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MicroRNAs (miRNAs) are a class of important non-coding RNAs, which play important

roles in tumorigenesis and development by targeting oncogenes or tumor suppressor

genes. One miRNA can regulate multiple genes, and one gene can be regulated by

multiple miRNAs. To promote the clinical application of miRNAs, two fundamental

questions should be answered: what’s the regulatory mechanism of a miRNA to a gene,

and which miRNAs are important for a specific type of cancer. In this study, we propose

a miRNA influence capturing (miRNAInf) to decipher regulation relations of miRNAs on

target genes and identify critical miRNAs in cancers in a systematic approach. With

the pair-wise miRNA/gene expression profiles data, we consider the assigning problem

of a miRNA on target genes and determine the regulatory mechanisms by computing

the Pearson correlation coefficient between the expression changes of a miRNA and

that of its target gene. Furthermore, we compute the relative local influence strength

of a miRNA on its target gene. Finally, integrate the local influence strength and target

gene’s importance to determine the critical miRNAs involved in specific cancer. Results

on breast, liver and prostate cancers show that positive regulations are as common

as negative regulations. The top-ranked miRNAs show great potential as therapeutic

targets driving cancer to a normal state, and they are demonstrated to be closely related

to cancers based on biological functional analysis, drug sensitivity/resistance analysis

and survival analysis. This study will be helpful for the discovery of critical miRNAs and

development of miRNAs-based clinical therapeutics.
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INTRODUCTION

MicroRNAs (miRNAs) are a class of small non-coding RNAs and have been proved to play
important roles in regulating more than two thirds of human genes (Bandyopadhyay et al., 2010;
Song et al., 2017). They usually regulate their target genes by binding to the complementary seed
sequence at the 3′ untranslated region. The binding of miRNAs usually leads to the translation
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repression or degradation of the target mRNAs and ultimately
affects the production of the corresponding proteins (Bartel,
2009; Fabian et al., 2010; Hata and Lieberman, 2015). For
example, miR-21 was demonstrated to negatively regulate the
expression of SAV1 (Sun et al., 2019) and Smad6 (Xu et al.,
2016) in colorectal cancer. One single miRNA usually targets
many genes and one gene might be regulated by multiple
miRNAs. To decipher the relationships between miRNAs and
their target genes and unveil miRNAs’ biological functions,
many miRNA targets databases, such as Targetscan (Agarwal
et al., 2015), miRDB (Wong and Wang, 2015), miRanda (Betel
et al., 2010), and mirTarbase (Chou et al., 2018), have been
built based on various biological experiments and/or different
computation methods.

The dysfunctions of miRNAs have been reported to be
involved in the tumorigenesis of various cancers (Bartel, 2004;
Gotte, 2010; Dela Cruz andMatushansky, 2011; Lovat et al., 2011;
LiuW. et al., 2018; Xu et al., 2018). For this reason, miRNAs have
become potential biomarkers in cancer diagnosis and treatment
(Slack and Chinnaiyan, 2019). Furthermore, some miRNA-based
therapeutics have entered into the clinical research, i.e., miR-16-
based mimics in phase I clinical trial for treating advanced non-
small cell lung cancer, and antimiRs targeted at miR-122 in phase
II trial for treating hepatitis (Rupaimoole and Slack, 2017).

However, accumulating evidence indicates that miRNAs can
also promote the expression of their target genes. For example,
Vasudevan et al. found that miR396-3 could direct the AGO
complex binding with the AU-rich elements to promote the
translation of its target gene in Vasudevan et al. (2007). They
further demonstrated that let-7 and synthetic miRcxcr4 could
induce target mRNAs up-regulation on cell cycle arrest while
repressing translation in proliferation cells (Vasudevan and
Steitz, 2007). In addition to functioning in the cytoplasm, mature
miRNAs are also found in the nucleus. Xiao et al. demonstrated
that miR-24-1 in the nucleus can activate gene transcription by
targeting their enhancers (Xiao et al., 2017). Up to now, more
than 200 positive regulations of miRNAs on genes have been
experimentally identified in the literature.

It becomes a fundamental problem to elucidate the regulatory
relations between miRNAs and their target genes in systems
biology. Specifically, we need to know which genes are
positively regulated by one miRNA and which genes are
negatively regulated by it. The answer to this problem will
provide a foundation to study the critical roles of miRNAs
in tumorigenesis. Recently, Tan et al. first investigated this
problem based on the Pearson correlation coefficients between
the expression of miRNAs and their target genes in pan-cancer
datasets (Tan et al., 2019). Surprisingly, they found many positive
correlated miRNA-gene pairs. This demonstrates that miRNAs
could exert their important roles in various cancers by positively
regulating many genes.

Another important issue is to determine the critical miRNAs
potential to affect the overexpression or under-expression of
cancer-related genes. The answer to this question will help to
determine a few “level point” miRNAs for designing miRNA-
based therapeutic strategies. Cui et al. combined the miRNA
sequence features and miRNA disease spectrum width (DSW) to

define the importance of miRNAs (Cui et al., 2019). However,
this static definition could not reflect the different regulatory
mechanisms between miRNAs and genes involved in specific
cancer well.

In this paper, we propose a novel miRNA influence capturing
(MiRNAInf) to decipher regulation relations of miRNAs on
target genes and identify critical miRNAs in cancers in a
systematic approach. We study miRNA-gene regulations by
assuming that the expression of one gene is determined by its
upstream miRNAs. We model the expression of a gene as a
function of the expression of the miRNAs targeting it. Through
the Taylor expansion, we employ the first partial derivative to a
miRNA to denote its regulatory effect on the target gene. The first
partial derivative is then approximated by the Pearson correlation
coefficient of the expression change of a miRNA and that of its
target gene between disease and normal control.

We finally define the global influence of a miRNA by
combining its local influence strength in an individual cancer and
the degree of its target gene in a PPI network. Our results on
breast cancer, prostate adenocarcinoma and liver cancer datasets
further demonstrate that positive regulations are as common as
negative ones in miRNA-gene interactions. We also find that
only a few miRNAs have significant influences on the cancer-
related differentially expressed genes. The identified top miRNAs
in the three datasets are not only highly correlated in a functional
network, but also significantly enriched in some important
functions such as inflammation, cell proliferation, apoptosis and
cell cycle. It demonstrates that they are very likely to play
essential roles coherently in tumorigenesis. More importantly,
we find that the intervention of a few critical miRNAs may
alleviate the abnormal expressions of most genes according to
the regulatory effect and differential expression situation between
miRNAs and their target genes. Besides, the identified important
miRNAs influence patients’ survival time of prognosis besides
the sensitivity/resistance of some anti-cancer drugs. In sum, our
study provides a systematic way to understand the key roles of
miRNAs in cancers and to screen potential intervention miRNA
biomarkers for future miRNA-based therapy and diagnosis in
precision medicine.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
We collected three types of data: miRNA and gene expression
data for three cancers, miRNA-gene interaction data, and
protein-protein interaction (PPI) data from three different
databases: TCGA, miRTarbase and STRING (Chou et al., 2016;
Szklarczyk et al., 2017).

The Cancer Genome Atlas (TCGA) Data
We collected datasets with both miRNA and gene expression
profiles for cancer samples and corresponding normal samples
in this study. Three cancers with abundant gene expression and
miRNA expression “pair datasets” were acquired from TCGA
(http://tcga-data.nci.nih.gov/tcga/). They included 102 samples
for breast cancer, 52 samples for prostate adenocarcinoma, and
49 samples for liver cancer.
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MiRNA-Gene Interaction Data
Besides gene expression and miRNA expression data, we
further downloaded miRNA-gene targets data from miRTarbase
(Chou et al., 2016), a widely-used state-of-the-art database for
miRNA-gene targets. miRTarbase includes 502,652 high quality
experimentally validated miRNA-gene interactions between
2,599 miRNAs and 15,064 genes for the human species.

Protein-Protein Interaction (PPI) Data
The STRING database, which includes 10,048,286 interactions
between the 19,576 proteins for human beings, integrates the
experimentally validated and computationally predicted protein-
protein interactions (Szklarczyk et al., 2017). In order to use the
highly confident interactions, we selected the interactions with
a combined score >150. The distribution of proteins’ degrees
indicates that a small number of proteins have interactions
with hundreds of other nodes, while most proteins only have

interactions with a few of other proteins, which satisfies power-
law distribution (Please go to Figure S1 for details).

Methods
In this study, we propose a miRNAInf method to identify critical
miRNAs involved in cancer as well as conducting comprehensive
functional analysis for miRNAs. The flowchart of the proposed
miRNAInf methods is illustrated in Figure 1. The proposed
method consists of the three steps. First, we determine the
significant differentially expressed miRNAs and genes based on
their expression data from TCGA. Second, we compute the local
influence strength of a miRNA to its target gene. Finally, we
evaluate the global influence of a miRNA in a specific cancer by
integrating the local influence strength and gene’s importance.

Identify Differentially Expressed miRNAs and Genes
We conduct normalization for miRNA and gene expression data
before identifying differentially expressed miRNAs and genes.

FIGURE 1 | The flowchart of the proposed study framework.
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For each miRNA epression sample, we apply the RPM (Reads Per
Million) method for normalization as described in Equation (1)
for its simplicity and efficiency (Faraldi et al., 2019).

rRPMi =
Eri

Totalr
× 106 (1)

where Eri means the read counts ofmiRNA i and Totalr indicates
the total counts of all miRNAs in a specific sample. RPM
normalizes all read counts with respect to the ratio between
library size and a million number. Similarly, we normalize gene
expression data as follows

gRPMj =
Egj

Totalg
× 106 (2)

where Egj means the read counts of gene j and Totalg indicates the
total counts of all genes in a specific sample.

We then apply DESeq2 (Love et al., 2014) to identify
differentially expressed genes (DEGs) and differentially expressed
miRNAs (DEmiRs) by collecting all genes and miRNAs with p <

0.05 adjusted by FDR method in differential expression analysis
of the normalized data. Finally, we get 546,457 and 313 DemiRs
and 5,057, 3,665, 3,064 DEGs for breast, liver, and prostate
cancer, respectively.

Compute miRNA Local Influence Strength on a Target

Gene
The expression of a gene can be assumed as a function of the
expression of the miRNAs targeting it. Given a gene j regulated
by m miRNAs r1, r2, . . . ri, . . . rm, then its expression gj =

f j (r1, r2, . . . ri, . . . rm) in disease state can be approximated by
first-level Taylor expansion as

f j (r1, r2, . . . ri, . . . rm) = f j
(

r10 , r
2
0 , . . . r

i
0, . . . r

m
0

)

+
∑

i∈Rj

∂f j (r1, r2, . . . ri, . . . rm)

∂ri
1ri (3)

where f j
(

r10 , r
2
0 , . . . r

i
0, . . . r

m
0

)

is the expression value of gene j in
normal state, Rj is the index set of the miRNAs regulating gene j,
1ri = ri−ri0 (i ∈ {1, 2, . . . ,m}) is the change of miRNA i between
the disease state and normal state.

The gene expression change 1gj of gene j can be
calculated by moving the gene expression in the normal
state f j

(

r10 , r
2
0 , . . . r

i
0, . . . r

m
0

)

to the left side of Equation 3:

1gj = f j (r1, r2, . . . ri, . . . rm) − f j
(

r10 , r
2
0 , . . . r

i
0, . . . r

m
0

)

=
∑

i∈Rj

∂f j (r1, r2, . . . ri, . . . rm)

∂ri
1ri (4)

where the right side represents the sum of expression change
of gene j induced by the perturbation of each miRNA i. The

partial derivative
∂f j(r1 , r2 ,...ri ,...rm)

∂ri
actually reflects the influence

strength of miRNA i on gene j. A givenmiRNA imay target many
other genes, we assume that 1rij, the portion of the ith miRNA
expression difference 1ri between the disease and normal states,

affecting gene j, is positively proportional to the expression
change 1gj. Given the target gene index set Gi of miRNA i, we
define 1rij as the product of the absolute change ratio of gene j
∣

∣1gi
∣

∣ /
∑

j∈Gi

∣

∣1gj
∣

∣ and the change of miRNA i between the disease

state and normal state 1ri:

1rij =

∣

∣1gj
∣

∣

∑

j∈Gi

∣

∣1gj
∣

∣

× 1ri (5)

Based on this, we can calculate the Pearson correlation coefficient
ρij between 1rij and 1gj. ρij > 0 indicates that miRNA i
upregulate gene j, otherwise, it suppresses gene j. Then the partial

derivative
∂f j(r1, r2 ,...ri ,...rm)

∂ri
can be approximated by

∂f j (r1, r2, . . . ri, . . . rm)

∂ri
= kijρij (6)

where the coefficient kij can be assumed and approximated by a
constant k for all miRNA-genes.

Given one miRNA i, it may have different influence strengths
on each target gene. Thus, we compute its local influence strength
Iij as follows

Iij =
ρij

∣

∣1rij
∣

∣

∑

i∈Rj

∣

∣ρij1rij
∣

∣

(7)

where the 1rij means the average difference between disease
and normal tissues for all patients. The local influence strength
Iij considers both the correlation coefficient ρij and the average

difference 1rij. The higher correlation ρij between them, the
larger its influence on gene j. Similarly, the larger average
difference 1rij, the larger also its influence on gene j.

Evaluate the Global Influence of Each miRNA
In order to describe the importance of a miRNA in a specific
disease, we consider both the number of its target genes and the
importance of each gene. Here, we define the global influence of
a miRNA i for the disease by weighting its local influence by the
importance of its target genes:

Ii =
∑

j∈Gi

∣

∣

∣
Iijd

∗
j

∣

∣

∣

=
∑

j∈Gi

∣

∣

∣
Iij

dj
dmax

∣

∣

∣

(8)

where dj and dmax represent the degree of the gene j and
the maximum degree in the PPI network, respectively. The
importance of the gene j is modeled as the ratio of its degree

between the maximum degree in the PPI: di
dmax

. The global

influence of a miRNA i involves both the local influence strength
and the importance of its target genes. Themore targets regulated
by miRNA i, the larger its global influence. Simultaneously,
the larger the degrees of its target genes in PPI, the larger the
global influence.
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RESULTS

Positive Regulations Are as Common as
Negative Ones in Cancers
As mentioned before, it suggests that positive regulations also
play important roles in cancers. We first study the distribution
of the Pearson correlation coefficient ρij between the change
of a miRNA and that of its target genes. Figure 2 shows the
distribution of the number of

∣

∣ρij
∣

∣ > 0.3 in breast cancer, liver
cancer, and prostate cancer, respectively. First, the distribution
of the number of ρij > 0.3 and that of ρij < −0.3 are very
similar. Our observation further supports the results in Tan et al.
(2019) that miRNAs exert both positive and negative regulations
on their target genes. Second, most of the absolute ρij are smaller
than or equal to 0.5, which indicates that most of the regulatory
strengths are relatively weak because onemiRNAmay target even
hundreds of genes; On the other hand, only a few absolute

∣

∣ρij
∣

∣

are larger than 0.8, which indicates that several individual genes
may be strongly regulated by very few miRNAs.

As an example, Figure 3 shows the scatter plots between the
change of five miRNAs and that of their target gene KLF4,
which regulates many critical physiologic and cellular processes
(Wang et al., 2018). The X-axis of Figures 3A–E represents the
expression change of a specific miRNA binding on target gene
KLF4, X-axis of Figure 3F represents the total change of five
miRNAs regulating KLF4, and the Y-axis of Figure 3 represents
the expression change of KLF4. We can see that three miRNAs
(hsa-miR-10b-5p, hsa-145-5p, and hsa-miR-335-5p) positively
correlate with KLF4, while the other twomiRNAs (hsa-32-5p and
hsa-miR-7-5p) negatively correlate with it. This demonstrates
that miRNAs targeting one gene may affect it differently. Their

total expression changes positively correlate with that of KLF4
as shown in the last subplot of Figure 3. It indicates that some
impacts of the negatively correlated miRNAs can be offset by
those of dominant ones.

miRNAs Regulate Their Target Genes in a
Complex Way
In this section, we select a portion of miRNAs and their target
genes and display their local influence relation in a bipartite
graph in Figure 4. We can see that one miRNA may promote the
expression of some genes while repressing that of the others. On
the other hand, one gene may be upregulated by some miRNAs
while being downregulated by other miRNAs. Furthermore, one
miRNA may have a larger influence (wide lines) on some genes
while having relatively smaller influence (thin lines) on the
others. The observations demonstrate that miRNAs interact with
their target genes in a complex way. The inference of these
complex interactions forms the basis for us to understand the
detailed roles of each miRNA on a specific gene. For example,
PIK3CA is regulated by hsa-miR-10b-5p (Influence strength,
0.9509), hsa-miR-335-5p (Influence strength, 2.83E-4), hsa-miR-
17-5p (Influence strength,-7.75E-4), hsa-miR-19a-3p (Influence
strength,-7.47E-5), and hsa-miR-155-5p (Influence strength,-
7.29E-4). Then its expression is thus mainly upregulated by hsa-
miR-10b-5p.

Only a Few miRNAs Have Significant
Global Influences on Cancers
From the perspective of systems biology, we are more
interested in the most critical miRNAs, i.e., dominant miRNAs

FIGURE 2 | The distribution of the Pearson correlation coefficients ρij in breast cancer, liver cancer, and prostate cancer, respectively.
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FIGURE 3 | The scatter plots between the change of five miRNAs and that of their target gene KLF4. (A) the correlation between hsa-miR-10b-5p and KLF4; (B) the

correlation between hsa-miR-145-5p and KLF4; (C) the correlation between hsa-miR-335-5p and KLF4; (D) the correlation between hsa-miR-32-5p and KLF4; (E)

the correlation between hsa-miR-7-5p and KLF4; (F) the correlation of total influence of the five miRNAs and their target gene KLF4.

that have the greatest influence on the whole regulatory
network. Identifying the dominant miRNAs will answer the
key question: which miRNAs are regulators of the most
cancer-related genes?

Figure 5 illustrates the global influence of the top-ranked

20 miRNAs in breast, liver and prostate cancers, respectively.

We can see that some miRNAs appear in all the three
cancers whereas others may only show in one or two

cancers. It suggests that some miRNAs play a common
important role in many cancers while others are more

related to specific cancers. Moreover, there are only a
few miRNAs whose global influences are extremely larger
than those of the others. This indicates their dysfunction
may have very crucial impacts on the development of
cancers. For instance, miR-21 ranked as the top one in
the three cancers, has been confirmed highly involved in
cancer proliferation and metastasis (Liu H. et al., 2018; Wang
et al., 2019). On the other hand, we find that the most
influenced genes by the dysfunctional miRNAs are highly
related with cancers, such as CDK2, TP53, HRAS, NFKB1
(Carroll et al., 2000; Normanno et al., 2009; Xu et al., 2016).

FUNCTIONAL ANALYSIS OF THE CRITICAL
miRNAs

Intervention of a Few Critical miRNAs May
Help to Alleviate the Abnormal Expression
of Most Cancer-Related Genes
Because one miRNA may regulate multiple downstream genes
and the intervention on it may have different effects on the
expression of its target genes. From the perspective of miRNA-
based therapy, it is very crucial to figure out how the intervention
of one miRNA may affect the abnormal expression of their
target genes. If a miRNA promotes the expression of a gene
and they are both overexpressed or under-expressed, then the
intervention of the miRNA will exert a positive effect on the
target gene to alleviate its abnormal expression; If a miRNA
represses the expression of a gene and they have an opposite
abnormal expression situation, then the intervention of the
miRNA will also exert a positive effect on the target gene
to alleviate the abnormal expression. Conversely, if a miRNA
promotes the expression of a gene and they have the opposite
abnormal expression situation, then the intervention of the
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FIGURE 4 | The regualtory networks between miRNAs and genes in breast, liver, and prostate cancer, respectively. Red and green lines indicate upregualtion and

downregualtion, respectively. Line width indicates the absoulte value of the local influence strength. Red and green nodes indicate overexpression and

underexpression, respectively. (A–C) are the subnetworks for breast, liver and prostate cancer respectively.

miRNA will exert a negative effect on the target gene to
deteriorate its abnormal expression. On the other hand, if a
miRNA represses the expression of a gene and they are both
overexpressed/under-expressed, then the intervention of the
miRNA will also exert a negative effect on the target gene to
deteriorate its abnormal expression.

Figure 6 shows the subnetwork of hsa-miR-21-5p in the three
cancers, when intervention on hsa-miR-21-5p, the left-hand
genes are those being positively affected while the right-hand
ones negatively affected genes. This reveals that the intervention
of one miRNA may have complex effects on cancer-related
genes. Specifically, the abnormal expression of some genes can
be alleviated while the other may be further deteriorated.

Based on the regulation relations and the abnormal expression
situations, we summarize the number of positively and the
negatively affected miRNA-gene pairs of the top five miRNAs
in Table 1. The “+”/“-” symbols in Table 1 represent the
number of positively/negatively affected miRNA-gene pairs after
intervention. We have the following observations from the table.
First, we can see that the interventions of the five miRNAs may
affect about 1,000 of abnormal miRNA-gene pairs which indicate
they regulate many downstream genes. Second, the number of
positively affected genes is extremely larger than that of the
negatively affected ones. Third, the absolute relative influence
strengths of most of the positively affected pairs are larger than
0.5. The observations indicate that the intervention of the top five
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FIGURE 5 | The global influence of the top 20 miRNAs in breast cancer (A), liver cancer (B) and prostate cancer (C) datasets, respectively.

FIGURE 6 | A small subnetwork of miRNA-21-5p and its target genes in three cancers. (A–C) are for the subnetworks in breast cancer, liver cancer and prostate

cancer respectively.

miRNAs may significantly drive the cancer-related genes to the
normal levels. Therefore, they are potential invention biomarkers
for miRNA-based therapy.

Most of the Critical miRNAs Involve in
Some Important Biological Functions
We conduct functional analysis for top-ranked miRNAs by
integrating the co-expression similarity, co-GO similarity, co-
literature similarity, and co-similar disease similarity by using
miRNA functional analysis tool MISIM (Li et al., 2019). There
are 14, 15, and 13 miRNAs respectively annotated by MISIM in
the top 20 important miRNAs of the three cancer datasets.

Figure 7A shows the function similarity network of the
top 20 miRNAs, where red color lines denote the correlation
coefficients larger than 0.5. It suggests most of the miRNAs
are highly correlated in their biological functions. Figure 7B
shows the top 10 enriched biological functions (FDR<7.0E-02)
of themiRNAs. These biological functions, such as inflammation,
cell proliferation, apoptosis, and cell cycle, have been verified
closely related to different cancers (Evan and Vousden, 2001;
Taniguchi and Karin, 2018; Xu et al., 2020). This indicates the
critical miRNAs might interact in a highly coherent way to
drive the biological system from normal to disease state in the
three cancers.
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As the overlapped critical miRNA in three cancers, hsa-mir-21
was reported to involved in various cancers such as colorectal
cancer, breast cancer and lung cancer (Xu et al., 2016; Liu W.
et al., 2018). It has been reported that overexpression of miR-21

TABLE 1 | The number of positive and negative effect interactions between the

top 5 miRNAs and their targets in three cancers, respectively.

Abs
(

Iij
)

Breast cancer Liver cancer Prostate cancer

+ – + – + –

(0.9–1) 583 42 175 35 344 2

(0.8–0.9) 190 9 92 16 119 1

(0.7–0.8) 94 4 76 25 86 1

(0.6–0.7) 90 13 63 18 58 0

(0.5–0.6) 84 19 48 15 64 3

(0.4–0.5) 77 15 66 28 67 2

(0.3–0.4) 44 19 54 37 71 5

(0.2–0.3) 43 30 52 50 82 4

(0.1–0.2) 52 50 61 59 158 17

Total 1257 201 687 283 1049 35

The bold values are the number of interactions with influence strength more than 0.5.

could promote the cellular proliferation, colony formation,
invasion and also inhibit cell death in a wide variety of cancerous
cells by regulation of various targets including PTEN, TPM1, and
PDCD4 (Najjary et al., 2020).

Some Critical miRNAs Also Impact the
Resistance/Sensitivity of Drugs
Some non-coding RNAs (ncRNAs) especially miRNAs could
promote sensitivity or produce resistance of drugs by regulating
their target genes. To evaluate the impacts of the critical
miRNAs on the resistance/sensitivity of drugs, we submit the
top 20 miRNAs to two state-of-the-art miRNA-drug interaction
databases: ncDR (Dai et al., 2017) and mTD (Chen et al., 2017).
The two databases include 1,056, 384, and 127 records for
miRNA-drug interactions in breast, liver and prostate cancers
respectively as well as curating a lot of resistance/sensitivity
related ncRNAs.

We find that there are 10, 6, and 4 miRNAs impacting
drug resistance/sensitivity cases in breast cancer, liver and
prostate cancer, respectively, among the top 20 miRNAs. The
main reason for the small number of miRNAs in the liver
and prostate cancers lies in that there are relatively fewer
records about them in the two databases. Figure 8 shows
their abnormal expression and corresponding influence on

FIGURE 7 | Biological function analysis of the top 20 miRNAs. (A) miRNAs function enrichment analysis; (B) functional similarity network analysis of the miRNAs.
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FIGURE 8 | Drug sensitivity/resistance analysis of the top 20 miRNAs. The red (or green) oval represents the miRNA is up-regulated (or down-regulated) in cancer

samples. The red line denotes promoting drug sensitivity while the green line denotes inducing drug resistance.

drug sensitivity/resistance. On one hand, one miRNA may
influence multiple drugs with different effects. For example,
the over-expression of hsa-mir-182 in breast cancer could
induce drug resistance to both Olaparib and Cisplatin while
promoting the sensitivity of Tamoxifen. On the other hand, some
miRNAs may promote a drug sensitivity while others induce
its resistance. The complex effects of these miRNAs on cancer-
related drugs not only further demonstrate their importance in
cancer development, but also provide a new insight for accurate
drug selection.

The Expression of Critical miRNAs Is
Highly Related to the Survival Time of
Prognosis
We also find that critical miRNAs can influence the survival time
of prognosis seriously. Figure 9 shows the Kaplan–Meier curves
of the top three miRNAs in breast, liver and prostate cancers,
respectively. Most of them are significantly correlated to the
overall survival time in both breast and liver cancers except for
prostate cancer. One major reason is that most prostate tumors
are slow-growing and many of them are not lethal. Furthermore,
some important correlations between the miRNAs are supported
by wet-lab experiments. For example, Yan et al. demonstrated
that overexpression of miR-21 was associated with human breast
cancer poor prognosis (Yan et al., 2008). Ji et al. showed that liver
cancer patients with low miR-26 expression had shorter overall
survival time (Ji et al., 2009, 2013). These observations indicate

that the identified critical miRNAs may also serve as potential
biomarkers for the survival time of prognosis.

CONCLUSION

MiRNAs have been reported as a kind of important non-coding
regulators influencing the expression of more than 60% genes.
In this paper, we proposed a novel miRNA influence capturing
(miRNAInf) method to characterize the regulatory mechanism
of miRNA on their target genes as well as identify critical
miRNAs that have dominantly important impacts on target
genes. Out results from the breast, prostate and liver cancer
datasets further verify that miRNAs may either upregulate or
downregulate their target genes instead of mainly repressing
them. We identified some critical miRNAs involved in the three
cancers by constructing a miRNA-gene regulatory network. Our
biological functional analysis shows that those critical miRNAs
are not only highly correlated with each other but also involved
in many important biological functions such as apoptosis,
proliferation, etc. Furthermore, miRNA-gene interaction analysis
reveals that the intervention of only a few top crucial miRNAs
may potentially alleviate the abnormal expressions of many
genes and push the cancer system to a normal situation. It
suggests that the identified crucial miRNAsmay serve as potential
biomarkers for miRNA-based therapy as well as diagnosis. In
addition, we find some critical miRNAs may influence the
sensitivity/resistance of drugs as well as the survival time of
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FIGURE 9 | Kaplan–Meier curves of the top three miRNAs in breast, liver and prostate cancers, respectively.

prognosis. Our study provides a strong foundation to support
the combination of miRNA-based therapy and cancer drugs to
improve the treatment effect in precision medicine. To the best
of our knowledge, this study first provides a systematic approach
to decipher the roles of miRNAs in the diagnosis and prognosis
of complex diseases and will inspire future studies in this field.
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