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Alternative splicing alterations can contribute to human disease. The ability of an RNA-
binding protein to regulate alternative splicing outcomes can be modulated by a variety
of genetic and epigenetic mechanisms. In this study, we use a computational framework
to investigate the roles of certain genes, termed modulators, on changing RBPs’
effect on splicing regulation. A total of 1,040,254 modulator-mediated RBP-splicing
interactions were identified, including 137 RBPs, 4,309 splicing events and 2,905
modulator candidates from TCGA-KIRC RNA sequencing data. Modulators function
categories were defined according to the correlation changes between RBPs expression
and their targets splicing outcomes. QKI, as one of the RBPs influencing the most
splicing events, attracted our attention in this study: 2,014 changing triplets were
identified, including 1,101 modulators and 187 splicing events. Pathway enrichment
analysis showed that QKI splicing targets were enriched in tight junction pathway,
endocytosis and MAPK signaling pathways, all of which are highly associated with
cancer development and progression. This is the first instance of a comprehensive study
on how alternative splicing outcomes changes are associated with different expression
level of certain proteins, even though they were regulated by the same RBP. Our
work may provide a novel view on understanding alternative splicing mechanisms in
kidney cancer.
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INTRODUCTION

Renal cell carcinoma (RCC) is a common malignancy, representing 4.2% of all new cancer cases,
with about 73,820 new cases and 14,770 deaths estimated for 2019 in the United States (Siegel et al.,
2019). RCC is radiotherapy- and chemotherapy-resistant, and surgery remains first-line therapy
(Hsieh et al., 2017; Yin et al., 2019). Despite early surgical treatment, 30% of patients with a localized
tumor eventually develop metastases, and 2 years survival rate of patients with metastatic kidney
renal clear cell carcinoma (KIRC) is less than 20% (Mickisch, 2002; Janzen et al., 2003). Therefore,
identification of underlying molecular mechanisms and metastatic potential of KIRC are essential
for improvements in early diagnosis and treatment.

Dysregulation of alternative splicing (AS) is widely considered a new hallmark of cancer and its
products are acknowledged as potentially useful biomarkers (Ladomery, 2013). Recent estimates
indicate that nine out of every 10 human genes undergo AS in a cell type- or condition-specific
manner to create distinct RNA transcripts from the same pre-mRNA molecule (Wang et al., 2008).
The key role of AS is further confirmed by the linkage of splicing regulation to numerous human
diseases, including neurological disorders and many types of cancer (Scotti and Swanson, 2016).
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Regulation of AS is a complicated process in which numerous
interacting components are at work, including cis-acting
elements and trans-acting factors, complicated by the functional
coupling between transcription and splicing (Wang et al., 2015).
Corruption of the process may lead to disruption of normal
cellular function and eventually disease. Thus, understanding
the regulatory patterns that control AS events has the potential
not only to give valuable molecular insights but also to provide
solutions for various diseases.

AS events are largely controlled by RNA-binding proteins
(RBPs) that recognize specific regulatory sequences embedded
in the pre-mRNA transcripts (Gerstberger et al., 2014).
However, splicing complexes are intricate molecular machines
that process tens to hundreds of RNA target genes. At any
given time, depending on the context and cellular stimuli,
an RBP will affect only a subset of its RNA target genes.
This specificity is often provided by a certain factors we
named as “modulators,” such as signaling proteins, microRNAs,
lncRNAs that control RBPs activity through several different
mechanisms, including: expression level (Payne et al., 2018),
protein stability and turnover (Garcia-Maurino et al., 2017),
nuclear/cytoplasmic localization (Di Liegro et al., 2014), altered
protein interactions (Jankowsky and Harris, 2015), and co-
transcriptional regulation (Shukla and Oberdoerffer, 2012).
Modulators help a cell combine different external signals and
make complex downstream decisions. Elucidating their function
is necessary for understanding and controlling cell’s response to
external stimuli at transcriptional level.

With the increased availability of large data sets derived
from high-throughput experiments and computer algorithms,
investigating complex transcriptional dysregulation between
RBPs and AS events in complex diseases is now possible.
Recently, the ENCODE project published eCLIP data sets for
150 RBPs across K562 and HepG2 cell types (Van Nostrand
et al., 2016; Yee et al., 2019). Technological advances have
made it possible to define the comprehensive target networks of
individual RBPs with high accuracy by integrating global splicing
profiles upon depletion of each RBP and genome-wide maps
of in vivo, direct protein-RNA interactions (Zhang et al., 2010;
Weyn-Vanhentenryck et al., 2014).

In this study, we established a computational method for
dissecting the relationship among RBPs, alternatives splicing
events and a kind of proteins that may influenced the splicing
regulation effect of RBPs. Our method is unique in its ability
to discover how alternative splicing outcomes is changing
when modulator expression is different, even though they were
regulated by the same RBP. It is the first time in which a triplet
describing the relationships among modulators, RBPs and the
outcomes of their alternative splicing targets is reported. The
triplet contains three objects: a specific RBP, a splicing target
regulated by RBP, and a modulator candidate that may change
splicing regulation of the RBP. This method was applied to RCC
using TCGA-KIRC dataset to identify modulator-dependent
RBPs and their targets splicing outcomes in kidney cancer.
QKI, as one of the key RBPs in this study, has the greatest
number of influenced splicing events. Functional enrichment
analysis showed that the inferred QKI modulators were highly

associated with regulation progress of some hallmark cancer
genes, including ARMH4, LINC01268, PDP2, LAPTM4B, and
CD7. The results showed that different expression of modulators
was associated with the changing roles of RBPs on regulating
their targets alternative splicing outcomes. We expect that
such integrated analysis could reveal the roles of RBPs and
provide novel insights into understanding alternative splicing
mechanisms in kidney cancer.

MATERIALS AND METHODS

Identify Alternative Splicing Events and
Gene Expression
Paired-end RNA sequencing data from 480 RCC patients was
downloaded from The Cancer Genome Atlas Kidney Renal Clear
Cell Carcinoma (TCGA-KIRC). The percentage of inclusion
(PSI) of spliced events were derived using Mixture of Isoforms
(MISO) (Lee et al., 2013). A PSI value was computed for every
identified event in each sample, and the original AS events
were further processed to generate high-confidence events by
retaining events with a PSI value greater than 0.1 in at least
100 samples from 480 (∼21% samples in total). Then, events
that occurred in both the curated and TCGA datasets were
retained to form the final set of AS events. In this study,
we only focused on skipped exon (SE) alternative splicing
events. We defined an altered skipped exon as any exon of
a transcript excluding the first and the last exons. Finally,
we only kept the events that at least 100 patients’ have PSI
value and coefficient of variation (CV) of PSI was larger than
0.1. Gene differential expression analysis was performed using
edgeR (Robinson et al., 2010), and CPM was used to estimated
gene expression.

Identify RBPs Targets Using eCLIP Data
We used crosslinking immunoprecipitation (CLIP) data for
150 RBPs profiled in eCLIP peaks (Van Nostrand et al., 2016)
downloaded from ENCODE in bed format (Consortium Encode
Project, 2012). The peaks in two immortalized human cell types,
K562 and HepG2, were filtered by peak enrichment larger than
8 (log2FC ≥ 3) and p < 10−5 as recommended (Van Nostrand
et al., 2016). Since the agreement between peaks in two replicates
was moderate (the median Jaccard distance 25 and 28% in K562
and HepG2, respectively), we took the union of peaks between
the two replicates in both cell lines and then pooled the resulting
peaks. We defined an RBP-binding splicing event as the region
upstream 300 base pairs of the exon to downstream 300 base
pairs of the exon.

Genomes and Transcript Annotations
February 2009 assembly of the human genome (hg19,
GRCh37) was download from Genome Reference Consortium
(Church et al., 2011). The respective transcript annotation v19
was download from GENCODE website (Harrow et al., 2012).
Transcript annotations were parsed to extract positions of
introns and exons.
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Gene Function and Categories Analysis
Functional enrichment analysis was carried out via the
hypergeometric test using the clusterProfiler R package. We used
Human Gene Ontology annotation provided by Gene Ontology
(GO) Consortium (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017). GO terms enrichment with adjusted p< 0.01
and KEGG pathway enrichment with adjusted p< 0.05. The gene
types we discussed in this study including immune related genes,
which were download from IMMPORT database1 and TRRUST
v2 database.2 The lncRNA gene type annotation was based on
biomaRt software suite in R.

Construction Modulator-RBP-Splicing
Triplets in KIRC
The probabilistic model is similar to Li et al. (2017)
as follows:

Ytarget = β0 + β1Xrbp + β2Xm + β3XrbpXm + ε (1)

where, the Xrbp, Xm, and Ytarget are the gene expression of RBP
and its modulator, and the splicing outcomes of the affected
target gene, respectively. Xrbp and Xm represent the effect of
RBP and modulator, respectively, on target by themselves alone
(main effects), while β3 represents the effect of their interaction.
If an RBP and modulator interaction influences target splicing
outcomes, we expect β3 to be non-zero.

We divide rank-ordered expression values of a gene by tertiles
and further discretize the triplets using:

x′ =


1 if x is in upper tertile
NULL if x is in middle tertile
0 if x is in lower tertile

(2)

Values are ranked and transformed by tertials as follows,
and coefficients are estimated from the differences in observed
proportions of frequencies:

(1) Splice events are ranked according to PSI.
(2) RBP is ranked by its expression.
(3) Each modulator is ranked by their expression.

After discretization, we only consider the eight bins, where
none of the genes has “NULL” value, covering ∼33% of the
samples. This simple strategy has been shown to maximize
entropy among groups and the selection of significant triplets’
method can be found in Babur et al. (2010).

Statistical Analysis and Software
The data were analyzed and visualized using R statistics software
version 3.4.1 and ggplot2 package. Correlations were assessed
using Pearson correlation test. Survival curves were generated by
the Kaplan Meier method using the median H-score as the cutoff,
and differences were analyzed with the log-rank test.

1https://www.immport.org
2https://www.grnpedia.org

RESULTS

Category of Modulator Action
We developed a framework to infer the modulators of RBPs
whose expression strongly correlates with changes of a RBP’s
effect on regulating targets splicing outcomes. Here, the
transcriptional activity of a RBP was evaluated by the Pearson
correlation between the expression level of RBPs and its target
splicing outcomes. A schematic diagram of work-flow is provided
in Figure 1.

The proposed method takes five inputs: gene expression
profiles, an RBP of interest, a list of modulator candidates,
splicing profiles, and RBPs’ binding information. Candidate
modulators may include all genes satisfying the criteria. In
addition, the expression of the modulator candidates and RBPs
were required to be statistically independent. Each possible
triplet was then independently tested using the PCCs (Pearson
correlation coefficients) estimator, and by comparing 1PCCs we
defined the subtype of modulation categories. False positives
were controlled using appropriate statistical thresholds. Three
possible modes of modulator action were identified, depending
on whether RBP-splicing correlation increased or decreased as a
function of the modulator abundance.

Category of Modulator Action
For each triplet, three possible modes of modulator action
were identified depending on whether RBP-splicing correlation
increased or decreased as a function of the modulator abundance.
The three models are “attenuates splicing,” “enhances splicing,”
and “‘inverts splicing.” Among them, attenuates/enhances
splicing modes including two sub-types: attenuates/enhances
exon exclusion and attenuates/enhances exon inclusion; inverts
splicing mode means that the mode of modulator switches from
exon inclusion to exon exclusion or from exon exclusion to
exon inclusion. These cases and details interpretations are listed
in Table 1.

Identify Modulators of QKI in Kidney
Cancer
We applied the proposed method for identifying modulators for
150 RBPs. 14,707 exons were selected from 42,485 annotated
skipped exons that are derived using the gene structures
of ENSEMBL database. We identified 1,040,254 significant
modulator-mediated triplets from 40,623,520 potential
modulator-RBP-splicing interactions at FDR ≤ 0.01 using
TCGA-KIRC data. The potential interactions consisted of 137
RBPs, 4,309 splicing events, and 2,905 modulator candidates.
Among these RBPs, 13 RBPs were filtered out as the PSI
distribution among 480 patients did not meet our criteria (the
PSI coefficient of variation should be larger than 0.1). RNA-
binding protein Quaking (QKI) had the greatest number (68.9%,
199 out of 289) of modulated spliced exons.

We identified 2,014 Modulator-QKI-Splicing triplets.
The triplets include 1,101 modulators and 187 splicing
events corresponding to 130 genes. According to the
correlation between QKI expression and its target splicing
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FIGURE 1 | A schematic diagram of workflow. Briefly, the dataset in this study derived from TCGA-KIRC and ENCODE ECLIP-Seq, hg19 was used as reference
gene annotation from Ensemble. Each triplet contains three object: RBP, target and a modulator. Gene expression level is the input of RBP and modulator
candidates, splicing outcomes (PSI value) is used to estimate the splicing level of target. Data filtering criteria as follows: (1) log2 (CPM) ≥ 1 (2) remove events with
“NA” samples > 100 (3) CV(PSI) > 0.1. Then using the linear regression model to predict triplets. Only the triplets with significant β3 p-value will be considered and
selected to the following analysis. Finally, for each triplet, we group the samples into “low” and “high” groups based on the expression level of modulator (bottom/top
33% samples) in the specific triplet, and we compare the Pearson correlation coefficient values of RBP expression and target PSI value in two groups, identify the
modulator function categories.

TABLE 1 | Categories of modulator mediated RBP regulations on splicing targets.

Modulation category PCClow PCChigh 1PCCs Subtype mode

Attenuates splicing – (EE) – (EE) | PCClow | > | PCChigh | or p-value.high > 0.05 Attenuates exon exclusion (AEE)

Enhances splicing – (EE) – (EE) | PCClow | < | PCChigh | or p-value.low > 0.05 Enhances Exon exclusion (EEE)

Inverts splicing + (EI) – (EE) Exon inclusion to exclusion (ExonIE)

Inverts splicing – (EE) + (EI) Exon exclusion to inclusion (ExonEI)

Enhances splicing + (EI) ++(EI) | PCClow | < | PCChigh | or p-value. Low > 0.05 Enhances EI (EEI)

Attenuates splicing + +(EI) +(EI) | PCClow | > | PCChigh | or p-value.high > 0.05 Attenuates EI (AEI)

“+” and “−” signs in the columns indicate positive and negative values of Pearson correlation coefficient. “EE” represents exon exclusion, and “EI” means exon inclusion.
The modulation categories of “attenuates splicing.” “enhances splicing” or “inverts splicing” only refer to the roles of RBP on specific alternative spliced exon.

outcomes, six modulator sub-categories were identified,
including 450 triplets in “Attenuates_Exon_Exclusion,”
226 triplets in “Attenuates_Exon_Inclusion,” 517
triplets in “Enhances_Exon_Exclusion,” 406 triplets
in “Enhances_Exon_Inclusion,” 218 triplets in
“Exon_Exclusion_to_Inclusion,” and 197 triplets in
“Exon_Inclusion_to_Exclusion” (Figure 2A).

Furthermore, we observed that most modulators affected
multiple splicing targets were multimodal, and the same
modulator may play opposite roles on different QKI targets.
For example, ARMH4 inverts the splicing activity of QKI on
its target CLTC: the inclusion of CLTC’s spliced exon was
correlated with increasing expression of QKI when ARMH4
is lowly expressed, while such association was inversed when
ARMH4 is highly expressed. However, ARMH4 played enhanced
exon inclusion role on QKI-STIM1 pair when its expression
level changed from low to high. In another case, while the
modulator KRT17 influenced 11 splicing targets of QKI, the
role of KRT17 on these splicing outcomes changed among

EEE, ExonIE, and ExonEI. The observation indicated that the
distinct modulation patterns were triplets dependent rather than
depending on specific RBPs or target genes. Our findings support
this complexity in modulators typically had many target-specific
effects. These findings suggested that more complex models are
needed to better elucidate that how splicing is regulated.

Hence, we clustered modulators by their regulation patterns,
yielding distinct groups of modulators that mediated splicing
dysregulation in specific patterns (Figure 2B). For instance, the
modulators in cluster 1–2 tend to reverse the QKI activity on
regulating splicing targets’ outcomes, whereas those modulators
in cluster 4 and cluster 6 tend to enhance QKI splicing activity.
In conclusion, these modulators may work as antagonistic or
coactivators to mediate QKI splicing activity.

Among these modulator-mediated triplets, we noticed that
many modulators regulate the same QKI splicing targets, this
may be because some of the modulators co-express or play
similar functions in related pathways. As the result showed
in Figure 2C, modulators were grouped into several clusters
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FIGURE 2 | Identify modulators of QKI in KIRC. (A) Six mode sub-categories according to the correlation between QKI expression and its target splicing outcomes.
The number in the pie chart means the percentage of each sub-categories. AEI indicates attenuates the exon inclusion, AEE indicates attenuates exon exclusion,
EEI indicates enhances exon inclusion, EEE indicates enhances exon exclusion, ExonIE indicates reverses exon inclusion to exon exclusion, ExonEI indicates reverse
exon exclusion to inclusion. (B) Modulators clusters by their regulation patterns. Six clusters were grouped according to modulator sub-categories. (C) Correlation
heatmap of QKI modulators. The redder the color the higher correlation between two modulators. The values in the matrix were the normalized gene expression of
modulators. (D) KEGG enrichment analysis of QKI modulators. (E) Modulators categories according to gene biotypes and features, including immune genes,
transcription factors and lncRNAs.

according to their expression’s correlation. This may be a
potential reason why the spliced outcome of same target could
be influenced by many modulators. In addition, the pathway
enrichment results shown that these modulators were highly
enriched in categories which were known to be associated
with cancer development and progression, including cytokine-
cytokine receptor interaction, Th1 and Th2 cell differentiation,
and cell adhesion molecules (Figure 2D).

Furthermore, we classified the modulators of QKI according
to gene biotypes and features, including immune related genes,
transcription factors and lncRNAs (Figure 2E). The types of
categories provide a framework for understanding many types of
dysregulation on splicing.

Functional Analysis of QKI Modulators
To confirm the QKI-splicing-modulator triplet signatures
as independent predictors, we selected six inferred
modulator-influenced triplets to compare the association
among QKI-splicing-modulators. The modulators we focused
on were obtained from the analysis result 3.3, including immune
genes (CCL3, HLA-F, AGER), transcription factors (ARMH4,
STAT4), and lncRNAs (LINC01268).

As an example, immune gene AGER as a modulator of QKI,
who shown differentially expressed level between cohort and

normal samples in KIRC, played inverts exon exclusion role
on regulating the splicing outcomes of GABRE. Comparing
the two patterns in different groups, when the expression of
modulator AGER is low, the PCCs between QKI expression
and GABRE splicing level (PSI) is −0.1, while such correlation
inverts to 0.32 in another group whose AGER expression
high. Similar pattern we found that the correlation between
QKI and its splicing target STIM1 was lost from 0.45 to
no significant correlation when the modulator immune gene
HLA-F expression differentially in two groups. Meanwhile,
LINC01268 as modulator played attenuated effect on regulating
QKI splicing activity. The correlation between QKI and target
CTNND1 was −0.54 in LINC01268 expressed low group, while
such correlation gone when LINC01268 expression becomes
high (Figure 3).

To investigate the association between dysregulated target
splicing outcomes and kidney cancer, we performed survival
analysis and compared the expression level of these modulators
in kidney tumor samples and normal samples based on TCGA-
KIRC dataset. Results shown that most of the modulators
were differentially expressed between tumor and normal
samples and overall survival associated. Although KRT17 as
one of the modulators we inferred did not show too much
differentially expressed, the clinical information obtained from
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FIGURE 3 | Relationships among QKI-modulator-target. The blue means the samples in modulator expression low group (expression in bottom 33%), the red means
the samples in modulator expression high group (expression in top 33%). The correlation value is the Pearson correlation between expression level of QKI and the
splicing outcomes of its targets. No correlation means the statistical p-value of correlation is not significant (p-value cutoff setup as 0.01).

TCGA indicated that gene expression in kidney cancer was
significantly associated with overall survival outcomes. The gene
expression levels and survival analysis of top 10 modulators
who has the most influenced targets of QKI were compared
(Figures 4A,B).

KEGG enrichment analysis revealed that these target genes
were enriched in categories known to be related to cancer
development and progression (Figure 4C), such as tight junction
pathway, transcriptional mis-regulation in cancer, endocytosis,
and MAPK signaling pathway. The top enriched GO terms of
these influenced target genes were associated with transcriptional
regulation progress, including RNA splicing, cell growth and
protein binding (Figures 4D–F). The results were reasonable
as QKI regulated its target mainly on splicing level, once
the expression of QKI was perturbed by the modulators,
the roles of QKI on its targets, including binding, splicing,
cellular development and transcriptional regulation would be
influenced consequently.

In addition, cancer-relevant modulators were identified
though tumor associated gene list from the Network of Cancer
Genes (NCG, v6.0) database (Repana et al., 2019) and Tumor
suppressor gene database (TSGene v2.0) (Zhao et al., 2016),
separately (Figure 4G). The 2,372 tumor diver genes obtained
from NCG including 711 known cancer genes and 1,661
candidate cancer genes. Among them, 149 genes overlapped with
tumor diver genes, almost reaching 13% (149/1,179) of total
numbers of modulators we inferred in this study. Meanwhile,
approximately 7% (77/1,179) modulators were tumor suppressor
genes, and the gene type was protein coding gene.

Analysis the Splicing Outcomes of
CTNND1 Influenced by Modulators in
Kidney Cancer
In this study, we found that the spliced outcome of the 20th
exon of CTNND1 has the most inferred modulators, including
30 lncRNAs and 80 protein coding RNAs. The corresponding
AS event is “chr11:57582866: 57582972: + @ chr11: 57583387:
57583473: + @ chr11:57583769: 57586652:+.” Previously study
reported that CTNND1 encodes a member of the Armadillo
protein family, which function in adhesion between cells and
signal transduction (Zhu et al., 2012), multiple CTNND1
isoforms are expressed in cells via alternative splicing, only
full-length CTNND1 promotes invasiveness (Yanagisawa et al.,
2008). Two modulation categories were identified including 107
attenuates exon exclusion (AEE), 7 enhances exon exclusion
(EEE). The alternative spliced exon of CTNND1 and some of it’s
in each category are shown in Figure 5A.

For example, TNFRSF14 as one of modulators of QKI
attenuates the splicing regulation on the 20th exon exclusion of
CTNND1. We found that, in TNFRSF14 expression low group,
the correlation between QKI expression and CTNND1 PSI is
−0.38 (p = 1.7e−05), while such correlation is lost when in
TNFRSF14 expression high group (correlation = 0.001, p = 0.98).
This indicated that high expression of modulator TNFRSF14 may
play negative effect on changing the splicing activity of QKI.
In addition, we found that LAPTM4B, as another modulator of
QKI, played enhanced exon exclusion role on regulating the 20th
exon splicing outcome when it expression is high (Figure 5B).
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FIGURE 4 | Functional analysis of QKI modulators. (A) Expression levels of top10 modulators in KIRC tumor tissues (red boxes) compared with normal tissues (gray
boxes). (B) survival analysis of top10 modulators. The red line means the modulator expression is high, the green line means the modulator is expression low.
Modulator is grouped according to the median value of its expression level. (C–F) KEGG pathway and GO enrichment analysis, including biological process (BP),
cellular component (CC) and molecular function (MF). (G) Cancer-relevant modulators identification according to Network of Cancer genes (NCG) and Tumor
suppressor gene (TSGene) database. (*The top10 modulators were selected based on the number of their influenced splicing targets).

Thus, the results showed that differentially expressed modulators
indeed changed the role of QKI on regulating CTNND1’s splicing
outcomes, and we believed that this kind of regulation may
provide important insights for study dysregulation of splicing
outcomes associated with various diseases.

DISCUSSION

Alternative splicing alterations may confer a selective advantage
to the tumor, such as angiogenesis (Amin et al., 2011),
proliferation (Bechara et al., 2013), cell invasion (Venables et al.,
2013), and avoidance of apoptosis (Izquierdo et al., 2005).
Some splicing mRNA isoforms could change the reading frame,

resulting in the generation of different protein isoforms with
diverse functions and/or localizations (Sutandy et al., 2018). One
of the traditional methods to estimate the functions of mRNAs or
protein is comparing the difference of gene expression level (Kim
et al., 2014; Lorthongpanich et al., 2019; Xu et al., 2019).

However, not all detected alternative splicing events might
necessarily result in mRNAs or proteins expression level
changing. In addition, global description of alternative splicing
networks and demonstration of their functional consequences
have now emerged as one of the biggest challenges of the field
(Baralle and Giudice, 2017). By integrating gene expression
profile with splicing outcomes of alternative splicing events may
be one of the possible ways to study the functional consequences
for most of the identified splicing events.
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FIGURE 5 | CTNND1 splicing outcomes influenced by modulator expression in KIRC. (A) Examples of modulators in each mode sub-categories, including exon
exclusion to inclusion (ExonEI), exon inclusion to exclusion (ExonIE), enhances exon exclusion (EEE) and attenuates exon exclusion (AEE). (B) Four modulators
influence splicing outcomes of CTNND1, including TNFRSF14, ARMH4, LAPTM4B, and ODF3B. The red means the samples in modulator expression high group
(top 33%), the blue means the samples in modulator expression low group (bottom 33%). The x-axis is the expression level of QKI, y-axis is splicing outcome (PSI
value) of CTNND1.

In this study, we established a computational method for
identification the modulators whose expression is associated
with changing the targets splicing outcomes of RBPs in KIRC.
Previously, several computational methods have been developed
to identify modulators associated with transcription factors
(TFs) regulation activity on expression level (Wang et al.,
2009; Babur et al., 2010; Li et al., 2016, 2017), these studies
discussed the transcriptional activities of TFs can be influenced
by the expression level of modulators. Our method is unique
in its ability to discover how alternative splicing outcomes is
changing when modulator expression is different, even though
they were regulated by the same RBP. And the method aimed at
dissecting the effects of disruption in RBPs and hopefully it could
provide insight into studying alternative splicing networks during
development, cell differentiation, and in disease.

During tissue development and cell differentiation specific
RBPs are finely regulated at their expression levels, localization,
their own splicing, mRNA stability, and translation efficiency
(Baralle and Giudice, 2017). RBPs bind to cis-elements promoting
or inhibiting splice site recognition, hence RBP expression
coordinates alternative splicing networks during development.
We focused on 150 RBPs in this study, and only 137 RBPs
remained in the final analysis due to there was no splicing targets
of them within our criteria. Three possible modes of modulator
actions were defined in this study, depending on the correlation
changes between RBP and its target splicing outcomes when
modulator expression is different. Among these RBPs, we found
that QKI had the greatest number of influenced spliced exons
(68.9%, 199 out of 289), and 2,014 Modulator-QKI-Splicing
triplets were finally identified focused on QKI. Results showed
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that most modulators affected multiple splicing targets were
multimodal, and the same modulator may play opposite roles on
different QKI targets.

For example, high expression level of modulator ADAM8
enhanced QKI role on regulating ACSF2 exon exclusion,
while it enhanced target FMNL2 exon inclusion in regulating
splicing outcomes. Another example, low expression level of
AJM1 modulated QKI attenuated exon exclusion on regulating
CTNND1 splicing outcomes, while such modulation role
changed into enhanced exon inclusion when the target became
ATF2. The detailed information about the modulators roles in the
triples could be found in Supplementary Table S1.

Pathway enrichment results showed that all these influenced
splicing target events of QKI were enrolled in cancer
development and progression related pathways, including tight
junction pathway, transcriptional mis-regulation in cancer,
endocytosis, and MAPK signaling pathways. This evidence
indicated that these alternative spliced events played crucial roles
in kidney cancer, and changes the splicing outcomes of them may
result in dysregulation in alternative splicing networks.

Among all these influenced splicing events, CTNND1
attracted more attention as the splicing outcomes of the 20th
exon has the most inferred modulators. Previously study reported
that CTNND1 was a tumor-driver gene, whose alternative
splicing was related to cell invasion and metastasis (Yanagisawa
et al., 2008). In addition, CTNND1 (p120) consists of central
ARM domain flanked by the N-terminal regulatory (NTR) and
C-terminal tail region (CTR) (Ishiyama et al., 2010), and the
20th exon of CTNND1 is in CTR region. Thus, different splicing
outcomes of CTNND1 may influence the domain function,
resulting in the generation of different protein isoforms with
diverse functions.

We identified 114 inferred modulators of QKI-CTNND1
pair, including 30 lncRNAs and 80 protein-coding RNAs. Han
et al. (2016) reported that MALAT1 may play as a tumor-
suppressor gene in gliomas, and high MALAT1 expression
linked to cell proliferation and metastasis. In our results,
we noticed that high expression of modulator MALAT1
tended to attenuate QKI regulation role on splicing the 20th
exon exclusion in CTNND1. The correlation between QKI
expression and CTNND1 PSI was −0.51 (p = 4.3e−09) in
MALAT1 expression low group, and such correlation changed
into −0.20 (p = 0.02) in MALAT1 expression high group.
LINC00174 as another inferred modulator had been reported
that it exerted a tumorigenesis role in glioma. LINC00174
knockdown inhibited cell proliferation, migration, invasion and
glycolysis (Shi et al., 2019). We found that, when LINC00174
expression is low, the correlation between QKI expression
and splicing outcomes of CTNND1 is −0.37 (p = 2.6e−05),

while such correlation was lost (r = −0.07, p = 0.44)
when LINC00174 expression became high. These evidences
showed that regulation of alternative splicing outcomes is
a complex progress, it different splicing consequence not
only associated with RBP but also associated with other
proteins expression.

Although the established model in this study and the
corresponding results appear helpful for understanding the
alternative splicing regulation, there are some limitations. First,
many proteins tended to show similar expression pattern, certain
RBP-target pairs may have more than two inferred modulators,
these results may contain certain false positive modulators. In
addition, the function and mechanism of how modulator changes
the RBPs regulation on their target splicing outcomes need to
be further studied by experiments, for example, modulator co-
expressed or physically interacted with RBPs, and this is a long
way for us to go. Finally, we expect that our study could provide
novel insights for understanding the dysregulation of alternative
splicing in cancer.
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