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Haplotype prediction models open many possibilities to improve the accuracy of
genomic selection but require more data processing and computing time than single-
SNP prediction models. To facilitate haplotype analysis for genomic prediction and
estimation using structural and functional genomic information, we developed a
computing pipeline to implement haplotype analysis with capabilities for preparation
of input data for haplotype analysis, genomic prediction and estimation using GVCHAP,
and analysis of GVCHAP results. Data preparation includes utility programs for haplotype
imputing; defining haplotype blocks by a fixed number of SNPs, a fixed distance in
base pairs per block, or user defined block lengths based on structural or functional
genomic information or a mixture of both types of information; and defining haplotype
genotypes within each haplotype block. GVCHAP is the main program for genomic
prediction and estimation, calculates GREML (genomic restricted maximum likelihood)
estimates of variance components and heritabilities, and calculates GBLUP (genomic
best linear unbiased prediction) for additive and dominance values of single SNPs
as well as additive values of haplotypes with reliability estimates for training and
validation populations. A two-step strategy and a method of multi-node processing
are implemented to remove the computing bottleneck due to the creation of genomic
relationship matrices for large samples. The analysis of GVCHAP results includes
calculation of observed prediction accuracies from validation studies and preparation of
input files for graphical visualization of heritability estimates of haplotype blocks as well
as estimates of SNP effects and heritabilities. The entire pipeline provides an efficient
and versatile computing tool for identifying the most accurate haplotype model among
many candidate haplotype models utilizing structural and functional genomic information
for genomic selection.
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INTRODUCTION

Current methods using single nucleotide polymorphism
(SNP) markers for genomic evaluation mostly use single-SNP
prediction models. Haplotype analysis opens many possibilities
of using structural and functional genomic information
to improve the accuracy of genomic evaluation and gene
discovery (Da, 2015). Compared to studies using single-SNP
prediction models, only limited studies were available for
using haplotype models in genomic evaluation (Calus et al.,
2008; Villumsen et al., 2009; Mulder et al., 2010; Boichard
et al., 2012; Cuyabano et al., 2015; Hess et al., 2017; Jónás
et al., 2017; Jiang et al., 2018; Jan et al., 2019). Those studies
achieved mixed results from little to substantial improvement
in prediction accuracy due to the use of haplotypes relative
to single-SNP models, and used haplotype blocking methods
that are only a fraction of many possible haplotype models.
However, investigating many haplotype models per trait is
a computing challenge because haplotype models require
considerably more data processing and computing resources
than required by single-SNP models. Validation study is a
commonly used approach to identify best haplotype models
from a large number of candidate models but increases
data processing work and computational difficulty. The
computing pipeline in this article provides a full-featured
computing tool for genomic prediction and variance component
estimation using haplotypes with capability to minimize
the data processing work, reduce computing difficulty, and
conduct haplotype genomic prediction and estimation in an
automated fashion.

METHODS

Mixed Model With SNP and Haplotype
Effects
GVCHAP implements a multi-allelic haplotype mixed model that
treats each haplotype block as a ‘locus’ and each haplotype within
the haplotype block as an ‘allele’ (Da, 2015). The mixed model
may include SNP additive and dominance effects and haplotype
additive effects, with user flexibility to fit any or all of these three
genomic effects. Haplotype dominance effects were coded but
disabled in GVCHAP due to the large number of haplotype pairs
that may exist in some haplotype blocks. The dominance effect
of each haplotype pair requires all three genotypes to define, one
heterozygous and two homozygous genotypes of the SNP, but
one or both homozygous genotypes may be missing when many
haplotypes with small frequencies exist.

Based on the quantitative genetics models of
haplotypes and SNPs (Da et al., 2014; Da, 2015),
the quantitative genetic model with SNP additive
and dominance effects as well as haplotype additive
effects is:

y = Xb+ Z(Wααo +Wδδo +Wαhαho)+ e

= Xb+ Z(a+ d+ ah)+ e (1)

where Z = N × n incidence matrix allocating phenotypic
observations to each individual = identity matrix for one
observation per individual (N = n), N = number of observations,
n = number of individuals, αo = m× 1 column vector of SNP
additive effects, m = number of SNPs, Wα = n×m model matrix
of αo, δo = m× 1 column vector for dominance effects of SNP
genotypes, Wδ = n×m model matrix of δo, αh = nαh × 1 column
vector of haplotype additive effects, nαh = number of haplotype
additive effects, Wαh = n ×nαh model matrix of αh, b = c× 1
column vector of fixed effects such as herd-year-season in dairy
cattle, c = number of fixed effects, X = N× c model matrix of
b, a =Wααo = SNP genomic additive values, d =Wδδo = SNP
genomic dominance values, ah =Wαhαoh = haplotype genomic
additive values. The haplotype coding represented by wij,k

αh in

Wαhis: wij,k
αh = 2pk for i,j6=k (aij and α1k do not share allele k),

wij,k
αh = −(1− 2pk) for i6=j but i = k or j = k (aij and α1k share

allele k, i6=j), and wij,k
αh = −2(1− pk ) for i = j = k (aij and α1k

share allele k, i = j), where aij = additive value of haplotype
genotype with the ith and jth haplotypes, and α1k = additive
effect or the average effect of gene substitution as the difference
between the allelic (haplotype) effects of the first and the kth

haplotypes (Da, 2015). SNP codings in Wα and Wδ are the
same as defined by the single-SNP quantitative genetics model
(Da et al., 2014). The first and second moments of Eq. 1 are
E(y) = Xb, and

Var(y) = V = Z(σ2
αoWαW′α + σ2

δoWδW′δ + σ2
αohWαhW′αh)Z

′

+σ2
e IN = Z(Ga + Gd + Gah)Z

′
+ σ2

e IN (2)

where σ2
αo = SNP additive variance, σ2

δo = SNP
dominance variance, σ2

αoh = haplotype additive variance,
σ2

e = residual variance, Ga = var(a) = σ2
αoWαW′α,

Gd = var(d) = σ2
δoWδW′δ, and Gah = var(a) =

σ2
αohWαhWα h

′.
Based on Eqs. 1, 2, the mixed model with genomic relationship

matrices is a reparameterized and an equivalent model of
Eqs. 1, 2, i.e.,

y = Xb+ Z(Tαα + Tδδ + Tαhαh)+ e

= Xb+ Z(a + d + ah)+ e (3)

Var(a) = σ2
αAg = σ2

αTαT′α = σ2
αoWαW′α = Ga (4)

Var(d) = σ2
δDg = σ2

δTδTδ
′
= σ2

δoWδW′δ=Gd (5)

Var(ah) = σ2
αhAαh = TαhT′αh = σ2

αohWαhW′αh = Gah (6)

Var(y) = V = Z(σ2
αAg + σ2

δDg + σ2
αhAgh)Z′ + σ2

e IN

= Z(Ga + Gd + Gah)Z′ + σ2
e IN (7)

where Ag = SNP genomic additive relationship matrix, Dg = SNP
genomic dominance relationship matrix, Agh = haplotype
genomic additive relationship matrix, Tα =Wα/k1/2

α , Tδ =

Wδ/k1/2
δ , Tαh =Wαh/k1/2

αh , a = Tαα =Wααo = SNP genomic
additive values, d = Tδδ =Wδδo = SNP genomic dominance
values, ah = Tαhαh =Wαhαoh = haplotype genomic additive
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values, σ2
α = SNP additive variance, σ2

δ = SNP dominance
variance, σ2

αh = haplotype additive variance, σ2
e = residual

variance, V = phenotypic variance-covariance matrix, and

kα = tr(WαW′α)/n (8)

kδ = tr(WδW′δ)/n (9)

kαh = tr(WαhW′αh)/n (10)

Each of kα, kδ and k
αh defined by Eqs. 8–10 is an average of the

diagonal elements of WjW′j (j = α, δ, αh). With this definition,
variance components σ2

α, σ2
δ and σ2

αh can be interpreted as the
average of the corresponding variances of all individuals under
the original quantitative genetics model of Eqs. 1, 2, i.e.,

σ2
α = tr(Ga)/n = σ2

αotr(WαW′α)/n = kασ
2
αo (11)

σ2
δ = tr(Gd)/n = σ2

δotr(WδW′δ)/n = kδσ
2
δo (12)

σ2
αh = tr(Gah)/n = σ2

αohtr(WαhW′αh)/n = kαhσ
2
αoh (13)

and the genomic relationship matrices in Eqs. 4–6 can be
expressed as:

Ag = TαT′α =WαW′α/kα (Hayes and Goddard, 2010) (14)

Dg = TδTδ
′
=WδW′δ/kδ (15)

(Da et al., 2014;Wang and Da, 2014)

Agh = TαhT′αh =WαhW′αh/kαh (Da, 2015) (16)

GVCHAP chose to implement the genomic relationship
matrices using the average of the diagonal elements in WjW′j
(j = α, δ, αh) as the denominator, i.e., kj = tr(WjW′j)/n as
the denominator (Eqs. 8–10), because this approach yields
variance and heritability estimates in the study population
that can be a random or an inbred population (Da, 2019).
The genomic relationship matrix that uses the total SNP
heterozygosity as the denominator (VanRaden, 2008) is not
implemented by the current version of GVCHAP, unlike
GVCBLUP that implements both methods with VanRaden’s
method as Definition I, and the Hayes-Goddard method as
Definition II (Wang et al., 2014b). VanRaden’s method preserves
the properties of pedigree additive relationships, i.e., aii = 1+
f and aij = 2fij, where aij = additive relationship between the
ith and jth individuals, fij = coancestry coefficient between the
ith and jth individuals, and f = inbreeding coefficient; but
underestimates genetic variance components and heritability
compared to the Hayes-Goddard method when inbreeding is
present. The Hayes-Goddard method does not preserve the
properties of pedigree additive relationships. Although these
two methods for calculating genomic relationship matrices
have different interpretations and generally have differences
in estimates of variance components and heritabilities, these
methods and the quantitative genetics model of Eqs. 1, 2
without using genomic relationships yield identical GBLUP and
reliability (Da, 2019). The use of haplotype genomic relationships
is in parallel to the use of SNP genomic relationships,
but haplotype genomic relationships are not suitable for

measuring relationships among individuals such as parent-
offspring relationship due to recombination between SNPs within
haplotype blocks (Da, 2015). The only practical application
of haplotype genomic relationships is for multi-allelic markers
such as microsatellite markers but such markers are virtually
unused in current genetic research. This was another reason why
only one method for defining genomic relationship matrix was
implemented in GVCHAP.

Software Implementation
The GVCHAP program was developed based on the GREML_CE
program in the GVCBLUP package for genomic prediction
and variance component estimation using SNP markers (Wang
et al., 2014b). As in GVCBLUP, GVCHAP is programmed
in C++ language using Eigen and Intel Math Kernel library
(MKL). Eigen is a C++ template library for linear algebra,
supports large dense and sparse matrices. Intel MKL provides
BLAS and LAPACK linear algebra routines and is optimized
for Intel processors by using shared memory parallel computing
technology. The multi-node processing (MNP) program is
based on the input section of GVCHAP with modifications for
processing the input SNP and haplotype files using multiple
nodes. Nearly all the utility programs are written in Python. The
GVCHAP implementation of the multi-allelic haplotype model
was validated by a R-script that had the same results of EM-
REML as GVCHAP for the same testing data. It was widely
confirmed that EM-REML and AI-REML converge to the same
estimates. The R-script and the testing data are included in
the GVCHAP package.

RESULTS AND DISCUSSION

Structure of GVCHAP Computing
Pipeline
The computing pipeline of GVCHAP (Figure 1) consists of
three components: data preparation, GVCHAP analysis, and
analysis of GVCHAP results. The complete list of computer
programs in this pipeline and the technical details for using
these programs are described in the GVCHAP User Manual
(Supplementary Material). The following is an overview of this
computing pipeline.

Computing Tools for Preparation of Input
Files for GVCHAP Analysis
Five input files are required for running GVCHAP: SNP
genotypes, haplotype genotypes, phenotypes, SNP map file, and
parameter file. The SNP genotypic files, phenotypic file and map
file are provided by the user and remain unchanged for GVCHAP
analysis. The haplotype genotypic files can be tedious to prepare,
particularly for studies evaluating many haplotype models using
validation studies for each model. A set of utility programs
prepares the haplotype genotypes and partially fill in the
parameter file in an automated fashion. This process starts with
converting the format of the user provided SNP genotypic file
into the format for BEAGLE (Browning et al., 2018) or FINDHAP
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FIGURE 1 | Structure of GVCHAP computing pipeline. The pipeline consists of three components, preparation of input data for haplotype analysis, GVCHAP
analysis of genomic prediction and estimation, and post-GVCHAP analysis.

(VanRaden et al., 2015), running BEAGLE or FINDHAP to
produce imputed haplotypes, dividing the imputed haplotypes
into haplotype blocks, and defining haplotype genotypes within
each haplotype block (Figure 2).

Dividing haplotypes of each chromosome into haplotype
blocks, to be referred to as haplotype blocking, is the first step
for defining a specific haplotype model. Three utility programs
for haplotype blocking allow three options for defining haplotype
blocks: a fixed number of SNPs per block using ‘block-by-
snp.py,’ or a fixed distance in kilo-bases per block using ‘block-
by-kb.py,’ or a user provided haplotype blocking file that can
have various block lengths using ‘block-by-pos.py.’ The user
provided blocking file provides flexibility for using various
types of structural and functional genomic information such
as LD based blocking (LD = linkage disequilibrium) and gene
based blocking. The parameter file contains controls for running
GVCHAP, including the prediction model, the use of EM-REML
and AI-REML, and information about the input and output files.
Two utility programs (count-snps.py and count-haps.py) fill in
the number of SNPs and the number of haplotype blocks for each
SNP genotype file and each haplotype genotype file.

GVCHAP Analysis
The GVCHAP analysis produces GBLUP (genomic best linear
unbiased prediction) and GREML (genomic restricted maximum
likelihood estimation) for SNP effects and values as well as
haplotype additive values with options to improve computing
speed (Figure 3).

Seven Prediction Models
The prediction model can include SNP additive and dominance
values, and haplotype additive values. For these values, GVCHAP

offers seven models that include the full model of Eq. 3 and six
variations of Eq. 3:

Model 1: SNP additive, dominance and haplotype additive
values, y = Xb+ Z(a+ d+ ah)+ e;
Model 2: SNP and haplotype additive values, y = Xb+ Z(a+
ah)+ e;
Model 3: SNP dominance values and haplotype additive
values, y = Xb+ Z(d+ ah)+ e;
Model 4: haplotype additive values only, y = Xb+Zah + e;
Model 5: SNP additive and dominance values, y = Xb+
Z(a+ d)+ e;
Model 6: SNP additive values only, y = Xb+ Za+ e;
Model 7: SNP dominance values only, y = Xb+ Zd+ e.

Models 1–4 contain haplotype additive values, and Models
5–7 are SNP models. The comparison between Models 1–4 and
Models 5–7 for prediction accuracy provides an estimate whether
haplotypes improve the prediction accuracy. For example,
haplotypes improved the prediction accuracy if any of the
haplotype models (Models 1–4) was more accurate than the
three SNP models (Models 5–7) in validation studies. Similarly,
validation studies can identify the most accurate model among
the seven prediction models. Each of the seven models is
configured by the starting values of the variance components
in the parameter file through four parameters, var_snp_a,
var_snp_d, var_snp_e, and var_hap_a for starting values of SNP
additive variance, SNP dominance variance, residual variance,
and haplotype additive variance respectively. These seven models
and the main results of GBLUP and GREML for each model are
summarized in Table 1.
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FIGURE 2 | Computing pipeline for preparing input files for GVCHAP analysis.

GREML Estimates of Variance
Components and Heritabilities
GVCHAP calculates GREML estimates of variance components
and hertiabilities for each of the genetic effects in the prediction
model using a combination of EM-REML and AI-REML for
iterative solutions adopted from GVCBLUP (Wang et al., 2014b).
The program starts with a minimum of two EM-REML iterations,
switches to AI-REML at iteration 3 by default, and switches
back to EM-REML automatically when AI-REML fails. GREML
calculates estimates of variance components with tolerance
values, and heritability estimates with tolerance values and
standard deviations.

GREML estimates may provide helpful information for
choosing among the seven prediction models in Table 1. We
recommend GREML with all types of genetic values in the
prediction model (Model 1) as the initial GVCHAP analysis
to determine whether any type of genetic values has a zero
or near-zero heritability, and remove such genetic values from

FIGURE 3 | Input and output files of GVCHAP analysis.

the prediction model. The inclusion of genetic values with
negligible heritability may cause slow convergence for GREML
and may only have negligible contribution to prediction accuracy.
Therefore, removing such genetic values from the prediction
model may significantly improve the computing speed with
negligible change (positive or negative) to prediction accuracy.
For example, the appropriate prediction model should be Model
2 if SNP dominance heritability is negligible, Model 3 if SNP
additive heritability is negligible, or Model 4 if SNP additive and
dominance hertiabilities are both negligible.

GBLUP, Reliability, and Expected
Prediction Accuracy for Predicting
Genetic Values
Converged GREML estimates of variance components are used
for calculating GBLUP and reliability for each type of genetic
values and the sum of SNP and haplotype values. In the output
file for GBLUP and reliability, an individual is flagged with ‘T’
if the individual is in the training population with phenotypic
observations, or ‘V’ if the individual has missing phenotypic value
or is in the validation population with phenotypic value set as
missing value. For the example of Model 1 with SNP additive and
dominance values as well as haplotype additive values, GBLUP
and reliability for each and the sum of these values are calculated.
After sorting the output file by training (T) and validation (V)
populations, the GBLUP estimates are:

â = (â′1, â′0) = GBLUP of SNP additive values (17)

d̂ = (d̂
′

1, d̂
′

0) = GBLUP of SNP dominance values (18)

âh = (â′h1, â′h0) = GBLUP of haplotype additive values (19)

ĝ = â+ d̂+ âh = GBLUP of total genotypic values (20)
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TABLE 1 | Seven prediction models configured by parameters for starting values of variance components in the parameter file and the main results of GBLUP and
GREML for each model.

var_snp_a var_snp_d var_snp_e var_hap_a

Model 1 var_snp_a NPV var_snp_d NPV var_snp_e NPV var_hap_a NPV

â, R2
a , σ̂2

α, ĥ2
α d̂, R2

d, σ̂2
δ , ĥ2

δ σ̂2
e âh, R2

ah, σ̂2
αh, ĥ2

αh, ĝ, R2
g

Model 2 var_snp_a NPV #var_snp_d var_snp_e NPV var_hap_a NPV

â, R2
a , σ̂2

α, ĥ2
α σ̂2

e âh, R2
ah, σ̂2

αh, ĥ2
αh, ĝ, R2

g

Model 3 #var_snp_a var_snp_d NPV var_snp_e NPV var_hap_a NPV

d̂, R2
d, σ̂2

δ , ĥ2
δ σ̂2

e âh, R2
ah, σ̂2

αh, ĥ2
αh, ĝ, R2

g

Model 4 #var_snp_a #var_snp_d var_snp_e NPV var_hap_a NPV

σ̂2
e âh, R2

ah, σ̂2
αh, ĥ2

αh

Model 5 var_snp_a NPV var_snp_d NPV var_snp_e NPV #var_hap_a

â, R2
a , σ̂2

α, ĥ2
α d̂, R2

d, σ̂2
δ , ĥ2

δ , ĝ, R2
g σ̂2

e

Model 6 var_snp_a NPV #var_snp_d var_snp_e NPV #var_hap_a

â, R2
a , σ̂2

α, ĥ2
α σ̂2

e

Model 7 #var_snp_a var_snp_d NPV var_snp_e NPV #var_hap_a

d̂, R2
d, σ̂2

δ , ĥ2
δ σ̂2

e

A non-zero positive value (NPV) after the parameter activates the genetic value in the prediction model, and a ‘#’ sign in front of the parameter removes the genetic value
from the prediction model. â = GBLUP of SNP additive value. R2

a = reliability of â. d̂ = GBLUP of SNP dominance value. R2
d = reliability of d̂. ĝ = GBLUP of total genotypic

value, = â + d̂ + âh for Model 1, = â + âh for Model 2, = d̂ + âh for Model 3, = â + d̂ for Model 5. R2
g = reliability of ĝ. σ̂2

α = GREML estimate of SNP additive variance.

σ̂2
δ = GREML estimate of SNP dominance variance. σ̂2

e = GREML estimate of residual variance. σ̂2
αh = GREML estimate of haplotype additive variance. ĥ2

α = GREML

estimate of SNP additive heritability. ĥ2
δ = GREML estimate of SNP dominance heritability. ĥ2

αh = GREML estimate of haplotype additive heritability.

where ‘∧’ indicates estimated value, subscript ‘1’ indicates
training population, and subscript ‘0’ indicates validation
population or individuals with missing phenotypic observations.
Each of the above GBLUP estimates is accompanied by its
reliability. The square root of a reliability estimate is the
correlation between GBLUP and the unobservable true genetic
value being predicted by the GBLUP, and is the expected accuracy
for predicting the unobservable true genetic valu’e, a, d, ah, or
g = a+ d + ah. In the absence of validation studies, reliability
or the expected prediction accuracy is the measure of prediction
accuracy for a type of genetic value, e.g., SNP additive or
dominance value, or haplotype additive value, or the sum of all
these genetic values. The reliability formula for ĝ = â+ d̂+ âh
of Model 1 is:

R2
gi =

GαZ′PZGα + GδZ′PZGδ + GαhZ′PZGαh
+GαZ′PZGδ + GδZ′PZGα + GαZ′PZGαh
+GαhZ′PZGα + GδZ′PZGαh + GαhZ′PZGδ


ii

/
(

Aii
gσ2

α+Dii
gσ2

δ+Aii
ghσ

2
αh

)
(21)

where P = V−1
− V−1X

(
X′V−1X

)− X′V−1; Aii
g , Dii

g and Aii
gh are

the ith diagonal elements of Ag, Dg and agh respectively; and
subscripts ii of the numerator indicates the ith diagonal element of
the numerator matrix. The reliability formula for any of Models
2–7 can be readily derived from Eq. 21, e.g., the reliability of
Model 2 is obtained from Eq. 21 by deleting all terms involving ‘δ.’

Observed and Expected Accuracy for
Predicting Phenotypic Values
For a validation study, this computing pipeline has a utility
program (get-correlations.R) calculating the observed accuracy
for predicting the phenotypic values using a type of genetic

values (e.g., SNP additive values or haplotype additive values)
or a sum of several types of genetic values (e.g., the sum of
SNP dominance values and haplotype additive values) for each
validation. This observed accuracy is calculated as the correlation
between the predicted genetic values and the phenotypic values
in the validation population (individuals flagged as ‘V’ in the
output file) that were omitted when calculating GBLUP. The
expected accuracy for predicting phenotypic values is the product
between the expected accuracy for predicting genetic values and
the square root of heritability (Legarra et al., 2008). For genomic
prediction using a type of genetic values, e.g., SNP additive or
dominance values, or haplotype additive values, or a sum of
these genetic values, the observed and expected accuracies for
predicting phenotypic values and the expected accuracies for
predicting genetic values are:

R̂0pi = corr(ĝ′0i, y0) (22)

R̂0p =

k∑
i=1

R̂0pi/k (23)

R0gi =

n0i∑
j=1

R0gij/n0i (24)

R0g =

k∑
i=1

R0gi/k (25)

R0p = R0g
√

h2 (26)

where R̂0pi = observed prediction accuracy for predicting the
phenotypic value of the ith validation population, R̂0p = observed
prediction accuracy for predicting the phenotypic value of k
validation populations such as those from a k-fold validation
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study, R0gij = expected prediction accuracy for predicting the
genotypic values of the jth individual in the ith validation
population calculated as the square root of reliability from
the GVCHAP output file for GBLUP and reliability based on
Eq. 21,R0gi = expected prediction accuracy for predicting the
genotypic values of the ith validation population, n0i = number
of individuals in the validation population, R0g = expected
prediction accuracy for predicting the genotypic values of k
validation populations, R0p = expected prediction accuracy for
predicting the phenotypic values of k validation populations,
and h2 = heritability. The get-correlations.R program calculates
Eqs. 22–25, but Eq. 26 needs to be calculated by the user using
results in the GBLUP and GREML output files.

Haplotype and SNP Heritability
Estimates for Graphic Visualization
GVCHAP calculates and saves SNP effects and heritability
estimates, and saves haplotype heritability estimates in separate
files for graphical visualization using SNPEVG2 (Wang et al.,
2012) to identify SNPs and haplotype blocks with high heritability
estimates. The graphical visualization of SNP effects and
heritability estimates were available in GVCBLUP (Wang et al.,
2014b), and the graphical visualization of haplotype heritability
estimates is new to GVCHAP. A utility program (merge-mrk-
hap.py) merges the two output files for haplotype heritabilities
and SNP effects and heritabilities as a “.snpe” file that SNPEVG2
recognizes as an input file. Manhattan plots of and chromosome
graphs of SNP and haplotype heritabilities can be produced by
SNPEVG2, as shown by the example of Figure 4. The Manhattan
plot and chromosome graphs of haplotype heritabilities may
reveal chromosome regions with high heritability estimates that
were not observed from the SNP plots and graphs.

Fixed Effects, and Genomic and
Non-genetic Prediction of Phenotypic
Values
GVCHAP calculates and saves fixed effects in a separate file
and outputs the estimates of the fixed effects for all individuals.
Two types of fixed effects can be included in the prediction
model, classification variable for a fixed factor with a small
number of levels such as male or female, and covariable for a
fixed factor with many levels such as age. Selected SNPs can
be fitted as fixed effects through declarations in the parameter
file for column positions of those SNPs in the phenotype
file, typically as covariables to minimize the use of degrees
of freedom such that the residual degree of freedom is still
sufficiently large.

Three potential applications involve the use of fixed effects.
These include estimation of SNP contributions to prediction
accuracy and genomic heritability (Tan et al., 2017), genomic
prediction using fixed SNP effects for traits with large SNP
effects (Spindel et al., 2015), and prediction of phenotypic values
using genomic and non-genetic prediction (GNG) that combines
genomic prediction and estimates of non-genetic fixed effects
such as age and gender. For GNG, the current version of
GVCHAP supports samples with one phenotypic observation per

individual (N = n), and the general expression of the GNG values
under this assumption is:

ŷ = Xb̂+ ĝ (27)

where ĝ = â+ d̂+ âh for Model 1,= â+ âh for Model 2,= d̂+
âh for Model 3, = âh for Model 4, = â+ d̂ for Model 5, = â for
Model 6, and= d̂ for Model 7.

Computing Speed of GVCHAP
The computing time of GVCHAP for calculating SNP additive
and dominance genomic relationship matrices, haplotype
additive relationship matrix, and each GREML iteration was
evaluated using five samples and the Mesabi supercomputer
at the University of Minnesota (Table 2). The results showed
that the creation of the haplotype additive genomic matrix was
the most time-consuming and memory-intensive computation,
and could require 20 times as much time as creating the SNP
additive and dominance genomic relationship matrices. For
15,098 individuals and 657,024 SNPs, the haplotype additive
genomic relationship matrix required 22.11 h, whereas the SNP
additive and dominance genomic relationship matrices together
required 1.32 or 0.66 h per matrix. In contrast, each iteration
required little time for any of the four samples, 19–82 s per
iteration. To reduce the computing time for matrix creation,
we developed two computing strategies, a strategy to remove
repeated computations in validation studies and multivariate
analysis, and a strategy of multi-node processing to eliminate the
computing difficulty for creating the haplotype additive genomic
relationship matrix. As the number of SNPs decreases, the
computing speed for calculating the genomic matrices increases.
For 7549 individuals with 82,128 SNPs, the calculation of the
haplotype genomic additive relationship matrix required only
1.31 h, compared to 7.88 h when the number of SNPs became
four times as many for the same number of individuals.

Two-Step Strategy to Remove Repeated
Computing for Genomic Relationship
Matrices
To remove repeated calculations to create genomic relationship
matrices in validation studies and multivariate analysis, we
designed a two-step strategy that saves genomic relationship
matrices from the first run as binary files and loads the saved
genomic relationship matrices for the remaining runs. For the
example of a 10-fold validation, genomic relationship matrices
are calculated only for the first of the 10 validation runs,
and the remaining 9 validation runs load the stored genomic
relationship matrices calculated and saved by the first run. This
strategy virtually eliminates computing time for creating genomic
relationship matrices when running GVCHAP. Our experience
showed loading the saved genomic relationship matrices was
nearly instantaneous and required only negligible computing
times. With this strategy, days of computing time could be
saved even for the smallest sample with 7549 individuals and
328,512 SNPs in our test runs (Table 2). For a study investigating
many candidate haplotype models for multiple traits using k-fold
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FIGURE 4 | Examples of graphical visualization of SNP heritabilities (left) and haplotype heritabilities (right).

TABLE 2 | Computing time of GVCHAP using the Mesabi supercomputer.

GVCHAP using one node with 62 Gb memory Multi-node processing (MNP)

Number of individuals (n) 7549 7549 15,098 15,098 37,745a

Number of SNPs (m) 82,128 328,512 328,512 657,024 328,512

SNP Ag and Dg 0.12 h 0.71 h 0.70 h 1.32 h 2.67 h

Haplotype Agh 1.31 h 7.88 h 14.31 h 22.11 h ≈3 hb

Time per iteration 19 sc 37 sc 82 sc 62 sc 22–29 minc (one node)

aHaplotype genotypes of this dataset could not be processed by a single node with 62 Gb memory limit and was used as an example using the MNP method.
The haplotype genotypes were divided into 75 files each with 200 blocks for most of the 75 files that were processed using 75 different nodes. bEach Wi

αhWi′
αh file

required 0.831 ± 0.248 h to process, and the summation of the 75 Wi
αhWi′

αh matrices and the calculation of Agh =WαhW′αh/kαh took about 1.66 h to complete. Adding
0.831 and 1.66 h indicates the calculation of Agh approximately required 3 h. cThe computing time per iteration is affected by the number of jobs running on the
Mesabi supercomputer.

validations (e.g., 10-fold), days even months of computing time
could be saved using this two-step strategy alone (Table 3).

Multi-Node Processing (MNP) for
Genomic Relationship Matrices of Large
Samples
The long computing time required by GVCHAP to create a
haplotype additive genomic relationship matrix using a single
node (Table 2) was due to the successive processing of haplotypes
by chromosome. This successive processing results in the waiting
of the next chromosome to be processed until the current
chromosome finished its processing, which involves reading
the haplotype genotype data, calculation of allele (haplotype)
frequencies, and matrix multiplication and addition. Moreover,
the memory limit of a single node sets a limit for the sample
size and number of haplotypes that can be processed. To
remove the limitation of using successive processing of the
haplotype genotypes and a single node, we developed a multi-
node processing (MNP) approach that divides the haplotype

genotype files into s small files. One node processes each of
the s files and all the s small files are processed simultaneously
using different nodes. Although SNP additive and dominance
genomic relationship matrices only required minor computing
time relative to the time required by haplotypes (Table 2),
the MNP approach is also implemented for SNP genomic
relationships. The MNP approach is based on the result that the
numerator matrix of each relationship matrix of Eqs. 14–16 can
be expressed as a sum of the numerator matrices of all s small
files, i.e.,

Ag =WαW′α/kα =

( s∑
i=1

Wi
αWi′

α

)
/kα (28)

Dg =WδW′δ/kδ =

( s∑
i=1

Wi
δWi′

δ

)
/kδ (29)

Agh =WαhW′αh/kαh =

( s∑
i=1

Wi
αhWi′

αh

)
/kαh (30)
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where kα, kδ, and kαh are defined by Eqs. 8–10. Different Wi
αWi′

α

matrices in Eq. 28, Wi
δWi

δ in Eq. 29, and Wi
αhWi

αh in Eq. 30
are processed by different nodes and are saved separately as a
binary file. These matrices are then added together to create each
genomic relationship matrix using Eqs. 28–30. Each genomic
relationship matrix for all haplotypes or SNPs is saved as a
binary file. The GVCHAP analysis loads these saved matrices
with negligible computing time and the main computing time
required for the GVCHAP analysis becomes that for iterations.
The MNP results in the same savings in computing time due to
processing of the genomic relationship matrices as the two-step
strategy (Table 3) and can be considered as a multi-node version
of the two-step strategy. The unique advantage of the MNP
approach is the removal of hardware limitation of a single node
and the ability to use multiple nodes simultaneously, making
what is undoable using a single node doable using multiple nodes.
For the example of 35,745 individuals and 328,512 SNPs, a single
node with 62 Gb memory could not complete the haplotype
genomic relationship matrix, and this matrix could be created in
about 3 h using MNP (Table 2).

Heritability Tolerance to Reduce the
Number of Iterations
With the removal of the computing bottleneck for processing
haplotype genotypes by the two-step strategy and MNP method,
the computing bottleneck becomes iterative solutions for
GREML. The computing time per iteration increased from
less than 1.5 min for 15,098 individuals to 22–29 min for
37,745 individuals (Table 2). The current version of GVCHAP
uses shared memory parallel computing that can utilize all
cores within a single node, but cannot use multiple nodes
simultaneously. When AI-REML is used, GREML iterations
generally converge fast, but EM-REML is used automatically
when AI-REML fails and EM-REML may require many
iterations to converge. To reduce the computing time required
by EM-REML, GVCHAP implements two types of tolerance
levels, heritability tolerance and variance component tolerance.
Heritability tolerance can be substantially less stringent than
variance component tolerance, e.g., 10−6 for heritability
tolerance and 10−8 for variance component tolerance. Since
heritability estimates are rarely reported with more than
three decimal points, the 10−6 tolerance for heritability could
significantly reduce the number of EM-REML iterations. With
two types of tolerance levels, iteration stops when any of the two
tolerance levels is reached.

TABLE 3 | Approximate saving of computing time of GVCHAP due to the
two-step strategy or multi-node processing (MNP) for a 10-fold validation study
relative to the use of a single node of the Mesabi supercomputer without the
two-step strategy of MNP.

Number of individuals (n) 7549 15,098 15,098

Number of SNPs (m) 328,512 328,512 657,024

Saving in computing time

10-fold validation model/trait 3.22 days 6 days 9 days

10-fold validation 10 models per trait 32.2 days 60 days 90 days

Challenge of Large Numbers of
Individuals
The number of individuals is the limiting factor within
each iteration because of matrix inversions and the need
to store genomic relationship matrices for GREML. As the
number of individuals increases, the sizes of the genomic
relationship matrices and hence the required memory to
store those matrices increase, and the computing time may
increase rapidly. The choice of statistical model has a major
impact on the memory requirement. Model 1 with haplotype
additive effects and SNP additive and dominance effects requires
the most memory, whereas Model 4 with haplotype additive
effects requires the least memory among all models with
haplotype effects. Therefore, Model 4 is the computationally
competitive choice among Models 1–4 if Models 1–3 do not
have substantially better prediction accuracy than Model 4.
As shown in Table 2, increasing the number of individuals
from 15,098 to 37,745 increased the computing time to 22–
29 min from 82 s per iteration due to the larger genomic
relationship matrices, 37,745 × 37,745 for 37,745 individuals
versus 15,098 × 15,098 for 15,098 individuals. For this case,
the matrix size increased 2.5 times and required 6.25 times
as much memory to store each genomic relationship matrix.
The ultimate computing solution to increase the GVCHAP
capability for large numbers of individuals would be the use of
distributed memory parallel computing, or parallel computing
with massage passing interface (MPI) for using multiple nodes
to reduce computing time and to use a large amount of
memory. We have developed a MPI version of GVCBLUP
(Wang et al., 2014a), and a MPI version of GVCHAP may be
developed in the future.

CONCLUSION

The GVCHAP program provides a capability for GBLUP
and GREML to identify optimal prediction models using
haplotypes based on structural and functional genomic
information for genomic selection. The utility programs for
data preparation and summary analysis of GVCHAP results
eliminate most of the tedious and time-consuming data
work. The entire pipeline provides an efficient and versatile
computing tool to investigate candidate haplotype models
utilizing structural and functional genomic information for
genomic selection.
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