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We consider disease-causing mutations that are lethal when homozygous. Lethality

involves the very strongest form of negative selection, with the selection coefficient

against the disease-carrying homozygote having its maximum value of unity. We

determine results for the behavior of the frequency of a lethal allele in an effectively

infinite population. This includes an estimate of the time it takes to achieve equilibrium,

and a description of transient behavior associated with a sudden change in the fitness

of the heterozygote. We determine analogous results for a finite population, showing

that a lethal disease-causing allele needs to be described by a modified Wright-

Fisher model, which deviates from the standard model, where selection coefficients are

assumed small compared with 1. We show that a by-product of the dynamics, resulting

from the absence of the disease-allele carrying homozygote in adults, is the general

constraint that the frequency of the disease-causing allele cannot exceed 1
2 . The results

presented in this work should prove useful to a number of areas including analysis of

lethal/near lethal mutations in Mendelian disorders and, in particular, for exploring how

mutation-selection-drift balance explains the current spectrum of mutation frequencies

in humans. While the number of empirical examples of overdominance in lethal genetic

disorders is not large, relatively high observed heterozygote frequencies may be a hint

of transient heterozygous advantage in nature. For lethal disorders with anomalous

frequencies, such as cystic fibrosis and Tay-Sachs, our analysis lends further support

to the role that transitory episodes of weak overdominance may play in the evolution of

lethal mutations.

Keywords: lethal genetic disease, Mendelian disorder, mutation selection drift balance, diffusion analysis, Wright-

Fisher model, stochastic population dynamics

1. INTRODUCTION

The population genetics of single-gene diseases, where a gene is typically considered to have two
alleles and three genotypes, is generally an oversimplification. If we consider the textbook example
of the 1F508 mutation of the CFTR gene, which is responsible for the majority of cystic fibrosis
cases, we have a gene with a recessive cc genotype whose fitness is close to zero, relative to the CC
and Cc genotypes. However, with the discovery of modifier genes that modulate CFTR (Guggino
and Stanton, 2006), this gene can no longer be considered within a simple two-allele/three-
genotype framework. As of October 2019, the Online Mendelian Inheritance in Man (OMIM)
database, reported 6, 516 single-gene phenotypes with known molecular basis. The proportion of
these that can be described using a simple two-allele/three-genotype model is likely to be small.
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Nevertheless, a subset of these Mendelian disorders, which are
single-gene diseases, and are caused by an effectively lethal
mutation, allows a general analysis based on a two-allele/three-
genotype model. Such genes are associated with the very simplest
Mendelian diseases, where the disease-causing genotype has a
relative fitness that is very small—of the order of 1% or smaller,
and hence has a rather accurately known selection coefficient,
namely one that is very close to unity, thus representing one of
the very strongest forms of negative selection.

The extreme clarity about selection coefficients lent by lethal
alleles has been exploited in a recent study by Amorim et al.
(2017). These authors explored the frequency distribution of 417
mutations (found within 32 genes) that are known to be recessive
lethals. They concluded that most of the mutations do not
conform to what is expected from the balance between mutation,
purifying selection and random genetic drift. In particular, the
authors found that themajority of themutations observed were at
frequencies that were much elevated over what was theoretically
expected. The study found some agreement with a specific class
of mutations (CpG transitions) but concluded that, on the whole,
it was likely that current data reveal an ascertainment bias,
where the disease alleles were the ones identified simply by
being more frequent by chance. The authors considered the
possibility that overdominance may play some part, however, this
was not explored theoretically. In light of this work, we present
a theoretical investigation of the sensitivity of the mutation-
selection dynamic to small changes in fitness of the carrier
genotype, in particular when slightly overdominant.

It has been speculated that the unusually high incidence of
some lethal disorders, such as cystic fibrosis and Tay-Sachs may
have evolved in response to episodes of heterozygous advantage
during periods of disease (Yokoyama, 1979; Gabriel et al.,
1994). It should be noted, however, that there is currently scant
evidence that does not exclude alternative explanations to lethal
mutations (Gemmell and Slate, 2006).

When modeling the evolution of allele frequencies, even in
large populations like that of Homo sapiens, a consideration
of the effects of drift may be very significant. However,
standard population genetics theory generally incorporates
random genetic drift via aWright-Fisher model (and its diffusion
approximation) that is derived under the assumption of weak
selection (i.e., selection coefficients that are very small compared
with 1). The results that follow from this cannot generally
be applied in the setting of strong negative selection, namely
lethality, by simply setting selection coefficients in weak-selection
models to unity. Indeed, a formal analysis of the effects of
mutation and random genetic drift in the strong selection context
of lethal mutations appears to be lacking in the literature. Here,
we present such an analysis. The results should prove useful to a
number of areas of interest including analysis of lethal and near
lethal mutations in Mendelian disorders, and in exploring how
mutation-selection-drift balance explains the current spectrum
of mutation frequencies.

We note that there are few empirical examples of
overdominance in lethal genetic disorders. This may be a
hint of transient heterozygous advantage in nature. For lethal
disorders with anomalous frequencies, such as cystic fibrosis

and Tay-Sachs, our analysis lends further support to the role
that transitory episodes of weak overdominance may play in the
evolution of lethal mutations.

2. METHODS

2.1. Description of the Population
We base our analysis on a model of a diploid dioecious
population with equal sex ratio. This has a discrete-generation
lifecycle with census made in adults (Figure 1). We assume
that each adult has an equal chance of contributing zygotes
to the population, independent of genotype, and that viability
selection acts in zygotes at a single biallelic locus. With A and a
denoting the two alleles at the locus, viability selection generally
involves the aa, aA and aa genotypes at the locus having different
viabilities (i.e., different probabilities to survive to reproductive
age), which we write as Vaa, VaA, and VAA, respectively. Using
AA as the reference genotype, we define the relative fitnesses of
the three genotypes as waa = Vaa

VAA
, waA = VaA

VAA
, and wAA =

VAA
VAA

. We follow a common way of parameterizing the relative
fitnesses, in terms of a selection coefficient, s, which determines
the difference in relative fitness between the two homozygotes,
and a dominance coefficient, h, which determines the relative
fitness of the heterozygote. This involves writing the relative
fitnesses in terms of s and h as waa = 1 − s, waA = 1 − hs,
and wAA = 1. In the present work we take the a allele to be
disease-causing in the sense that it is lethal in homozygous form,
which entails s = 1. This leads to the relative fitnesses of the three
genotypes being given by

waa = 0, waA = 1− h, wAA = 1. (1)

We note that relative fitnesses are always non-negative, and in
the present work, where there is a lethal genotype, this leads
to the dominance coefficient, h having restricted values so that
waA = 1− h ≥ 0. The possible values of h are thus given by

−∞ < h ≤ 1. (2)

The allele of interest in the present work is the disease-causing
a allele, and we can classify this in terms of the dominance
coefficient, h. The a allele is completely recessive if h =
0, partially recessive if 0 < h < 1 (which includes the

case of additivity if h = 1

2
), completely dominant if h =

1, and overdominant if h < 0. There is no possibility of
underdominance (h > 1) since the fitness of the heterozygote
cannot lie below that of the lethal (aa) genotype.

We incorporate mutation into the model, taking it to be one-
way, from the wild type allele to the disease-causing allele. In any
generation, each A allele in the population has probability u of
undergoing mutation to the a allele:

A →
u

a (3)

and each A allele remains unchanged with probability 1− u.
We shall usually write the frequency of the disease-causing a

allele in a particular generation, termed the present generation,
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FIGURE 1 | The discrete-generation lifecycle employed in this work.

as X, and use X′ to denote its value in the following generation.
However, when time is important we shall use Xt to denote the
frequency of the a allele in generation t.

We incorporate number regulation into the lifecycle, where
the juveniles in the population are non-selectively thinned, with
their number reduced to the number of adults at the start
of the generation. The individuals that are present in the
population after the thinning process become the adults of the
next generation (Figure 1).

In what follows we shall consider stationary and transient
behaviors, in the context of effectively infinite and finite
populations. We shall investigate how different values/behaviors
of the dominance coefficient, h, influence various results.

2.2. Model for an Effectively Infinite
Population
In a very large population, random genetic drift (due to number
regulation) plays a negligible role in the lifecycle. The frequency
of the disease-causing allele can then be treated as behaving
deterministically, and as far as the frequency is concerned, the
number of adults in the population is effectively infinite. In what
follows, we shall use the shorthand infinite population to describe
a population of effectively infinite size. We show in Part A of the
Supplementary Material that for an infinite population, the rule
that relates the frequency in the next generation (X′) to that of
the present generation (X) is given by

X′ = X + F(X) (4)

where

F(x) =
(

1− h
)

u−
[

h−
(

2− 3h
)

u
]

x−
(

1− 2h
)

(1− u) x2
[

1+
(

1− 2h
)

u
]

+ (1− 2h)(1− u)x
.

(5)

The function F(x) has the interpretation as the deterministic
evolutionary force that acts on the frequency of the disease-
causing allele (the a allele) in a very large population, when
the frequency has the value x. If, in a given generation, this
force is non-zero then the frequency will be different in the
following generation.

We give the full form of F(x) in Equation (5), and later the full
form of the corresponding equilibrium frequency (in Equation
9), since these are quite sensitive to the precise values of the
parameters h and u.

A particular example of Equations (4) and (5) is for a recessive
lethal allele, when mutation is neglected. This has h = 0 and
u = 0, in which case the evolutionary force in Equation (5)

becomes F(x) = − x2

1+x . From Equation (4) we then obtain

X′ = X
1+X which is a textbook example of the evolution of a lethal

allele (Hedrick, 1984).

2.3. Wright-Fisher Model for a Finite
Population
An infinite population is governed by a deterministic equation
of the general form of Equation (4), namely X′ = X + F(X).
When selection is weak, corresponding to |F(x)|≪ 1 for all x, the
behavior of the frequency of the a allele in a finite population,
under a Wright-Fisher model (Fisher, 1930; Wright, 1931), is
governed by the stochastic equation

X′ = Bin(2N,X + F(X))

2N

Wright-Fisher model
for weak selection

(6)

where, in the notation adopted in this work, Bin(n, p) denotes
a binomial random number (not a distribution), and gives the
random number of successes on n independent trials, each of
which has probability p of success.

However, when considering the evolution of lethal mutations
we need to modify the above Wright-Fisher model so it
incorporates strong selection. This results in a modified Wright-
Fisher model. The model we shall present is designed to be
appropriate for a modern, post-industrial human population,
where fertility is approximately two offspring per couple
(Hamilton et al., 2012) as occurs, for example, in the USA. Details
of the model are given in Part B of the Supplementary Material.

The conventional Wright-Fisher model is based on the
strong assumption that all randomness arises solely in the non-
selective thinning of the population to the census population
size1. This means, in particular, that selection is treated as
a deterministic process, amounting to the population being
effectively infinite during the time that selection occurs within
the lifecycle (the zygotic stage). For humans in modern post-
industrial populations, the number of offspring produced is
typically little more than that required to replace the population
(Hamilton et al., 2012). Thus, the number of zygotes produced
is similar in number to the number of adults (i.e., similar to the
census size). To transparently avoid any possible consequences

1The conventional Wright-Fisher model also assumes census and effective

population sizes coincide, however it is possible to incorporate the effective

population size into the Wright-Fisher model (Zhao et al., 2016).
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of an effectively infinite number of zygotes, we have used an
explicitly probabilistic treatment of selection, where we have
strongly limited the number of zygotes produced. However,
as we show in Part B of the Supplementary Material, for
most practical purposes there is a negligible difference between
such a model, and the model where selection is treated as
acting deterministically.

The main difference that arises because selection is not
weak, but strong (because of lethality of one genotype), is that
selection cannot be directly approximated as acting at the level of
alleles (which is possible when selection is weak). Implementing
viability selection at the actual level at which it acts, namely
genotypes, we find that although the equation X′ = X + F(X)
applies to the frequency of the disease-causing allele in an infinite
population (see Equations 4 and 5), we cannot simply extend this
equation to become an equation describing a finite population,
by using the weak-selection result (Equation 6). Rather, we find
(see Part B of the Supplementary Material for details) that the
frequency of the lethal genotype obeys the stochastic equation

X′ = Bin(N, 2X + 2F(X))

2N

Wright-Fisher model
for a lethal genotype

(7)

where F(x) is given in Equation (5). We shall often refer
to Equation (7) as the Wright-Fisher model describing a
lethal genotype.

A comparison of the standard weak-selection Wright-
Fisher model (Equation 6), and the Wright-Fisher model
describing a lethal genotype (Equation 7), indicates differences
in the placement of factors of 2 in both arguments of the
binomial random numbers present [the Bin(n, p)]. Despite these
differences, it may be verified that when N → ∞, in which case
Bin(N,p)

N → p, the factors of 2 cancel and Equation (7) reduces to
X′ = X + F(X). Thus, the quantity F(X) appearing in Equation
(7) continues to have the interpretation as the deterministic
evolutionary force acting in an infinite population.

Simulations contained in the Supplementary Material were
performed using MATLAB with the Statistics Toolbox. The code
is available at https://github.com/AndyOverall/Overdominance.

2.3.1. General Implication of Lethality
We wish to point out one general implication of lethality within
the context of a biallelic locus. This is that lethality of one
homozygote generally constrains the frequency of the lethal
allele in adults, such that independent of any model used, and
independent of the size of the population, the frequency of the

lethal allele can never exceed
1

2
. To see this we use a simple

gene counting argument, as follows. We note that the lethal a
allele only appears in heterozygote adults, but the wild type (A)
allele appears in both viable homozygote adults and heterozygote
adults. Hence, the frequency X of the a allele in adults is X =

number of aA adults
2×number of aA adults+2×number of AA adults

. The right hand side of

this equation can be written as 1/
(

2+ number of AA adults
number of aA adults

)

which

is always less than or equal to one half, thus generally

X ≤ 1

2
. (8)

A particular implication of Equation (8) is that irrespective of
the fitness of the heterozygote, it is impossible for there to be a
selective sweep of the lethal a allele to fixation, and at most the
frequency of this allele can only reach 1

2 .
We note that the Wright-Fisher model for a lethal genotype

(Equation 7), involves a binomial random number of the form
Bin(N, p), corresponding to the random number of successes
on N independent trials. Since the maximum possible number
of such successes is N we have Bin(N, p) ≤ N. This has the
consequence for Equation (7) that X′ ≤ N

2N , i.e., X
′ ≤ 1

2 . The
N independence of this result indicates that independent of the
population size (finite or infinite) the constraint of Equation
(8), on the frequency of the lethal allele in adults, will apply.
It is necessary (and reassuring) to see this constraint directly
manifested in the Wright-Fisher model that was constructed for
the problem at hand. Generally, any valid model describing a
lethal allele must exhibit such a constraint on the frequency of
the lethal allele.

3. RESULTS

3.1. Results for an Infinite Population
3.1.1. Equilibrium Frequency
Equation (4) describes an infinite population. A property of this
equation, with F(x) given by Equation (5), is that the frequency
of the a allele approaches a stable equilibrium value, which we
shall denote by X̂. In Part A of the Supplementary Material we
give exact and approximate results for the equilibrium frequency
following from Equation (4). In particular the equilibrium
frequency has the exact form

X̂ = 2(1− h)u

h+
(

2− 3h
)

u+
√

h2(1+ u)2 + 4
(

1− 2h
)

u
. (9)

This result for the equilibrium frequency, X̂, applies for the full
range of parameters −∞ < h ≤ 1 and 0 ≤ u ≤ 1 and is
consistent with the results given in textbooks. In the case where
h is small and positive, in the range

√
u ≪ h ≪ 1, we have

the approximation

X̂ ≃ (1− h)u

h
. (10)

In the case of a fully recessive a allele (i.e., h = 0), the equilibrium
frequency of the a allele is

X̂ =
√
u

1+√
u
. (11)

Lastly, in the case of overdominance, where h is negative (h =
−|h|), and has a small magnitude in the range

√
u≪ |h| ≪ 1, the

equilibrium frequency of the a allele has an approximate value
that is independent of u and given by

X̂ ≃ (−h)

1− 2h
≡ |h|

1+ 2|h| . (12)
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FIGURE 2 | The equilibrium frequency of a lethal allele in a very large

population, X̂, depends on the dominance coefficient, h, according to Equation

(9). In this figure the dependence of X̂ on h is illustrated for two different values

of the mutation rate, u. The blue curve gives the dependence of X̂ on h when

the mutation rate is u = 10−4. The red curve gives the dependence of X̂ on h

when the mutation rate is u = 10−8. The inset is an enlargement of main panel

over the range −0.02 ≤ h ≤ 0.02, to show the detailed behavior of X̂ over this

small range of h. We note that the larger mutation rate (u = 10−4) was chosen

for the purposes of visualization rather than realism.

This last result can be determined from Equation (3.4) of the
textbook by Gillespie (2004) which gives, in the notation of the
present work, the equilibrium frequency of the A allele.

The above results indicate that for some degree of
recessiveness (i.e., 0 ≤ h < 1) the equilibrium attained
is primarily the result of a balance between mutation and
heterozygote selection, while for overdominance (h < 0) it
follows that X̂ has a very weak dependence on mutation, and is
largely determined by the elevated fitness of heterozygotes over
homozygotes. An extreme example of the above result is in the
case of a negligibly small mutation rate, where X̂ takes the very
simple form

lim
u→0

X̂ =















0, for h ≥ 0,

|h|
1+ 2|h| , for h < 0.

(13)

This result can be simply derived from the u = 0 limit of
Equations (4) and (5).

When the dominance coefficient, h, lies in the vicinity of h = 0
the results for the equilibrium frequency, X̂, given in Equations
(10)–(12) exhibit strongly differing behaviors (see Figure 2).

From Figure 2 it can be seen that equilibrium frequency,
X̂, is not particularly sensitive to the value of the dominance
coefficient, h, when it lies in the range 0 ≤ h ≤ 1. This
arises for this range of h because X̂ is strongly limited by the
value of the mutation rate, u. Indeed, for values of h that are
large compared with

√
u we have X̂ approximately proportional

to u (see Equation 10) while for values of h that are small

compared with
√
u we have X̂ approximately proportional to√

u (see Equation 11). However, in the region where the disease-
causing allele exhibits overdominance (h < 0), and the degree
of overdominance, |h|, is large compared with

√
u, we find

X̂ is approximately independent of u (see Equation 12). This
is a feature that is apparent in Figure 2. Given a mutation
rate of e.g., u = 10−5 or smaller, it follows that almost any
level of overdominance of the disease-causing allele leads to
an X̂ in a large population that is anomalously large relative
to the mutation-limited values of X̂ that apply when this allele
is recessive.

The way the equilibrium frequency, X̂, depends on the
dominance coefficient, h, means that if h is changed over a
numerically small range in the vicinity of h = 0, but the range
of h is large compared with the mutation rate, u, then X̂ can
vary substantially. For example, for u = 10−5, changing the
dominance coefficient from h = 0.01 to h = −0.01, thereby
causing the heterozygote to change from being recessive to being
overdominant, causes X̂ to change from a value that we can write
as X̂ ≃ 91× u to the value X̂ ≃ 1071× u (see Figure 2). That is,
an ∼2 percent increase in the relative fitness of the heterozygote,
1− h, causes a large increase of roughly one thousand percent in
X̂. With smaller mutation rates, the percentage increase in X̂ will
be even larger.

3.1.2. Transient Behavior

3.1.2.1. Scenario
Let us now consider a very large (effectively infinite) population
with mutation rate u.

We shall consider the following scenario.

1. For a considerable time prior to time t = 0 the dominance
coefficient has the constant value h = 0 that corresponds to a
completely recessive disease-causing allele.

2. At time t = 0, an environmental change discontinuously
elevates the value of the heterozygote fitness above 1,
driving the disease-causing allele to become overdominant.
We write this elevated fitness as 1 − h∗ with h∗ negative
(h∗ = −|h∗|). This elevated fitness value persists until
generation tf .

3. From generation tf +1 onwards, the environment reverts back
to its original state, with dominance coefficient h = 0.

We proceed under the assumption that by the time t = 0
is reached the population has come to an equilibrium with a
frequency X̂ that is appropriate to a dominance coefficient of
h = 0. Thus, the frequency of the disease-causing allele at time
t = 0 is given by the infinite population result of Equation (9) for

for h = 0, i.e., Equation (11), namely X̂ =
√
u

1+√
u
≃ √

u.

We shall also make the assumption that h∗ (which is negative)
is small, but not too small, in the sense

√
u≪ |h∗| ≪ 1. (14)

This assumption allows us to use some of the approximate
results we have presented above, and thereby gain some
analytical insights.
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FIGURE 3 | This figure contains plots of the logarithm of the mean frequency

of the disease-causing allele, log10
(

E[Xt ]
)

, against the time, t. For a large

(effectively infinite) population, there are negligible deviations of the frequency

from its expected value and E[Xt ] then coincides with the frequency itself, Xt.

The infinite population results are given by the black curves. Finite population

results are given by colored curves. The figure illustrates transient behavior that

the frequency can exhibit in populations with different mutation rates, u, and

different population sizes, N when the following are assumed. (i) For a very

long time prior to t = 0 the relative fitness of the heterozygote has the value 1

(corresponding to a dominance coefficient of 0). (ii) At time t = 0 the relative

fitness of the heterozygote discontinuously jumps to the value 1.01

(corresponding to a discontinuous jump in the dominance coefficient from 0 to

−0.01). (iii) At time t = 2, 000, the relative fitness of the heterozygote

discontinuously jumps back to the value 1 (corresponding, again to a

dominance coefficient of 0). The figure was obtained using Equation (4), for an

effectively infinite population, and from the Wright-Fisher model describing a

lethal genotype, based on Equation (7). We note that where the curves

become flat closely corresponds to the attainment of equilibrium, and values of

equilibrium frequencies can be found in Table 1. Additionally, the time to

approach equilibrium depends on the pre- and post-jump values of h, and

each curve takes different times to approach equilibrium. A measure of such

times to equilibrium is given in Table 2. The black dotted curve, which applies

for u = 10−8 and N = ∞, is the only curve that does not come close to

equilibrium at long times. The equilibrium value, that this curve eventually

attains, coincides with the value that the curve takes prior to t = 0.

Note that the elevated value of the heterozygote fitness after
time t = 0 causes the frequency to increase after this time.
If the time tf is sufficiently long, then the frequency achieves
an equilibrium value (appropriate to dominance coefficient h∗)
well before time tf , and given by Equation (12), namely X̂∗ ≃

|h∗|
1+2|h∗| ≃ |h∗|. Because of Equation (14) it follows that X̂∗ is

much greater than the frequency at time t = 0, namely X̂ ≃ √
u.

Thus, X̂∗ represents a significant frequency increase over X̂.
Figure 3 illustrates the case where the allele frequency has

evolved for a very large number of generations prior to time
t = 0. Substantially before the time t = 0 is reached the frequency
has achieved the equilibrium value X̂ that is appropriate to a
dominance coefficient of h = 0. For the figure, we chose tf =
2, 000, and from t = 1 to t = 2, 000 the dominance coefficient has
the value h∗ = −0.01. Figure 3 illustrates that a relatively small

discontinuous change in the heterozygote fitness (in the figure
from 1 to 1.01) can, in a large population, lead to a significant
increase in the frequency that is subsequently achieved by the
disease-causing allele, as shown by the black curves in the figure.

3.1.2.2. Increase of the frequency to equilbrium
For intermediate times (1 ≤ t ≤ 2, 000) the frequency can be
seen in the black curves of Figure 3 to increase and reach an
equilibrium, for both mutation rates that were used.

For u = 10−8, the frequency at time t = 0 is X̂ ≃ 1.0× 10−4,
and this leads, at an intermediate time, to the equilibrium value
X̂∗ ≃ 9.8× 10−3 which is∼100 times larger than X̂.

To make comparisons, it is useful to have a measure of the
time to equilibrium. It is, however, hard to provide a precise
definition of the time to equilibrium. We thus introduce the
well-defined time it takes the frequency to go half the distance
from its initial value to its final equilibrium value, and we denote
this time by T1/2. Thus, for intermediate times, T1/2 is the time
taken for the frequency to go from its initial value (at time
t = 0), namely X̂, to its ‘mid-point value’ X̂ + (X̂∗ − X̂)/2 =
(X̂ + X̂∗)/2. We call T1/2 the “half time to equilibrium,” and this
can be calculated from the analytical solution of the frequency
(see Part A of the Supplementary Material) or estimated from
Figure 3. For intermediate times the half time to equilibrium can
be approximated by

T1/2 ≃
ln

(

|h∗|
1+2|h∗|

1√
u

)

ln
(

1+ |h∗|
) (15)

(see Part A of the Supplementary Material for details). The time
to achieve equilibrium, if required, can be very roughly estimated
as a multiple of T1/2, for example 3 × T1/2, but if this time
is important then justification is required for the multiple of
T1/2 used.

For h∗ = −0.01 and u = 10−8, Equation (15) closely agrees
with the exact result T1/2 = 461 generations, which is consistent
with the relevant infinite population (black) curve in Figure 3.

For u = 10−5 the frequency at time t = 0 is X̂ ≃ 3.2 ×
10−3, the equilibrium value achieved at an intermediate time is
X̂∗ = 1.1 × 10−2 and the “half time” to equilibrium is T1/2 =
114 generations, which is again close to the approximation
in Equation (15).

3.1.2.3. Decrease of the frequency to equilbrium
For later times (t > 2, 000) the frequency can be seen in Figure 3

to decrease. For amutation rate of u = 10−5 an equilibrium value
of the frequency is achieved, but for u = 10−8 no equilibrium
value is achieved up to time t = 4, 000.

For later times the initial value is X̂∗ and the final equilibrium
value is X̂, which is a simple interchange of the initial and
equilibrium value used for intermediate times. However, the
behavior of the frequency at later times is not the ‘mirror image’
of the behavior at intermediate times. The value of the dominance
coefficient, at intermediate times (1 ≤ t ≤ 2, 000) during
the approach to equilibrium, is −0.01, but by contrast, at later
times (t > 2, 000) the value of the dominance coefficient during
the approach to equilibrium is 0. This difference in dominance
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coefficients, during the approach to equilibrium, leads to different
“half times to equilibrium.” For later times, for parameter-values
similar to those adopted, the half time to equilibrium can be
well-approximated by

T1/2 ≃
ln

(

1+ 2
√
u

|h∗| −
2u

(h∗)
2

)

2
√
u

(16)

(see Part A of the Supplementary Material for details) which has
a quite different form to that of Equation (15).

For u = 10−8 we find that the time it takes, from the time
t = 2, 000, to achieve half equilibrium is T1/2 = 100 generations,
while for u = 10−5 it is T1/2 = 59 generations, and these values
of T1/2 are close to the approximation in Equation (16). We note
that the two values of T1/2 for later times are smaller than the
corresponding values for intermediate times.

3.2. Results for a Finite Population
We can obtain results for the Wright-Fisher model described by
Equation (7), which is a discrete time Markov chain where some
exact results are known (Haigh, 2013) and for whichmany results
can be numerically calculated. Before we give results based on
numerical calculations, we note that analytical insight into the
Wright-Fisher model, and the phenomena occurring in a finite
population, can be gained using a diffusion approximation of
this model (Kimura, 1955). The diffusion approximation treats
both the allele frequency and time as continuous quantities, and
replaces the random frequency Xt of the Wright-Fisher model by
a continuous function of continuous time, which we write asX(t).
This approximation results in the replacement of the discrete
distribution of the Wright-Fisher model by a probability density
of the frequency, which at time t and frequency x we write as
φ(x, t). The probability density obeys the diffusion equation

− ∂φ(x, t)

∂t
= −1

2

∂2

∂x2

[

V(x)φ(x, t)
]

+ ∂

∂x

[

F(x)φ(x, t)
]

(17)

(see Part C of the Supplementary Material for details) where

V(x) =
[

x+ F(x)
] [

1−
(

2x+ 2F(x)
)]

2N
(18)

is the “infinitesimal variance” associated with the model, while
F(x) is the deterministic force given in Equation (5).

Some intuition about the phenomena occurring in a finite
population with a lethal genotype can be gained from the form
of the coefficients V(x) and F(x) that appear in the diffusion
equation (Equation 17). We proceed, noting that many of the
phenomena associated with the frequency of a lethal disease-
causing allele occur at low frequencies (x ≪ 1), and so look at
the forms of V(x) and F(x) at small x. On neglecting small terms
of order x2, xu and u2 we find that for small x

V(x) ≃
(

1− h
)

(x+ u)

2N
and F(x) ≃ u(1− h)− hx . (19)

We assume that h is not equal to 1, so the disease-causing allele is
not fully dominant. Then the result in Equation (19) for V(x) at

small x tells us that there are fluctuations in the allele frequency

that are characterized by
√
V(x) ≃

√

(

1− h
)

(x+ u)/(2N) which

are small, but which persist even at zero frequency. This is
unlike the standard (i.e., weak selection) Wright-Fisher model,
where the corresponding result is

√
V(x) ≃

√

x/(2N), which
ultimately vanishes at zero frequency. For x≫u the form of V(x)

in Equation (19) behaves as
√

(

1− h
)

x/(2N) suggesting that

such a population has fluctuations appropriate to a population
of size N/(1 − h) which is larger than N, hence resulting in
smaller fluctuations than those expected for a standard Wright-
Fisher model of population size N. The result in Equation (19)
for the force F(x) acting on the allele frequency tells us that
at zero frequency the force is approximately u(1 − h). This is
positive, and hence has the tendency to push the frequency to
positive values, as we would expect mutation to do. However
it is reduced by a factor equal to the heterozygote fitness, 1 −
h. Indeed, since the non-lethal aspect of selection takes place
in heterozygotes, it is not surprising to see the relative fitness
1 − h of the heterozygotes influencing the fluctuations in the
frequency and also manifesting itself in the force acting on the
allele frequency.

3.2.1. Stationary Distribution
Under the Wright-Fisher model, the fraction of a very long
period of time spent by the population at a particular frequency is
given by the value of the stationary distribution at this frequency
(Gillespie, 2004). The expected value of the frequency in this
distribution is the finite population analog of the equilibrium
frequency in an infinite population.

For the Markov chain of Equation (7) we write the stationary
distribution as π . This is a column vector with elements πn

(n = 0, 1, 2, . . . , 2N) that is the unique solution to

Wπ = π with πn ≥ 0 and

2N
∑

n=1

πn = 1 (20)

whereW is the transitionmatrix of theMarkov chain of Equation
(7) (see Part D of the Supplementary Material for details of
the Wright-Fisher model as a Markov chain). For the problem
at hand, the elements of πn with n > N are zero. We can
numerically determine the stationary distribution, π , and from
this distribution numerically determine the value of the mean
frequency, which we denote by Estat[X]. In Table 1 we illustrate
the dependence of Estat[X] on the parameters u, N and h.
The results of Table 1 suggest that Estat[X] is: (i) an increasing
function of N, (ii) a decreasing function of h, (iii) an increasing
function of u.

3.2.2. Transient Behavior
For a finite population, we have so far considered the
stationary distribution of the disease allele’s frequency. Let
us now try to get some insight into the transient behavior
that also occurs in a finite population. We assume the same
scenario of changes of the dominance coefficient h as before
(see section 3.1.2).
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TABLE 1 | Finite and infinite population frequencies when at

stationarity/equilibrium.

Mutation

rate, u

Population

size, N

Dominance

coefficient, h

N × h log10

(Estat[X])

Estat[X]/u

10−8 500 −0.01 −1 −2.373 4.238 × 105

−0.001 −0.1 −6.077 8.375 × 102

0 0 −6.248 5.650 × 101

0.001 0.1 −6.390 4.071 × 101

0.01 1 −7.061 8.693

1,000 −0.01 −10 −1.093 8.071 × 106

−0.001 −1 −5.846 1.426 × 102

0 0 −6.098 7.971 × 101

0.001 1 −6.292 5.106 × 101

0.01 10 −7.054 8.839

2,000 −0.01 −50 −1.085 8.220 × 106

−0.001 −5 −5.567 2.709 × 102

0 0 −5.949 1.125 × 102

0.001 5 −6.208 6.193 × 101

0.01 50 −7.050 8.917

∞ −0.01 −1.079 8.333 × 106

−0.001 −2.009 9.805 × 105

0 −4.000 9.999 × 103

0.001 −6.004 9.899 × 101

0.01 −7.046 9.000

10−5 500 −0.01 −1 −1.114 7.692 × 103

−0.001 −0.1 −3.087 8.186 × 101

0 0 −3.254 5.569 × 101

0.001 0.1 −3.394 4.0333 × 101

0.01 1 −4.061 8.687

1,000 −0.01 −10 −1.091 8.108 × 103

−0.001 −1 −2.869 1.151 × 102

0 0 −3.111 7.751 × 101

0.001 1 −3.299 5.027 × 101

0.01 10 −4.054 8.832

2,000 −0.01 −50 −1.085 8.230 × 103

−0.001 −5 −2.628 2.355 × 102

0 0 −2.972 l.066 × 102

0.001 5 −3.219 6.043 × 101

0.01 50 −4.050 8.910

∞ −0.01 −1.079 8.343 × 103

−0.001 −1.970 1.071 × 103

0 −2.501 3.152 × 102

0.001 −3.042 9.075 × 101

0.01 −4.046 8.992

In this table, we give results for the logarithm of the mean allele frequency in the stationary

distribution of a finite population, log10
(

Estat [X ]
)

, for different values of mutation rate, u,

the population size, N, and the dominance coefficient, h. For a large (effectively infinite)

population, there are negligible deviations of the frequency from its expected value and

Estat [X ] coincides with the equilibrium frequency X̂. To aid comparison, we have given X̂

in the table, listed under N = ∞. Of interest is the relationship between Estat [X ] and u (see

Discussion) and we provide a column in the table containing the ratio Estat [X ]/u.

Weproceed, taking the frequency at time t = 0 to be described
by the stationary distribution corresponding to a dominance
coefficient of 0. The distribution then evolves after time t = 0

TABLE 2 | Half times to equilibrium in a finite population.

Mutation

rate, u

Population

size, N

Pre-jump

dominance

coefficient

Post-jump

dominance

coefficient

T1/2

10−8 500 0 −0.01 37

1,000 0 −0.01 60

2,000 0 −0.01 103

∞ 0 −0.01 461

500 −0.01 0 27

1,000 −0.01 0 37

2,000 −0.01 0 49

∞ −0.01 0 100

10−5 500 0 −0.01 36

1,000 0 −0.01 56

2,000 0 −0.01 88

∞ 0 −0.01 114

500 −0.01 0 27

1,000 −0.01 0 36

2,000 −0.01 0 46

∞ −0.01 0 59

In this table, we give results for half time to equilibrium, T1/2, for different values of mutation

rate, u, the population size, N, and the dominance coefficient, h. To aid comparison, we

also give T1/2 in an effectively infinite population, which is listed under N = ∞.

when subject to a dominance coefficient of h∗ which is negative. A
basic characterization of this problem is in terms of the expected
value of the frequency. We note that compared with the infinite
population result, we now have an additional parameter in the
problem, namely the population size, N, and results will depend
on the value adopted for this parameter. We investigate the
basic trends associated with finite N in the regime Nu ≪ 1
by considering two different mutation rates and three different
values of the population size, N. In Figure 3 the logarithm of the
mean allele frequency, log10(E[Xt]), is plotted (in colored curves)
against the time, t.

In Figure 3 the behavior of the finite population results
for E[Xt] can be seen to be qualitatively similar to those
of an infinite population, but quantitatively different. Mean
frequencies in a finite population are, from the figure, smaller
than the corresponding equilibrium frequencies of an infinite
population. The corresponding “half-times to equilibrium,” T1/2,
which2 can be seen to differ from the corresponding infinite
population results. To clarify this aspect we give the values of T1/2

in Table 2.
For the pattern of environmental changes we have considered,

where h is initially 0 and discontinuously jumps to −0.01, or the
reverse of this, the results of Table 2 suggest that T1/2 is: (i) an
increasing function of N, (ii) a decreasing function of u, (iii) a
jump from h = 0 to h = −0.01 leads to a larger T1/2 than a jump
from h = −0.01 to h = 0.

2The half time to equilibrium, for a finite population, is taken as the time for the

expected value of the frequency to reach themid-point of the expected values of the

frequency in the stationary distributions corresponding to the pre and post-jump

values of h.

Frontiers in Genetics | www.frontiersin.org 8 April 2020 | Volume 11 | Article 267

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Waxman and Overall Lethal Mutations

DISCUSSION

In this work we have provided an analysis of the implications of
lethal mutations in both effectively infinite and finite populations.

For an effectively infinite population, we have given the
general form for the deterministic evolutionary force which acts
in such a system, along with the equilibrium frequency. We
have also provided some illustrations and a characterization of
the transient behavior of the frequency when the fitness of the
heterozygote discontinuously changes. For a finite population,
we have provided the appropriate (i.e., a modified) Wright-
Fisher model and discussed some features that become apparent
under a diffusion approximation. We have presented properties
of a finite population, such as the stationary distribution and its
transient behavior.

For populations of finite size, Wright-Fisher models (and
their diffusion approximations) have often been employed in
describing the evolution of a focal allele (see e.g., Ewens,
2004). One assumption that is typically made when taking
this approach is that selection is a weak evolutionary force,
in the sense that selection coefficients are small compared
with 1. However, the assumption of weak selection becomes
untenable for lethal mutations; lethality represents the strongest
level of selection against one genotype. Thus an important
consideration with lethality, is the explicit need to treat the action
of selection on genotypes, rather than on alleles. This would
appear to make the analysis of lethal mutations significantly
more complicated than when selection acts weakly on all
genotypes (in which case a description in terms of single
allele frequency suffices). However, perhaps surprisingly, lethal
selection has no more complexity than weak selection. This
arises for a single locus with two alleles since a description of
the population is generally required in terms of three genotype
frequencies, but the three genotype frequencies add to unity
so just two are independent, and when there is also lethality
of one homozygote, this allows elimination of one of the
two independent genotype frequencies, with the substantial
simplification that just a single frequency is required to describe
the population. Thus, lethality of one genotype has the effect
of simplifying the model. The multinomial distribution that is
required to relate genotype frequencies in adjacent generations
under more general schemes of selection (Nagylaki, 1992)
collapses to a binomial distribution, thereby making the problem
mathematically no more complex than a weak selection problem,
which is also described by just a single frequency and also
involves a binomial distribution.

The absence of the homozygous disease genotype in adults has
the general consequence that the frequency of themutant allele is,
under all circumstances, constrained to have a frequency in the
adult population that is 6

1
2 . Thus, while it might be viewed as

improbable, but not impossible, that a lethal mutation can rise to

a frequency above
1

2
, the analysis presented in this work indicates

that this can never be the case. If a supposedly lethal allele is seen

at a frequency in excess of
1

2
, then it can be concluded that the

allele is not lethal (or perhaps that a two allele/three genotype
model is an oversimplification of the real situation).

In Table 1 we gave expected values of the frequency of the
disease-causing allele, in a finite population, in the stationary
distribution, Estat[X]. These can be seen to be approximately
proportional to the mutation rate, u, when h > 0. For example,
when N = 103 and h = 0.01, with u = 10−8 we have
Estat[X]/u ≃ 8.839, while for the same N and h, but u = 10−5

we obtain almost the same ratio Estat[X]/u ≃ 8.832. Table 1
applies whenNu≪1 and the nature of lethal mutations, to rarely
make an appearance within such a finite population, accounts
for the observed proportionality when h > 0. However, the
ratio becomes very sensitive to N when h < 0, corresponding
to overdominance of the disease-causing allele. For example,
Table 1 shows that when u = 10−8 and h = −0.01, that
with N = 500 we have Estat[X]/u ≃ 4.238 × 105, however
for the same u and h but N = 103 we obtain a ratio that
is almost 20 time larger: Estat[X]/u ≃ 8.071 × 106. We infer
that with weak overdominance, the lethal allele can, in larger
populations, reach higher frequencies that are more in line with
some lethal disorders.

In a recent study on lethal mutations by Amorim et al. (2017),
these authors found that of the four mutation types responsible
for lethality they studied, the lower the mutation rate, the greater
the observed frequency differed from their expectations, based
upon mutation-selection-drift balance. In particular, for three of
the four mutation types, the observed frequency was significantly
higher than the theoretical expectation. Here we have found,
for a large (effectively infinite) population size, that as the
mutation rate decreases, the sensitivity of the equilibrium allele
frequency to overdominance increases (Figure 2). Importantly,
this relationship between equilibrium frequency and mutation
rate is found within a very small window around h = 0.
When h > 0, the equilibrium frequency is proportional to
u (see X̂, Table 1), whereas when h < 0, the equilibrium
frequencies of lethal alleles are (to leading order) independent
of the mutation rate, being a simple algebraic function of
h (see Equation 13). Consequently, for lethal alleles with a
low mutation rate, even very weak overdominance can result
in highly inflated equilibrium frequencies, that largely escape
mutation limitation. It may be of some relevance that when
considering the transient behavior of the mutation frequency
(Figure 3), the time for the mutation to approach equilibrium
subsequent to a period of overdominance can be considerable:
e.g., of the order of 500 generations for some of the parameter
values considered here. Realistically, the proportion of lethal
recessive disorders found to be at unusually high incidences
because of periodic overdominance is likely to be a small subset,
the majority being more likely due to an ascertainment bias in
identification (Amorim et al., 2017).

The results we have established in this work relate to the
subset of Mendelian disorders corresponding to a lethal disease
homozygote. Although the majority of lethal disorders are
autosomal recessive conditions, such as cystic fibrosis and Tay-
Sachs, it should be noted that the treatment outlined in this
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work can also be applied to rare dominant lethal conditions,
such as achondroplasia, where individuals homozygous for
the mutation are unlikely to survive infancy, unlike the non-
lethal heterozygous state (Pauli et al., 1983). Thus, despite
involving strong selection, such diseases are susceptible to a
detailed analysis.

To summarize, we believe the results presented in this work
shed new light on the possible behaviors that can occur in
well-characterized genetic systems involving lethal alleles.
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