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Protein-protein interactions are the foundations of cellular life activities. At present, the

already known protein-protein interactions only account for a small part of the total.

With the development of experimental and computing technology, more and more PPI

data are mined, PPI networks are more and more dense. It is possible to predict

protein-protein interaction from the perspective of network structure. Although there are

many high-throughput experimental methods to detect protein-protein interactions, the

cost of experiments is high, time-consuming, and there is a certain error rate meanwhile.

Network-based approaches can provide candidates of protein pairs for high-throughput

experiments and improve the accuracy rate. This paper presents a new link prediction

approach “Sim” for PPI networks from the perspectives of proteins’ complementary

interfaces and gene duplication. By integrating our approach “Sim” with the state-of-art

network-based approach “L3,” the prediction accuracy and robustness are improved.

Keywords: protein-protein interaction, network, link prediction, interface complementarity, gene duplication

1. INTRODUCTION

Protein is the executor of all biological physiological functions, and most of the cell functions
are accomplished by interactions of proteins. Therefore, the detection and prediction of
protein-protein interactions is of great significance for understanding the mechanism of life
activities. In recent years, with the development of biotechnology, some techniques for identifying
protein-protein interactions have been developed, such as Yeast two-hybrid (Y2H) (Fields
and Song, 1989), Co-Immunoprecipitation (Moresco et al., 2010), Affinity chromatography
(Cuatrecasas, 1970), and Protein Chips (MacBeath and Schreiber, 2000). These techniques provide
us with a large amount of data on protein-protein interactions. However, the experimental results
are mixed with a large number of false positive and false negative data. Meanwhile, the cost of
experiments is very high. Therefore, more andmore scholars use computational methods to predict
protein-protein interactions. At present, there are many computational methods based on genome
information, genetic evolution (Tsoka and Ouzounis, 2000; Chen et al., 2006; Lin et al., 2013) and
protein structure (Planas-Iglesias et al., 2013; Zhao et al., 2017). Thesemethods explain the principle
of protein-protein interactions from different aspects. However, the information needed by many
of these methods is not easily obtained, so they are not of universal significance. Many sequence-
based machine learning methods (Huang et al., 2016; An et al., 2017; Wang et al., 2017a,b; You
et al., 2017) have been developed. Based on the primary sequences of proteins, they use machine
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learning algorithms, such as Neural Network (Wang et al.,
2017b), Support Vector Machine (SVM) (Wang et al., 2017a),
and rotation forest (You et al., 2017) to predict protein-
protein interactions.

With the development of experimental and computational
methods, protein-protein interaction data increase rapidly. There
are many databases that store protein-protein interaction data.
The PPI network (see Figure 1) formed by these interactions
contains a lot of information. How to discover new links
from the already known PPI networks has become a research
hotspot in proteomics. Unlike stochastic networks, PPI networks
have the characteristics of small-world networks, such as
short average path length and power-law distribution of node
degrees. These common characteristics have inspired scholars
to study PPI networks in the way of studying social networks.
These methodologies are mainly divided into three categories:
neighborhood-based or paths-based approaches (Cannistraci
et al., 2013; Huang et al., 2017; Muscoloni et al., 2018; Kovács
et al., 2019; Pech et al., 2019), hierarchical clustering approaches
(Clauset et al., 2008; Symeonidis et al., 2013), and random walk-
based approaches (Lichtenwalter et al., 2010; Backstrom and
Leskovec, 2011).

Network-based methods usually use common neighbors and
paths between each pair of nodes to define “similarity” between
them and use it to measure the link likelihood of them. These
methods originate from the research of link prediction of social
networks (Lü and Zhou, 2011; Wang et al., 2015). Their basic
ideas are that two highly similar nodes (tightly connected
through intermediate nodes) in a network tend to establish new
links. For example, if two people who do not know each other
yet have many friends in common, we predict that they may
know each other in the future. That is to say, the number of
common neighbors (the number of two-hop paths) (Newman,
2001) is related to the link likelihood between the two nodes. At
the same time, the number of k-hop paths is also considered for
the prediction of network links. The design of these similarity
indices well reflects the link self-organizationmechanism of some
social networks, and some of them perform well on some PPI
networks as well. We list several network-based indices (mostly
based on common neighbors and paths), as shown in Table 1,
where Ŵi is the neighbor set of node i, ki is the degree of i, and A
is the adjacency matrix.

The advantages of network-based methods are of high
efficiency (fast calculation speed, decent accuracy), easy access
for inputs (Only PPI data is needed as inputs), and good
generalization (applicable to all protein-protein networks).
However, these indices, which are successful in predicting links
of social networks, are not necessarily suitable for PPI networks
(Kovács et al., 2019). The fundamental reason is that the self-
organization mechanism of PPI networks is different from that
of social networks. Furthermore, the above researches (Table 1)
show that the number of short paths between two nodes in social
networks has a greater impact on the link likelihood between
them than the number of long paths. Because of that, these
indices are usually based on 2-hop paths, or the impact on the
index decreases with the increase of the path length, such as Katz.
However, the principle that people tend to build relationships

with people who are close to them in social networks cannot
explain the interaction of two proteins. Therefore, some scholars
(Muscoloni et al., 2018; Kovács et al., 2019; Pech et al., 2019)
attempt to explain the link mechanism of PPI networks with
3-hop paths rather than 2-hop paths.

Starting from the demonstration of structure and evolution,
Kovács et al. (2019) proposed a link prediction principle:
predicting undiscovered protein interactions based on 3-hop
paths (L3) (see Equation 1). They argue that two proteins sharing
multiple interaction partners have similar interaction interfaces,
and there is no reason to predict their interaction unless the
interface can self-interact to form a homodimer. Experiments on
many PPI networks show that their method outperforms indices
based on 2-hop paths. For the first time, they confirmed that
for PPI networks, the link likelihood between two nodes is more
related to the paths of length 3 than the paths of length 2.

L3ij =
∑

z1 ,z2∈L3

aiz1az1z2az2j
√

kz1kz2
(1)

where z1, z2 are the intermediate nodes in the 3-hop path
L3; aiz1 , az1z2 , and az2j are the link strength of iz1, z1z2, and
z2j, respectively.

Through a simple assumption that the possibility of a link
between two nodes can be unfolded by the linear summation of
the contributions of neighbors, Pech et al. (2019) proposed an
optimization problem for similarity matrix S (i.e., Equation 2).

min
S

α‖A− AS‖2F + ‖S‖2F (2)

where α is a free parameter, A is the adjacency matrix of network
G, and S is the similarity matrix.

And they obtained the analytical solution of the optimal
likelihood matrix S∗, based on which their index: LO (Equation
3) shows better performance in predicting missing links than
many other path-based methods. Since Kovács et al. (2019),
they have confirmed once again that the number of 3-hop paths
between two nodes is more useful for predicting the missing link
between them than the number of 2-hop paths. Interestingly, an
equivalent variant of LO shows a similar form to Katz.

LO = AS∗ = αA(αATA+ I)−1ATA = [αA3 − α2A5 + α3A7 − α4A9 + . . . ]

(3)
where S∗ is the optimal likelihood matrix of Equation (2).

In summary, Kovács et al. (2019) illustrates the basis of
their methods: Principle of L3 from the perspective of protein
structure and evolution. Pech et al. (2019) assumes that the link
likelihood of node i and j equals the linear combination of the
similarity between i’s neighbors and j. And then they use linear
optimization to obtain the optimal similarity matrix and the link
likelihood matrix.

The index L3 can be written as:

L3ij =
∑

z1∈Ŵ(i)

∑

z2∈Ŵ(z1)∩Ŵ(j)

aiz1az1z2az2j
√

kz1kz2
(4)

From Equations (3) and (4), we can see that, what L3 and LO have
in common is that they both assume that the link probability of
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FIGURE 1 | Protein-protein interaction network of yeast (a local part), from (STRING). The nodes are proteins and the links are interactions between them. The

thickness of the edge represents the confidence of the interaction.

TABLE 1 | Indices for network-based approaches.

Method References Index Length of path

CN (Common neighbor)
Newman (2001)

CNij = |Ŵi

⋂

Ŵj | l = 2

JC (Jaccard index)
Jaccard (1912)

JCij =
|Ŵi

⋂

Ŵj |

|Ŵi
⋃

Ŵj |
l = 2

LHN (Leicht-Holme-Newman)
Wang et al. (2015)

LHNij =
|Ŵi

⋂

Ŵj |

ki∗kj
l = 2

AA (Adamic-Adar)
Adamic and Adar (2003)

AAij =
∑

z∈Ŵi
⋂

Ŵj

1
log kz

l = 2

PA (Preferential attachment)
Barabâsi et al. (2002)

PAij = ki ∗ kj Other

RA (Resource allocation)
Zhou et al. (2009)

RAij =
∑

z∈Ŵi
⋂

Ŵj

1
kz

l = 2

LP (Local path)
Lü et al. (2009)

LPij = [A2 + βA3 ]ij l = 2, 3

Katz
Katz (1953)

Katzij = [βA+ β2A2 + ...]ij l = 1, 2, ...

nodes i and j is equal to the linear combination of the similarities
between j and i’s neighbors. Although the similarity matrix in
LO does not need to be defined beforehand, the LO = AS∗

obtained from Equation (2) can not necessarily achieve the
optimal prediction effect. The reason is that the minimum of
‖A−AS‖2F does not guarantee that the order of element values in
AS is the most consistent with A. L3 can be regarded as a special

case of LO. And the prediction ability of L3 is even greater than
that of LO on some PPI networks. We will give some examples
to illustrate this in section 2.4. Another disadvantage of LO is
that there is no good way to determine the value of the free
parameter α, it is just declared that α is a very small number in
Pech et al. (2019). We set α = 0.00001 in this paper. There is still
room for the improvement of the form of the indexAS. Similarity
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matrix S is the key for the improvement. It is needed to propose a
more reasonable definition of S which can be explained from the
biological point of view.

2. MATERIALS AND METHODS

2.1. Similarity Measure
We first study the similarity measure between two proteins. It is
generally believed that the function of a protein is determined
by its structure (Planas-Iglesias et al., 2013). However, compared
with sequence information, information about the spatial
(tertiary and quaternary) structure of proteins is scarce. There
is a cost to determine the protein structure by technologies,
such as X-ray and Cryo-EM. Although all kinds of deep learning
algorithms [such as RaptorX (Peng and Xu, 2011) and Alpha
Fold (AlQuraishi, 2019)] have greatly improved the accuracy of
protein structure prediction, it is still an open problem, and the
protein structure data grows slowly compared with sequence
information. For any PPI network, we usually find that not
all proteins have already known 3D structure and information
of interaction interfaces. Therefore, there is no generalization
significance in using protein structure information to predict PPI
network links.

Network-based methods do not need structural information
or even sequence information to predict links. The key to such
methods is similarity measure. Similarity measure between two
nodes in a network has been intensive studied (Jaccard, 1912;
Katz, 1953; Newman, 2001; Barabâsi et al., 2002; Adamic and
Adar, 2003; Lü et al., 2009; Zhou et al., 2009; Wang et al., 2015).
However, most previous studies of link prediction suggested that
the higher the similarity between two nodes, the more likely they
are to be connected. It makes sense that in social networks, two
people who have many common friends or interests are likely to

become friends (Newman, 2001) or well-connected people attract
each other (Barabâsi et al., 2002).

2.2. Why Jaccard Similarity?
Whether for social networks or PPI networks, the core idea
of network-based link prediction methods we mentioned in
section 2.1 is to design a similarity measure between nodes for
their networks, which determines the likelihood of the linkage
between each pair of nodes. Therefore, these similarity measures
in Table 1 are directly used as indices of link prediction. There
are different reasons for the selection of their similarity measure,
respectively, such as Preferential Attachment (Barabâsi et al.,
2002), Resource Allocation (Zhou et al., 2009), and Reciprocal
Relationship (Dick and Green, 2018), etc. The index we are going
to propose is still network-based, but there are two differences
between our method and the previous ones in Table 1:

(1) The similarity used in our index is Jaccard Similarity (Jaccard,
1912). In this subsection, we will explain the reasons for
choosing Jaccard Similarity from two aspects.

(2) Unlike the indices in Table 1, we do not directly use the
Jaccard Similarity between node u and v to predict links
between them, but use the linear combination of Jaccard
Similarities between one node’s neighbors and the other node.
We will explain the reasons in this subsection and section 2.4.

There are two reasons for choosing Jaccard Similarity:

2.2.1. Complementary Interfaces of Interacting

Proteins
For PPI networks, proteins with similar structures share similar
interaction interfaces (Norel et al., 1994). Therefore, the two
interacting proteins have complementary interfaces to each
other (see Figure 2). In other words, two proteins with similar
interfaces are likely to share more interacting neighbors rather

FIGURE 2 | The structures of six dimers, from: (RCSB PDB). Two interacting monomers are represented by different colors. Their interaction interfaces are

complementary.
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than interacting with each other. The more similar they are, the
greater proportion of common neighbors. We mentioned earlier
that the structural information of proteins is not easy to obtain,
but we can infer the similarity between them by the proportion of
their common neighbors, i.e., Jaccard Similarity (Jaccard, 1912).

Jij =
|Ŵi ∩ Ŵj|

|Ŵi ∪ Ŵj|
(5)

where Ŵi is the set of neighbors of node i in the PPI network.
Figure 3 shows an example of the correlation between

interface similarity and Jaccard Similarity. We can see from the
naked eye that Camk2d and Camk2g have similar 3D structure,

which leads to their similar interaction interfaces. Therefore,
they may share a large proportion of interaction neighbors
who have complementary interfaces to them, respectively, i.e.,
Jaccard Similarity. Since not every protein in PPI network
has already known 3D structure, we use the global alignment
algorithm (Needleman and Wunsch, 1970) to measure the
similarity between protein pairs. The alignment score of Camk2d
and Camk2g is 0.83395, which means they have very similar
amino acid sequences. Furthermore, we also found evidence
in the database (PhylomeDB) that they are paralogues derived
from gene duplication events. Figure 4 shows the mean pairwise
alignment score in each interval of Jaccard Similarity. With the
increase of Jaccard Similarity, the mean alignment score is also

FIGURE 3 | Camk2d, Camk2g, and their neighbors in the PPI network of Rattus norvegicus, from: (STRING). The similarity of their interaction interfaces determines

that they can share a large proportion of interaction partners.

FIGURE 4 | Mean alignment score in each interval of Jaccard Similarity. On the whole, the alignment score of high Jaccard Similarity node pairs is higher than that of

low Jaccard Similarity node pairs.
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TABLE 2 | Comparison of alignment scores of protein pairs produced by gene duplication events and Jaccard Similarities of them.

PPI networks Protein A Protein B Jaccard similarity Alignment score

Arabidopsis thaliana PIN7 PIN3 0.7913834 0.84202454

Caenorhabditis elegans abu-7 abu-6 0.70384985 0.874429224

Escherichia coli K12 MG1655 rhsA rhsB 1 0.896167247

rhsD rhsA 0.8021216 0.711538462

rhsD rhsB 0.7920696 0.746896552

Mus musculus Camk2a Camk2g 0.8977933 0.766917293

Camk2g Camk2d 0.91231686 0.833955224

Camk2a Camk2d 0.9082842 0.829457364

Camk2b Camk2g 0.9142654 0.827648115

Camk2a Camk2b 0.9103021 0.765567766

Camk2b Camk2d 0.9255441 0.834545455

Homo sapiens RAB5B RAB5C 0.9483445 0.748

RAB5A RAB5C 0.78506744 0.764940239

Saccharomyces cerevisiae TDH2 TDH1 0.87267643 0.885542169

TDH3 TDH2 0.8513397 0.963855422

TDH3 TDH1 0.81701237 0.88253012

PPI networks are from (STRING), and the evidence of gene duplication events are from (PhylomeDB).

FIGURE 5 | A network model for PPI network based on complementarity of interfaces. The colored pieces are proteins, and the ones in the circles are protein

complexes. Node pair with high Jaccard Similarity (especially for same-color nodes) may have similar interaction interfaces. There are two types of interface pairs,

i.e., d = 2.

increasing. That means that protein pairs with high Jaccard
Similarities are more likely to have similar amino acid sequences,
structures and interaction interfaces. Therefore, the first potential
reason for high Jaccard Similarity is high interface similarity, and
a protein with complementary interface to them becomes their
common neighbor. For example, if a protein C interacts with
A which has high Jaccard Similarity with B, then C may also
interact with B because the interface complementarity between
C and A leads to the possibility that the interfaces of C and B are
also complementary.

2.2.2. Gene Duplication
Another reason for choosing Jaccard Similarity is from gene
duplication (Zhang, 2003; Dehal and Boore, 2005). In the process
of evolution, genes may produce new products: new proteins,

which may retain many of the properties of the original ones and
consequently preserve many interacting partners.

We find several proteins that are recorded as the products
of gene duplication events from (PhylomeDB), and then
generate several organisms’ PPI networks containing them from
(STRING). We delete links with confidence <0.7 in the PPI
networks to ensure the reliability. The Jaccard Similarities and
alignment scores of these protein pairs are shown in Table 2.
We can see that protein pairs from gene duplication events
have high Jaccard Similarities and alignment scores. Because
the products of gene duplication have similar amino acid

sequence, which leads to the similarity of their structures and

interaction interfaces. As a result, they share a large proportion
of interaction neighbors in PPI network, i.e., they have high
Jaccard Similarities. Therefore, the second potential reason for a

Frontiers in Genetics | www.frontiersin.org 6 April 2020 | Volume 11 | Article 291

http://string-db.org
http://phylomedb.org
http://phylomedb.org
http://string-db.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. Interface Complementarity Improves Interaction Prediction

high Jaccard Similarity protein pair is that they are products of
gene duplication, and a protein that interact with one of them is
likely to interact with the other one. For example, if a protein C
interacts with A which is a product of gene duplication to B, then
C may interact with B too.

To sum up, proteins with complementary interfaces interact
with each other, and proteins with similar interfaces share
interacting partners; the similarity of gene duplication products
leads to sharing interacting neighbors. And Jaccard Similarity

can reflect the interface similarity between protein pairs as
well as the similarity between gene duplication products. Based
on that, we propose a basic assumption: the more similar
proteins are, the more likely they are to share more interacting
partners, rather than interacting with each other. This is the
basis for the index Sim we will propose in section 2.4. In the
following subsections, in order to further verify the rationality of
using Jaccard Similarity for similarity measure, we will compare
the performances of our index Sim with indices using other

FIGURE 6 | A network model for PPI network based on gene duplication. Subfigure 0 is the original network, the blue node in each subfigure is the node chosen for

splitting, the red node is the new node after splitting. The blue and red node have high Jaccard Similarity in the PPI network.

FIGURE 7 | The flow chart of the link prediction algorithm Sim. The darker the color of the small squares in the prediction matrix, the more likely the value is 1.
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similarity measures on two types of random networks and real
PPI networks.

2.3. Two Types of Random Network Models
From the two aspects of interface complementarity and gene
duplication, we simulate the linkage mechanism of PPI networks
and generate two types of random network models.

2.3.1. Random Network Based on Complementarity

of Interfaces
Based on the hypothesis that interacting proteins have
complementary interfaces and proteins with similar interfaces
may share more interaction partners, we propose the first
random network model. We assume that there are d types of
interface pairs in a PPI network. Each node of a PPI network is

FIGURE 8 | Precision curves on random networks based on complementarity of interfaces.

FIGURE 9 | Precision curves on random networks based on gene duplication.
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represented by a d-dimension vector X.

X = (x1, x2, ..., xd) (6)

Where xi =



















0, if X have no interface i+ and i−,

1, if X have interface i+,

2, if X have interface i−,

3, if X have both interface i+ and i−.

i = 1, 2, ..., d.

Two proteins can interact with each other if and only if they have
complementary interfaces i+ and i− of one pair i, respectively,
i.e., there is a link between X = (x1, x2, ..., xd) and Y =

(y1, y2, ..., yd) if and only if ∃i ∈ {1, 2, ..., d}, s.t. (xi, yi) ∈

{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3)}. There is an example
as shown in Figure 5.

For each node X, we set xi = 0, 1, 2, 3 with probabilities
p1, p2, p3 and p4, where i = 1, 2, ..., d. According to different

values of p1, p2, p3, p4 and the number of nodes n, we generate
six random networks named test_graph1, test_graph2, . . . ,
and test_graph6.

2.3.2. Random Network Based on Gene Duplication
Based on the principle of gene duplication, we propose the
second random network model. We randomly select a node
u from a PPI network, split it into two nodes u and v, and
make v replicate the same links as u with probability p. Repeat
this process many times to obtain the final network. This
process may end up with a disconnected network, so we take
the largest connected component to ensure the connectivity of
the network. Network-based approaches can only be used on
connected networks. If the network is disconnected, links can be
predicted on each connected component, respectively. In order
to explain the linking mechanism of this random network, it is

TABLE 3 | Statistical characteristics and sources of PPI networks.

Type Network name #Nodes #Edges Clus. Asso. Av-de. Hete. Dens. #Rings

PPI

A. thaliana (HINT) 5,646 23,410 0.06 −0.207 8.293 9.467 0.001 595

Arabidopsis (STRING) 447 3,675 0.366 0.22 16.443 1.988 0.037 0

B. subtilis (HINT) 625 1,152 0.084 0.132 3.686 3.868 0.006 378

BIOGRID-PF (BIOGRID) 1,227 2,508 0.014 −0.011 4.088 2.751 0.003 63

BIOGRID-RN (BIOGRID) 4,185 6,666 0.098 −0.266 3.186 37.598 0.001 57

C. elegans (HINT) 4,809 12,234 0.038 −0.095 5.088 5.861 0.001 327

E. coli (STRING) 450 7,743 0.245 0.091 34.413 1.403 0.076 0

D. melanogaster (HINT) 8,293 30,182 0.016 −0.057 7.279 3.521 0.001 393

E. coli (HINT) 2,176 3,655 0.052 0.01 3.359 2.497 0.002 1270

hi-ii-14 (Kovács et al., 2019) 4,298 13,868 0.052 −0.208 6.453 7.102 0.002 518

hi-iii (Kovács et al., 2019) 5,604 23,322 0.068 −0.186 8.323 7.86 0.001 322

hi-tested (Kovács et al., 2019) 3,727 9,433 0.025 −0.216 5.062 5.737 0.001 445

Human (STRING) 436 4,024 0.342 0.027 18.459 2.301 0.042 0

Marina (STRING) 450 8,925 0.272 0.208 39.667 1.354 0.088 0

Mouse (STRING) 444 4,802 0.38 0.02 21.631 2.378 0.049 0

Oryza (STRING) 440 6,899 0.347 0.089 31.359 1.999 0.071 0

PrePPI-human2011 (PrePPI) 7,863 23,779 0.073 −0.162 6.048 9.728 0.001 621

S. cerevisiae (HINT) 5,315 23,203 0.102 −0.131 8.731 3.964 0.002 1,138

S. pombe (HINT) 1,488 2,583 0.045 −0.137 3.472 5.265 0.002 407

Yeast (STRING) 427 4,570 0.26 0.129 21.405 1.673 0.05 0

Yeasts (Pajek) 2,361 7,182 0.13 −0.085 6.084 2.763 0.003 536

Other

Bible (KONECT) 1,773 9,131 0.721 −0.049 10.3 4.011 0.006 0

Chicago (KONECT) 1,467 1,298 0 −0.505 1.77 3.059 0.001 0

erdos_renyi_n500_p04 500 4,910 0.038 −0.024 19.64 1.048 0.039 0

erdos_renyi_n500_p06 500 7,513 0.06 −0.009 30.052 1.032 0.06 0

erdos_renyi_n500_p08 500 9,993 0.08 0.014 39.972 1.025 0.08 0

erdos_renyi_n500_p10 500 12,488 0.101 −0.003 49.952 1.018 0.1 0

Euroroad (KONECT) 1,174 1,417 0.017 0.127 2.414 1.242 0.002 0

Infectious (KONECT) 410 2,765 0.456 0.226 13.488 1.388 0.033 0

Netscience (Pajek) 1,461 2,742 0.694 0.462 3.754 1.849 0.003 0

watts_strogatz_n500_k20_p10 500 5,000 0.526 −0.006 20 1.005 0.04 0

watts_strogatz_n500_k40_p10 500 10,000 0.545 −0.01 40 1.002 0.08 0

watts_strogatz_n500_k60_p10 500 15,000 0.549 0.011 60 1.002 0.12 0

watts_strogatz_n500_k80_p10 500 20,000 0.561 0.007 80 1.001 0.16 0
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only necessary to take any one of the connected components, and
it is more reasonable to select the largest connected component,
because theminimum onemay be trivial, i.e., it only has one node
or one link. There is an example as shown in Figure 6.

We generate six random networks named Eva1, Eva2, . . . , and
Eva6 with different values of parameter p and n. In the next
section, We will propose a link prediction index using Jaccard

Similarity, and compare our index with the indices using other
similarity measures through experiments on these two random
network models.

2.4. Link Prediction
For other complex networks, similarity measure is usually
used directly for link prediction (Katz, 1953; Newman, 2001;

FIGURE 10 | Precision curves for six PPI networks with Sim outperforming the other indices.

FIGURE 11 | Precision curves for six PPI networks with L3+ Sim outperforming the other indices.
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Barabâsi et al., 2002; Adamic and Adar, 2003; Lü et al., 2009;
Zhou et al., 2009; Wang et al., 2015). After the analysis in
the previous subsections, we use Jaccard Similarity (Jaccard,
1912) to measure the interface similarity and paralogy, not

the linkage likelihood. In other words, two proteins with high
similarity do not necessarily interact with each other, i.e., they
do not have to be linked in the PPI network. Therefore, we
do not predict links between high Jaccard Similarity node pairs

FIGURE 12 | Precision curves for six non-PPI networks with Sim and L3+ Sim not outperforming the other indices.

FIGURE 13 | Precision of Top 100 predictions of L3+ Sim for all PPI networks in Table 3 compared with baselines. In terms of precision, the integration index

L3+ Sim is not only many times higher than the random method, but also surpasses the baselines.
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since similar interfaces do not lead to their interactions but
complementary interfaces.

Recall that in sections 2.2.1 and 2.2.2, we show that Jaccard
Similarity can reflect the interface and evolutionary similarity of
protein pairs. In other words, we assume that the potential reason
of high Jaccard Similarity between two nodes in a PPI network is
that their interfaces are similar or they are the products of gene
duplication events. Therefore, the two proteins with high Jaccard
Similarity do not need to interact with each other, but share a
large proportion of interacting partners, i.e., their proportion
of common neighbors in all their neighbors. Therefore, high
Jaccard Similarity does not necessarily increase the likelihood
of their interaction, but rather the likelihood that non-common
partners will become common partners. For example, if the link
between Gria1 and Camk2d is missed in Figure 3, we can predict
it according to that Gria1 may be a common neighbor of Camk2d
and Camk2g since they are of high Jaccard Similarity. In other
words, if node i’s neighbors and j are very similar (high Jaccard
Similarity), then imay becomes a common neighbor of them, i.e.,
we predict that there is a link between i and j. Based on that, we
propose a link prediction index named Sim.

Simij =
∑

v∈Ŵ(j)

AJvi +
∑

u∈Ŵ(i)

AJuj (7)

Where A is the adjacency matrix and Juj is the Jaccard Similarity
between u and j which is defined in Equation (5).

Sim index can also be expressed in a matrix form:

Sim = AJ + JA (8)

whereA is the adjacency matrix and J is the similarity matrix (i.e.,
Ju,v is the Jaccard Similarity between u and v).

Figure 7 shows the flow of our proposed algorithm. PPI
network G is the input, we first obtain the adjacency matrix A of
G, then calculate the similarity matrix J, and then bring them into
Equation (8) to calculate the link score matrix (predictionmatrix:
P) as the output. After ranking Pij from large to small, we can set
a threshold or the number of predictions (i.e., k) to distinguish
linkage from non-linkage predictions.

LO is defined as AS, unlike it, Sim index is defined as AJ + JA.
LO only considers the contribution of the similarity between i’s
neighbors and j. There is no problem for directed networks. But
for undirected networks, such as PPI networks, there will be a
contradiction that LOij 6= LOji. We take this into account when
designing Sim index. Because our target networks PPI networks
are undirected networks, we define Sim = AS + SA. Sim can
be regarded as a special case of LO for undirected networks
when S = J. The similarity matrix S in LO is obtain by solving
an optimization problem (Equation 2), but the optimum may
not guarantee the best performance of link prediction. We also
consider the cases of J = CN, PA and RA and get several indices:
SimCN, SimPA, and SimRA.

We simulated Sim, SimCN, SimPA, SimRA, L3, and LO on the
two types of random network models we mentioned in the
previous subsection, and compared their performances as shown
in Figures 8, 9. We use Precision curve to evaluate the indices.
Ten-fold cross validation is executed to avoid over fitting.

From the simulation results, we can see that our index
Sim not only outperforms indices using other similarities
(SimCN, SimPA, and SimRA), but also outperforms baselines (L3
and LO) on the two types of random network models. Can the
excellent performance of Sim in random network models be
reproduced in real networks? In the next section we will discuss
in detail through experiments on real PPI networks.

3. RESULTS AND DISCUSSION

3.1. Data
In order to verify the performance of our method on real PPI
networks, we select PPI networks of different organisms from
several independent data sets: (HINT), (BIOGRID), (STRING),
(PrePPI), and (Pajek). Some PPI networks are weighted graphs.
The weights of the links represent the confidence. We normalize
the weights and delete the links with weights <0.7 to avoid
false positives. For comparison, we also consider some non-PPI
networks, including social networks, transportation networks
from (KONECT) and (Pajek), random networks: Erdős-Rényi
graphs (Erdős and Rényi, 1960) and Watts Strogatz small-world
graphs (Watts and Strogatz, 1998). The name of the network
“erdos_renyi_n500_p04” represents the value of the parameter:
n, p = 500, 0.04; “watts_strogatz_n500_k20_p10” represents
n, k, p = 500, 20, 0.10. The sources of these networks and their
statistical characteristics are shown in Table 3. Abbreviations
in Table 3: clus., Asso., Av-de., Hete., and Dens. are average
clustering coefficient, assortativity coefficient, average degree,
degree heterogeneity, and link density, respectively.

3.2. Comparison With Other
Network-Based Methods
In this section, we use seven link prediction indices:
L3, LO, Sim, SimCN, SimPA, SimRA, and L3 + Sim to predict
links of PPI networks in Table 3. L3 + Sim is the integration of
L3 and Sim. The precision curves are shown in Figures 10–12.
Each precision curve is the average of 10 precision curves from
10-fold cross validations. Abscissa is the number of predictions
(i.e., k), ordinate is the precision of top-k predictions (i.e., true
positive rate), “area” is the area under the precision curve. The
larger the area, the better the performance of the method within
k predictions. We take the maximum value of k as 200, because
a large value of k has no practical significance. For example, for
a PPI network with 1,000 nodes and 10,000 links, if 500 links
are missing, then we need to predict 500 real links among all
the possible 490,500 node pairs, which is a very difficult task.
The precision of random prediction is ∼0.001. Obviously, we
will not make 490,500 positive predictions. Very large k will lead
to very low precision, and there is no guidance for biological
experiments due to the high cost.

We can see that, for PPI networks in Figure 10, Sim
outperforms all indices. But for PPI networks in Figure 11, Sim
does not outperform L3 or LO. However, the integration of
Sim and L3 can outperform both L3 and LO for almost all PPI
networks. As can be seen from Figure 12, Sim and L3 + Sim
do not outperform baselines for non-PPI networks. Especially,
we notice that almost all indices fail for networks “Chicago”
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and “Euroroad.” The precision is almost equal to or even lower
than guess. This means that none of these indices reflect the
self-organization mechanism of these two non-PPI networks. By
sharp contrast, as can be seen from Figure 13, our index L3+Sim
is not only much more accurate than guess, but also outperforms
L3 and LO for almost all PPI networks. To sum up, we come to
two conclusions:

(1) L3+ Sim improves the link prediction performance of L3 for
PPI networks but not for non-PPI networks.

(2) The precision of L3 + Sim is tens of times to thousands
of times higher than guess for PPI networks but not for
non-PPI networks.

4. CONCLUSION

In this paper, we propose a network-based link prediction
method Sim for PPI networks. This index is designed from
two perspectives: the complementarity of protein interaction
interfaces and gene duplication. We propose two types of
random networkmodels to simulate these two linkage generation
mechanisms of PPI networks. We explain the reasons of
using of Jaccard Similarity in Sim by sequence alignment,
and they are confirmed by experiments on two types of
random networks.

In order to improve the robustness of prediction, we proposed
the integration of L3 and Sim: L3 + Sim. Experiments on
independent data sets show that Sim outperforms other indices
for several of these PPI networks. However, the integration
method L3 + Sim is always superior to the baselines: L3 and LO.
For the precision of top 100 predictions, L3 + Sim is 15–20%
higher than L3 and LO on average. We only use the information
of PPI network itself to propose a method that can pick out

protein pairs which are more likely to interact with each other
form a huge number of candidates, and provide them for high-
throughput experiments. Like other network-based methods, the
disadvantage of our method is that we can not predict the link
between two nodes in different connected components. In the
future research, we can integrate the information of nodes to
network-based methods to make up for the shortage.
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