adjacent SNPs from QMSim.
bSNPafter , overlapping markers segregating in all three populations.

the appropriate sign based on the D value. Data was sorted into
bins based on pair-wise SNP marker distance to determine the
breakdown in the consistency of gametic phase across distances,
and to assess the consistency of gametic phase at the smallest
distances in the current panel, given the number of genotyped
SNPs. For each distance bin, the signed r values were correlated
between all pairs of populations using the cor basic function of
the R statistical software (R Core Team, 2019).

Allele A Frequency Correlation
Assessment of the allele A frequency correlation across
populations was based on the Pearson correlation. The allele
frequency was calculated for each population individually using
the option “–freq” from PLINK 2.0 (Chang et al., 2015).

Genomic Prediction of Breeding Values
Methodological Scenarios
Comparisons between the ssGBLUP and WssGBLUP methods
were based on the predictive ability of the GEBVs of the F1
animals. In other words, we aimed to identify the best scenario
where the selection of purebred animals would result in the
greatest crossbred performance (indicated by the GEBVs of
crossbred animals). A total of five alternative scenarios (SC)
were investigated: (SC1) ssGBLUP based on a single-trait model
considering both purebred and crossbred animals in the training
population; (SC2) ssGBLUP based on a multiple-trait model
considering phenotypes recorded on purebred and crossbred
training animals as different traits; (SC3) WssGBLUP based
on a single-trait model including both purebred and crossbred
animal datasets in the training population (and information

from the three populations to estimate the SNP weights—further
described); (SC4) WssGBLUP based on a single-trait model
considering only purebred animals in the training population
(and only the information from crossbred animals to estimate the
SNP weights); (SC5) WssGBLUP based on a single-trait model
considering only purebred animals in the training population
(and their information to estimate the SNP weights). The
main goal of SC4 was to account for the crossbred allele
frequencies during the G calculation, and SC5 was performed
to evaluate the use of only purebred information to predict
crossbred performance.

The animals included in the training populations were
purebred animals from generations six, seven, and eight (Line1),
and generations 26, 27, and 28 (Line2). When crossbred animals
were included in the training population, animals from F1-1 and
F1-2 populations were used. The scenarios used to create the
different training populations are summarized in Table 2. F1-
3 and F1-4 were used as two different validation populations
in all scenarios, in order to assess the impact of the genetic
distance between training and validation populations in the
genomic predictions.

ssGBLUP and WssGBLUP
The ssGBLUP and WssGBLUP methods were used to combine
phenotypic, pedigree, and genotypic information. Therefore, the
inverse of the H matrix (Misztal et al., 2009; Aguilar et al., 2010;
Christensen and Lund, 2010) used in this study was created as:

H−1 = A−1 +

[

0 0

0 τ (0.95G+ 0.05A22)
−1

− ωA−1
22

]

(1)
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TABLE 2 | Structure of scenarios (SC) using the single-step Genomic Best Linear

Unbiased Prediction (ssGBLUP) or weighted ssGBLUP (WssGBLUP) approaches,

in terms of training population and single nucleotide polymorphism (SNP) weights.

aScenario Training population bSNP weights Statistical model

SC1 Purebred + Crossbred cN/A Single-trait model

SC2 Purebred + Crossbred N/A Multiple-trait model

SC3 Purebred + Crossbred Purebred + Crossbred Single-trait model

SC4 Purebred Crossbred Single-trait model

SC5 Purebred Purebred Single-trait model

aSC1, ssGBLUP using a single-trait model and the training population composed of

purebred and crossbred animals; SC2, ssGBLUP using a multiple-trait model and the

training population composed of purebred and crossbred animals; SC3, WssGBLUP

using a single-trait model, and training population and SNP weights based on both

purebred and crossbred animals; SC4,WssGBLUP using a single-trait model, and training

population composed only of purebred animals, and weights estimated from crossbred

animals; and SC5, WssGBLUP using a single-trait model, and training population and

SNP weights based only on purebred animals.
bPopulation used to estimate the SNP weights in the WssGBLUP.
cN/A, not applicable.

Where A is the pedigree-based relationship matrix, which
included up to five generations of animals with phenotypes or
genotypes, A22 is the subset of the Amatrix related to genotyped
animals, the τ and ω values will be described further, and G is
the genomic relationship matrix, which was created as follows
(VanRaden, 2008):

G =
Z D Z′

k
, withZ = (M− P) (2)

WhereD is a diagonal matrix with weights, k is a scale parameter
defined as 2

∑n
j=1 pj(1− pj), M is a matrix of n SNPs for

each animal, and P is a matrix containing two times the allele
frequency of the second allele p at locus j (pj). In the ssGBLUP
analyses, the D matrix was assumed as an identity matrix. In
the WssGBLUP analyses, D was a diagonal matrix with values
given by weights derived from the SNP solutions, as described
by Wang et al. (2012). The SNP weights were obtained by back
solving the GEBVs using the software BLUPF90 (Strandén and
Garrick, 2009; Wang et al., 2012). First of all, the ssGBLUP was
performed by using Dmatrix as an identity matrix (I). Then, the
SNP weights were derived based on Strandén and Garrick (2009)
and Wang et al. (2012):

û = λDM′G−1(GEBVs) (3)

Where û is a vector of estimated SNP effects, λ is the ratio of
SNP variance to genetic variance, and GEBVs are the genomic
estimated breeding values. The SNP weights to be considered in
the next iteration (second iteration) were derived from the SNP
effects as SNP variances:

dj = û2j 2pj(1− pj) (4)

Where dj is the j SNP weight (equivalent to j SNP variance); û is
a vector of estimated j SNP effect; and p is the allele frequency of
j SNP.

Consequently, a total of two iterations (i.e., using the identity
matrix plus one iteration using the D matrix derived from SNP
solutions) were used in the WssGBLUP because the second
iteration provided higher GEBV accuracies in the preliminary
analysis (Table S2). The SNP solutions were estimated using the
POSTGSF90 software (Aguilar et al., 2014).

As genomic datasets were simulated, all individuals included
in the pedigree also had genotypes. In order to make G−1 and
A22

−1 matrices compatible (Misztal et al., 2017; Oliveira et al.,
2019), different values for the τ (from 0.9 to 2.5; defined at every
0.1) and ω (from 0.5 to 1.2; defined at every 0.1) parameters
were tested. These ranges were chosen based on the literature
(Misztal et al., 2017; Oliveira et al., 2019). As G−1 and A22

−1

matrices were basically the same in all scenarios (i.e., the A22
−1

matrix was the same in all scenarios, and G−1 matrix was the
same in SC1, SC2, and SC3; and training crossbred animals were
excluded from SC4 and SC5, but the validation crossbred animals
remained on all SCs), τ and ω parameters were only tested
using SC1. Thereafter, the tuning parameters that increased the
accuracy and reduced the prediction bias of GEBVs were used
in all analyses. Details about the methods used to calculate the
accuracy and bias (based on regression coefficient) of GEBVs
are described in section accuracy and regression coefficient. The
inbreeding coefficient was estimated using the BLUPF90 family
software (Misztal et al., 2002).

Statistical Models
The ssGBLUP and WssGBLUP analyses were performed using
the BLUPF90 software (Misztal et al., 2002), based on single- and
multiple-trait models. The single-trait models used in SC1, SC3,
SC4, and SC5 are described as:

y = Xb+ Zu+ e (5)

Where y, b, u and e are the vectors of observations; fixed effects
(mean, sex, and population); additive genetic random effects, u∼
N(0, σ 2

uH); and random residuals, e ∼ N(0,σ 2
e I), respectively. X

and Z are the incidence matrices for b and u, respectively. σ 2
u and

σ 2
e are the additive genetic and residual variances, respectively.

Variance components were independently estimated for each
scenario using the AIREMLF90 software (Misztal et al., 2002) and
the Amatrix, since it has been currently recommended in several
ssGBLUP and WssGBLUP studies (Ali et al., 2019; Oliveira et al.,
2019; Pocrnic et al., 2019). The multiple-trait model used in SC2
can be described as:

y3=X3b3+Z3u3+ e3 (6)

Where y3 is a vector of observations considering records from
Line1, Line2, and F1 as three different traits; b3, u3, and e3
are the vectors of fixed effects (mean and sex), additive genetic
random effects, u3 ∼ N(0,G0 ⊗ H), and, random residuals,
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e3 ∼ N(0,R ⊗ I), respectively. X3 and Z3 are the incidence
matrices for the fixed and additive genetic effects, respectively.G0

and R are the additive genetic and residual variance-covariance
matrices, respectively, described as:

G0 =





σ 2
uLine1 σuLine1 ,uLine2 σuLine1 ,uF1

σuLine2 ,uLine1 σ 2
uLine2 σuLine2 ,uF1

σuF1 ,uLine1 σuF1 ,uLine2 σ 2
uF1



 (7)

R =





σ 2
eLine1 0 0
0 σ 2

eLine2 0
0 0 σ 2

eF1



 (8)

Where σ 2
uLine1 , σ

2
uLine2

, and σ 2
uF1 are the additive genetic variances

for Line1, Line2, and F1, respectively; σu is the additive genetic
(co)variance between pairs of populations; σ 2

eLine1 , σ
2
eLine2 , and σ 2

eF1
are the residual variances for Line1, Line2, and F1, respectively.

Accuracy and Regression Coefficient
The predictive ability of tested scenarios was evaluated based
on a comparison of GEBVs and True Breeding Values (TBVs)
of F1 populations. The main goal of the current study was
to evaluate the predictive performance of genomic models
when purebred parents are selected to produce crossbred
progeny with higher genetic breeding value and improved
performance, both indicated by higher GEBVs. Therefore,
accuracies of genomic predictions were estimated as the Pearson
correlation coefficients calculated between GEBVs and TBVs,
for the validation populations (F1-3 and F1-4). In addition, the
regression coefficient (an indicator of inflation or deflation of the
TBVs on GEBVs) was assessed using a linear regression model
of TBVs on GEBVs, for the validation animals. Paired Student’s
t test (Rosner, 1982) was applied to verify significant differences
(P < 0.05) between accuracies and the regression coefficient from
different scheme pairs by using the t-test function available in the
R software (R Core Team, 2019).

RESULTS

Variance and Covariance Components
Genetic parameters and (co)variance components estimated in
the different simulated scenarios using theAmatrix are shown in
Table 3. In general, variance components estimated from SIM1,
SIM2, SIM3, and SIM5 ranged from 0.03 to 0.05 for the additive
genetic variance, and from 0.08 to 0.09 for the residual variance.
Heritability estimated in SIM1, SIM2, SIM3, and SIM5 ranged
from 0.26 to 0.40, which were consistent with the initial value
used in the simulation process (h2 equal to 0.33). For the Line2
and F1 populations in the SIM4, additive genetic variance and h2

were underestimated (additive genetic variance equal to 0.01, and
h2 ranged from 0.11 to 0.13) in comparison to the other scenarios.
Genetic correlations across populations in the different scenarios
ranged from moderate to high (from 0.71 to 0.99).

Genetic Connectedness Between
Populations
Principal Component Analysis
Both purebred and F1 populations clustered separately, and
the F1 animals clustered between both purebreds (as expected).
This is shown by the first and second principal components
(PC) of the genomic relationship matrix, in which the first
principal component explained from 79 to 82% of the total
variation (Figure 2). There was no projection overlapping in all
five simulated scenarios, indicating that the populations were
genetically divergent based on the relationship calculated from
segregating SNPs.

Consistency of Gametic Phase
As presented in Figure 3, the consistency of gametic phase
was reasonably low within purebred lines and low-to-moderate
between purebred and crossbred individuals, even at the smallest
SNP distance bins (from 0 to 60 kb). The consistency of gametic
phase of SNP pairs separated by distances of up to 60 kb between
Line1 and Line2 ranged from 0.13 (SIM4) to 0.22 (SIM1).

Scaling Factors Used to Combine G−1 and
A−1
22Matrices

Different values for τ (from 0.9 to 2.5) and ω (from 0.5 to 1.2)
parameters were tested in SC1 when combining the G−1 and
A22

−1 matrices. Changes in accuracies and regression coefficients
when using these different values are shown in Figures 4 and 5,
respectively. In summary, small or no variation in the validation
accuracies were observed when comparing different values of τ

and ω (Figure 4), except for the combination of low τ and high
ω that resulted in the lowest accuracies. This might be explained
by an inappropriate combination of tuning parameters. However,
a great impact of τ and ω combination was observed in the
regression coefficients (Figure 5). Among all tested values, the
combination of τ equal to 2.2 and ω equal to 0.5 yielded the least
biased GEBVs (i.e., the regression coefficient was closer to one).
Consequently, those τ and ω values were used in further analyses
for all scenarios evaluated.

With regards to the different simulated scenarios, when only
a fraction (or nothing) of the trait h2 was attributed to the QTL
effects (h2QTL), most combinations of τ and ω parameters yielded
less accurate and highly biased GEBVs (validation accuracies
were low and the regression coefficients were far from one). This
suggests that the genetic architecture of the trait has a great
effect on the performance of genomic predictions (Daetwyler
et al., 2010). In this context, when the number of QTLs was high
(4,500) and the h2 explained by them was equal to 0.33 (i.e., h2QTL
equal to the trait h2), greater validation accuracies were observed
(Figures 6A,C) and the GEBV bias decreased (Figures 6B,D).

Genomic Predictions
Due to a large number of scenarios investigated, the Results
section will be split according to the validation population (F1-3
or F1-4).
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TABLE 3 | Mean and standard deviation (in parentheses) of variance and covariance components and genetic parameters estimated for Line1, Line2, and F1 populations.

Line1 Line2 F11 rLine1,Line2 rLine1,F1 rLine2,F1

σ 2
u σ 2

e h2 σ 2
u σ 2

e h2 σ 2
u σ 2

e h2

SIM1 0.05 (0.008) 0.08 (0.006) 0.40 (0.044) 0.05 (0.005) 0.09 (0.003) 0.36 (0.027) 0.04 (0.005) 0.09 (0.004) 0.33 (0.035) 0.71 (0.183) 0.81 (0.127) 0.95 (0.044)

SIM2 0.05 (0.004) 0.08 (0.004) 0.39 (0.026) 0.04 (0.005) 0.09 (0.002) 0.31 (0.030) 0.04 (0.005) 0.09 (0.004) 0.28 (0.034) 0.83 (0.147) 0.87 (0.125) 0.98 (0.019)

SIM3 0.05 (0.004) 0.09 (0.004) 0.36 (0.030) 0.05 (0.004) 0.08 (0.003) 0.36 (0.026) 0.04 (0.006) 0.09 (0.004) 0.32 (0.036) 0.83 (0.141) 0.91 (0.085) 0.95 (0.054)

SIM4 0.04 (0.005) 0.09 (0.004) 0.34 (0.032) 0.01 (0.004) 0.09 (0.002) 0.11 (0.037) 0.01 (0.003) 0.10 (0.001) 0.13 (0.026) 0.96 (0.089) 0.99 (0.009) 0.96 (0.085)

SIM5 0.05 (0.005) 0.08 (0.004) 0.38 (0.031) 0.03 (0.006) 0.09 (0.003) 0.27 (0.043) 0.03 (0.006) 0.09 (0.005) 0.26 (0.044) 0.74 (0.132) 0.86 (0.098) 0.94 (0.057)

SIM1, simulated dataset with heritability explained by the quantitative trait loci (h²QTL) = 0; SIM2, simulated dataset with h²QTL = 0.11 and 198 QTLs; SIM3, simulated dataset with

h²QTL = 0.11 and 4,500 QTLs; SIM4, simulated dataset with h²QTL = 0.33 and 198 QTLs; SIM5, simulated dataset with h²QTL = 0.33 and 4,500 QTLs; σ 2
u , additive genetic variance;

σ 2
e , residual variance; h

2, heritability; rLine1,Line2, genetic correlation between Line1 and Line2; rLine1,F1, genetic correlation between Line1 and F1; rLine2, F1, genetic correlation between

Line2 and F1. 1F1, F1-1, and F1-2 populations.

F1-3 Validation Population
SIM1 is the simulation scenario that yielded the lowest
GEBV accuracy and the highest bias estimates (e.g., regression
coefficient far from one). The average GEBV accuracies in SIM1
ranged from 0.14 (SC3 and SC4) to 0.15 (SC1, SC2, and SC5;
Figure 7A), and the regression coefficients ranged from 0.33
(SC3) to 0.52 (SC2 and SC4; Figure 7B). On the other hand,
the simulated scenario with the highest accuracy and lowest bias
(e.g., regression coefficient close one) was the SIM5. In SIM5, the
average GEBV accuracies ranged from 0.44 (SC4 and SC5) to 0.47
(SC1 and SC2; Figure 7I), and the regression coefficients ranged
from 0.87 (SC3 and SC5) to 1.27 (SC2; Figure 7J).

F1-4 Validation Population
Similarly to the F1-3 validation set, the simulated scenarios
SIM1 and SIM5 yielded the lowest and highest predictive
abilities, respectively. Using the F1-4 validation population (one
generation farther from the F1-3 training population) from the
SIM1 dataset, the GEBV validation accuracy reduced by 13.98%
when compared to the F1-3 validation set. Thus, the GEBV
accuracies ranged from 0.12 (SC3 and SC5; SIM1) to 0.15 (SC2;
SIM1; Figure 8A), and regression coefficients ranged from 0.28
(SC3; SIM1) to 0.52 (SC2; SIM1; Figure 8B). Based on the F1-
4 validation set from SIM5, the validation accuracy reduced by
3.86% compared to F1-3. The accuracies ranged from 0.42 (SC4
and SC5; SIM5) to 0.46 (SC1, SC2, and SC3; SIM5; Figure 8I),
and the regression coefficients ranged from 0.87 (SC5; SIM5) to
1.27 (SC2; SIM5; Figure 8J).

The GEBV accuracies and regression coefficients for
the other simulated scenarios (SIM2–SIM4) are presented
in Figures 7C–G, 8C–G for F1-3 and F1-4 validation
populations, respectively. Furthermore, the GEBV accuracies
and regression coefficients calculated for each replicate
are shown in Tables S3, S4 for F1-3 and F1-4 validation
populations, respectively.

DISCUSSION

Variance and Covariance Components
Genetic correlations for the simulated trait across populations
in the different scenarios ranged from moderate-to-high, which
indicates that Line1, Line2, and F1 are moderate-to-high

genetically correlated. Núñez-Dominguez et al. (1993) reported
a moderate-to-high genetic correlation between purebred-
crossbred populations (ranging from 0.55 to 0.97) for live
weightmeasurements (e.g., birth, weaning, and yearling weights).
Additionally, Newman et al. (2002) also reported moderate-
to-high estimates ranging from 0.48 to 1.00 for moderate-to-
high heritability traits (e.g., carcass weight and percentage of
intramuscular fat). Based on a literature review, Wientjes and
Calus (2017) reported an average genetic correlation between
purebred-crossbred pigs equal to 0.63, with 50% of the estimates
between 0.45 and 0.87 (Wientjes and Calus, 2017). The majority
of the correlations observed in the current study are at the
high end of this range. Assuming the exclusively moderate-to-
high genetic relationship between all population pairs and a
large training population, genomic predictions between those
populations are expected to be reasonably accurate (Daetwyler
et al., 2015).

Genetic Connectedness Between
Populations
Principal Components Analysis absorbs the information of allele
frequencies into a reduced number of independent variables,
facilitating the interpretation of potential population structure.
The first two PCs showed a clear separation between populations
Line1 and Line2, and the F1 animals clustered between both
purebred lines (Figure 2). Additionally, despite the differences in
the F1 generations (F1-1, F1-2, F1-3, and F1-4), all of them were
grouped in a single cluster.

The first principal component (PC1) was strongly correlated
with Line1 in all simulation scenarios, except for SIM2 (Figure 2).
This fact highlights that PC1 increases with an increasing
relationship in Line1. However, different results can be expected
due to the stochastic nature of the simulation analysis and the
sampling process to create the training population (as observed
for SIM2). Thus, the general pattern of PC1 in comparison to
Line1 can be seen as a genomic index that ensures the strong
relationship among individuals belonging to the same line.

The improvement of the predictive ability of two distinct
training and validation populations (e.g., purebred and
crossbred) depends on the similarity or consistency of gametic
phase between the SNPs and QTLs across populations. By
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FIGURE 2 | Principal component decomposition of the genomic relationship matrix of repetition 1 colored by breed-group. Letters represent the simulated scenarios:

(A) Simulated scenario with heritability explained by the quantitative trait loci (h²QTL) equal to zero (SIM1); (B) h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to

0.11), and the number of QTLs equal to 198 (SIM2); (C) h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); (D) h2
QTL

equal to trait h2 (0.33), and the

number of QTLs equal to 198 (SIM4); and (E) h2
QTL

equal to 0.33 and the number of QTLs equal to 4,500 (SIM5).
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FIGURE 3 | Consistency of gametic phase (Pearson correlations of signed r values) at given distances for three population pairs. SIM1: simulated scenario with

heritability explained by the quantitative trait loci (h²QTL) equal to zero; SIM2: h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs

equal to 198; SIM3: h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500; SIM4: h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198; and SIM5:

h2
QTL

equal to 0.33 and the number of QTLs equal to 4,500.
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FIGURE 4 | Heatmap of accuracy (r) for all combinations of τ and ω scaling factors to blend G−1 and A−1
22 matrices when building the H matrix, using the dataset from

the simulated scenario with heritability explained by the quantitative trait loci (h²QTL) equal to the trait heritability (h2) of 0.33 and 4,500 QTLs.

FIGURE 5 | Heatmap of regression coefficient (β1) for all combinations of τ and ω scaling factors to blend G−1 and A−1
22 matrices when building the H matrix, using the

dataset from the simulated scenario with heritability explained by the quantitative trait loci (h²QTL) equal to the trait heritability (h2) of 0.33 and 4,500 QTLs.

increasing the relationship distance between individuals, the
genomic distance in which the linkage phase will be consistent
across populations decreases. As presented in Figure 3, the
consistency of gametic phase was reasonably low to moderate
among all populations’ pairs. As expected, Line1 and Line2
presented the lowest consistency of gametic phase. Populations
paired with F1 (i.e., Line1 vs. F1, and Line2 vs. F1) presented the
highest consistency of gametic phase.

Both results, PCA and consistency of gametic phase,
suggest that better accuracies of genomic predictions
could be attained when using a single-training population
as the SNP effects seem to be population-specific.
In other words, the lower predictive ability could be
expected when SNP effects estimated based on Line1 is
applied to Line2, or across any combination presented.
However, those assumptions are contrasted by the genetic
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FIGURE 6 | Trend line for average validation accuracy (r, A,C) and regression coefficient (β1, B,D) across all scenarios: ssGBLUP based on a single-trait model

considering both purebred and crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on

purebred and crossbred training animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the

training population (and information from both populations to estimate the SNP weights (SC3); WssGBLUP based on a single-trait model considering only purebred

animals in the training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model

considering only purebred animals in the training population (and their information to estimate the SNP weights) (SC5); and simulated scenarios: heritability explained

by the quantitative trait loci (h²QTL ) equal to zero (SIM1); h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs equal to 198 (SIM2);

h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and h2
QTL

equal to 0.33

and the number of QTLs equal to 4,500 (SIM5). (A,B) represent F1-3 validation population and (C,D) represent F1-4 validation population.

correlation between Line1 and Line2 (i.e., moderate-to-high
genetic correlations).

Even though a moderate-to-high genetic correlation was
observed between Line1 and Line2, there was still population
stratification. The contrasting results from both analyses (genetic
correlation vs. PCA + consistency of gametic phase + allele
frequency correlation) might be explained by: (i) the similar
selection direction for all populations (i.e., selection of lower
EBV animals from Line1, Line2, and F1), which could result
in a high genetic correlation across these populations for the
trait under selection; (ii) single-trait selection, in which only
the alleles associated with the trait (or in high LD) would
contribute to higher genetic correlation between the populations,
but not all the markers spread across the genome; and, (iii)
specific population parameters (e.g., LD, effective population size,
different number of generations, and SNP marker segregation).
In other words, when simulating a genomic dataset, one needs

to specify: (1) the number of QTLs affecting the trait (this can
be interpreted as the causal mutations affecting the trait, which
are usually the same across populations), and (2) the number of
markers in the dataset, in which some will be in LD with the
QTLs simulated, while the others might be non-related to the
trait and spread out across the whole genome. Thus, it is not
surprising that the QTL effects (causal mutations) and their allele
frequencies across populations (Line1 and Line2) for the trait
under study were similar, which is realistic.

Scaling Factors Used to Combine G−1 and
A−1
22 Matrices

The ssGBLUP and WssGBLUP methods assume that the
statistical model is correct and that allelic frequencies come
from the base population (Oliveira et al., 2019). However, these
assumptions usually do not hold in practice, which can result in
prediction bias (Vitezica et al., 2011). In this context, G−1 and
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FIGURE 7 | Average validation accuracies (r − A,C,E,G,I) and regression coefficients (β1− B,D,F,H,J) with, respectively standard deviations and different letters for

each scenario representing significant differences (P < 0.05) for F1-3 validation population: ssGBLUP based on a single-trait model considering both purebred and

crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on purebred and crossbred training

(Continued)
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FIGURE 7 | animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population

(and information from both populations to estimate the SNP weights) (SC3); WssGBLUP based on a single-trait model considering only purebred animals in the

training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model considering

only purebred animals in the training population (and their information to estimate the SNP weights) (SC5). Simulated scenarios: heritability explained by the

quantitative trait loci (h²QTL) equal to zero (SIM1); h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs equal to 198 (SIM2); h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and h2
QTL

equal to 0.33 and

the number of QTLs equal to 4,500 (SIM5).

A22
−1 matrices are usually not on the same scale (Misztal et al.,

2017; Oliveira et al., 2019). In order to obtain better prediction
accuracies and reduce the bias, Tsuruta et al. (2011) and Misztal
et al. (2013) reported that scaling factors should be used when
combining G−1 and A22

−1 matrices to create theHmatrix.
The different scaling factors tested in this study had no or

small influence in the validation accuracies (Figure 4). These
findings are in agreement with those reported by Oliveira et al.
(2019), who also observed a small impact of these parameters
in the reliability of genomic predictions using real datasets
from three Canadian dairy cattle breeds (Holstein, Jersey, and
Ayrshire). On the other hand, Koivula et al. (2018) reported
significant differences in the validation reliabilities across few
pairwise combinations of τ and ω parameters.

As initially reported by Tsuruta et al. (2011) and Misztal et al.
(2013), different combinations of τ and ω also had a great impact
on the bias estimates in the current study (Figure 5). This can
be explained by the reduction in the variance of the predicted
genetic values resulting in larger regression coefficients (Martini
et al., 2018), depending on the scaling factor combination used.
In general, changes in τ had a smaller impact on the bias than
changes in ω, as also reported by Oliveira et al. (2019). The
best ω parameter assumed in this study (0.50) was lower than
1.00, which increases the importance of pedigree information
on GEBV prediction. This is related to the fact that this study
used a simulated dataset and therefore, the pedigree is complete
and precise.

Genomic Prediction of Breeding Values
Accuracies
In general, significant differences were observed across scenarios
(Figures 7, 8 for F1-3 and F1-4, respectively).

Single-trait vs. multiple-trait model
In general, single- and multiple-trait models yielded similar
results across all the simulated scenarios and validation
populations (Figures 7, 8). Calus et al. (2014) reported
that a single-trait model can result in similar predictive
accuracies compared tomultiple-trait or non-linear models when
assuming a high genetic correlation between the populations
analyzed together. On the other hand, greater predictive ability
was observed by using multiple-trait or non-linear models
when the populations were less genetically correlated (Calus
et al., 2014). Therefore, the genetic connectedness between
populations in a pooled-breed analysis might interfere with
the model performance (Calus et al., 2014). In the present
study, all population pairs presented moderate-to-high genetic

correlations for the trait simulated (Table 3), whichmight explain
the similar predictive ability across all the scenarios investigated.

ssGBLUP vs. WssGBLUP
For the SIM1, SIM2, SIM3, and SIM5, SC1, and SC2 (using
the ssGBLUP method) yielded the highest GEBV accuracies.
This suggests that the ssGBLUP method, using either a single-
or multiple-trait model, performs better than WssGBLUP
for polygenic traits in crossbred animals. We expected that
WssGBLUP would perform better for the scenarios SIM2
through SIM5, and especially for SIM4 and SIM5. Lourenco
et al. (2017) reported that for less polygenic traits (such
as the simulated scenarios mentioned above), the accuracy
might be higher when using WssGBLUP instead of ssGBLUP.
WssGBLUP is advantageous for traits with a reduced number
of causative genes because its assumption is similar to the
genetic architecture of those traits: a finite number of markers
affecting the trait. However, no pattern was observed across those
simulated scenarios for WssGBLUP. In SIM4, the SC3 scheme
(characterized by the WssGBLUP using purebred and crossbred
populations to estimate the SNP weights and predict the GEBVs)
yielded the highest accuracy. The genetic variation of the trait in
SIM4 is completely controlled by fewQTLs. In other words, SIM4
is a less polygenic scenario across all others.

Accounting for breed-specific allele frequencies could
potentially increase the predictive ability in multi-breed models
(Dekkers, 2007; Ibánêz-Escriche et al., 2009; Christensen
et al., 2014). This can be accounted for through WssGBLUP
(e.g., Sevillano et al., 2019). However, small differences were
observed by using ssGBLUP and WssGBLUP in the present
study. The similarity across scenarios might also be partially
explained by the data simulation structure that resulted in a
moderate-to-high genetic correlation across all population pairs,
as they were all selected based on a single trait. Additionally,
the allele A frequency correlations among all population
pairs ranged from moderate (0.24–0.48; Line1 vs. Line2;
Tables S5A–S5E) to high (0.61–0.85; Line1 vs. F1, and Line2
vs. F1; Tables S5A–S5E). In real datasets, differences in allele
frequencies diverge due to different breeding goals across
generations and populations/breeds. Similarly, Lourenco et al.
(2016) did not observe differences in GEBV accuracies when
using breed-specific allele frequencies to build the G matrix
in the genomic evaluation of crossbred animals. Furthermore,
Ibánêz-Escriche et al. (2009) also reported that genomic selection
for crossbred populations using models that fit the breed-specific
effects of SNP alleles are not necessary.

Scenarios SC4 and SC5 had fewer individuals in the training
population than SC1 and SC3 scenarios, which could lead to
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FIGURE 8 | Average validation accuracies (r − A,C,E,G,I) and regression coefficients (β1− B,D,F,H,J) with, respectively standard deviations and different letters for

each scenario representing significant differences (P < 0.05) for F1-4 validation population: ssGBLUP based on a single-trait model considering both purebred and

crossbred animals in the training population (SC1); ssGBLUP based on a multiple-trait model to consider phenotypes recorded on purebred and crossbred training

(Continued)
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FIGURE 8 | animals as different traits (SC2); WssGBLUP based on a single-trait model considering both purebred and crossbred animals in the training population

(and information from both populations to estimate the SNP weights) (SC3); WssGBLUP based on a single-trait model considering only purebred animals in the

training population (and only the information from crossbred animals to estimate the SNP weights) (SC4); and WssGBLUP based on a single-trait model considering

only purebred animals in the training population (and their information to estimate the SNP weights) (SC5). Simulated scenarios: heritability explained by the

quantitative trait loci (h²QTL) equal to zero (SIM1); h2
QTL

equal to 1/3 of trait heritability (h2) (i.e., h2
QTL

equal to 0.11), and the number of QTLs equal to 198 (SIM2); h2
QTL

equal to 0.11 and the number of QTLs equal to 4,500 (SIM3); h2
QTL

equal to trait h2 (0.33), and the number of QTLs equal to 198 (SIM4); and h2
QTL

equal to 0.33 and

the number of QTLs equal to 4,500 (SIM5).

greater accuracies of both larger training population scenarios.
Therefore, additional analyses using the same-size training
populations of SC1 and SC3 vs. SC4 and SC5 were performed
(Tables S6A–S6E). Small or no differences were observed by
using a balanced dataset for SC1 and SC3 scenarios, which do
not change the conclusions previously reported. Therefore, the
differences between ssGBLUP and WssGBLUP were still small.
However, the way the estimation of SNP weights has been
carried out in this and other studies (Ibánêz-Escriche et al.,
2009; Lourenco et al., 2016) might not be optimal. The weights
derivation used is the easiest way to implement the WssGBLUP
in commercial breeding programs, which justify the application
of the method. Alternative ways to derive the SNP weights
have been proposed and might result in better predictive ability
(Su et al., 2014; Karaman et al., 2019), for example through
Bayesian approaches.

Purebred vs. jointly purebred and crossbred training

populations
There are studies indicating that the addition of crossbred
information in the training population to predict crossbred
performance has a positive impact on the predictive ability of
GEBVs (Bijma and van Arendonk, 1998; Bijma et al., 2001;
Lutaaya et al., 2002; Fragomeni et al., 2016; Iversen et al., 2017).
However, Pocrnic et al. (2019), using a dataset with purebred and
crossbred pigs, did not observe differences in GEBV accuracies
when the SNP effects were estimated based solely on purebreds
or obtained through combining purebred and crossbred animals
in the training set. In this study, the high genetic correlations
between purebred and crossbred populations (from 0.81 to 0.99
between Line1 and F1, and 0.94 to 0.98 between Line2 and F1)
might explain the small differences observed when including
crossbred information in the training population (from SC1 to
SC4 vs. SC5, Figures 7, 8). In general, moderate-to-high genetic
correlations between purebreds and crossbred populations tend
to result in higher GEBV prediction accuracies (Pocrnic et al.,
2019). This might be due to the purebred information’s ability
to capture most of the crossbred genetic variation when larger
training sets are available.

Regression Coefficients
Significant differences were observed among regression
coefficients estimated in the different scenarios (Figures 7, 8 for
F1-3 and F1-4, respectively). The GEBV bias obtained in SC3 and
SC5 may be due to the inefficient estimation of SNP weights in
predicting crossbred information, as a merged dataset (purebred
and crossbred) or just purebred information was used to estimate
the SNP weights to predict GEBVs in the crossbred animals in
SC3 and SC5, respectively. As previously mentioned, alternative

ways to derive the SNP weights have been proposed, which could
lead to better predictive performance (Su et al., 2014; Karaman
et al., 2019). In general, less biased GEBVs were obtained in SC2,
which is in agreement with several studies in the literature with
regards to the superiority of multiple-trait models to predict
the performance of crossbred populations (Tusell et al., 2016;
Pocrnic et al., 2019).

Comparing Simulated Datasets
In general, higher GEBV accuracies and regression coefficients
close to one were obtained for SIM4 and SIM5 (simulated
datasets in which all genetic variances were explained by the
QTLs). Simulated scenarios with a small or null number of
QTLs (SIM1, SIM2, and SIM3) might lead to higher GEBV
accuracy when using Bayesian variable selection models (Habier
et al., 2011). In composite beef cattle populations, the accuracy
of GEBVs averaged over twenty economically important traits
ranged from 0.38 to 0.40 across different scenarios (Piccoli
et al., 2017). It is worth noting that as the h2QTL reduced,
the GEBV accuracy decreased and the bias increased. This
indicates that simulated scenarios with h2QTL lower than h2

(total heritability) have a greater bias due to the fact that the
relationship matrix does not account for an infinite number of
loci (Kennedy et al., 1988).

As previously reported by Calus et al. (2014), a greater
predictive performance of the multiple-trait model was observed
under the lower relationship between purebred-crossbred
populations (SIM1) than in a simulated higher relationship
scenario (SIM4) (Figures 7, 8 and Table 3). In general, the
crossbred information included in the training population
during the GEBV estimation process had a greater impact on
GEBV accuracy while using a simulated scenario with lower
genetic correlation between purebred-crossbred populations,
than other simulated scenarios with higher genetic correlation
between populations.

F1-3 vs. F1-4 Validation Populations
Smaller differences in accuracies and regression coefficients were
observed when the F1-3 validation population was used in
comparison to the F1-4. This might be related to the smaller
genetic gap between training and the F1-3 validation population
(Muir, 2007; Goddard, 2009).

CONCLUSIONS

In general, the ssGBLUP method based on a single-trait
model considering both purebred and crossbred (F1) animals
in the training population (SC1), and ssGBLUP based on
a multiple-trait model considering phenotypes recorded on
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purebred and crossbred training animals as different traits
(SC2), yielded the highest accuracies and lowest biases of
GEBVs. Considering the current stratification of the genotyped
population [low consistency of gametic phase across purebred
and F1 populations; clear distinction of populations based
on PCA; but moderate-to-high genetic correlations (ranging
from 0.71 to 0.99)] for the simulated trait across populations,
the ssGBLUP using a single-trait model and a purebred
and crossbred (F1) training population’s scenario (SC1) is
recommended. The SC1 resulted in a similar performance of
genomic evaluations in crossbred animals and it is reasonably
easy to be implemented in practical situations. Further studies
using real datasets should be performed to validate these findings.
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