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Single-cell RNA sequencing technologies have enabled us to study tissue heterogeneity

at cellular resolution. Fast-developing sequencing platforms like droplet-based

sequencing make it feasible to parallel process thousands of single cells effectively.

Although a unique molecular identifier (UMI) can remove bias from amplification noise

to a certain extent, clustering for such sparse and high-dimensional large-scale discrete

data remains intractable and challenging. Most existing deep learning-based clustering

methods utilize the mean square error or negative binomial distribution with or without

zero inflation to denoise single-cell UMI count data, which may underfit or overfit the

gene expression profiles. In addition, neglecting the molecule sampling mechanism and

extracting representation by simple linear dimension reduction with a hard clustering

algorithm may distort data structure and lead to spurious analytical results. In this paper,

we combined the deep autoencoder technique with statistical modeling and developed a

novel and effective clustering method, scDMFK, for single-cell transcriptome UMI count

data. ScDMFK utilizes multinomial distribution to characterize data structure and draw

support from neural network to facilitate model parameter estimation. In the learned

low-dimensional latent space, we proposed an adaptive fuzzy k-means algorithm with

entropy regularization to perform soft clustering. Various simulation scenarios and the

analysis of 10 real datasets have shown that scDMFK outperforms other state-of-the-art

methods with respect to data modeling and clustering algorithms. Besides, scDMFK has

excellent scalability for large-scale single-cell datasets.

Keywords: single-cell RNA sequencing, UMI count data, deep autoencoder, statistical modeling, adaptive fuzzy

k-means clustering

1. INTRODUCTION

In the past decade, high-throughput sequencing technology has been widely used in various
fields of biology and medicine, greatly promoting research in related areas (Reuter et al., 2015).
Transcriptome sequencing can be applied to measure and describe the expression of gene
transcription or the cell status of all kinds of species. However, traditional bulk sequencing
technology is based on a group of cells, but each sample contains hundreds and thousands of
cells. Therefore, the final sequencing data represent the average expression levels of genes in a
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group of cells, concealing the heterogeneity of gene expression
among cells (Rowen et al., 1997). In recent years, however,
exciting single-cell transcriptome sequencing technology has
been booming, allowing researchers to reveal the expression of all
cells in the whole genome at the cellular level, in turn facilitating
cell heterogeneity and tissue differentiation research (Shapiro
et al., 2013; Patel et al., 2014; Kolodziejczyk et al., 2015; Wang
and Navin, 2015).

Early single-cell sequencing technologies like Smart-seq2 or
MATQ-seq can measure the full length of transcripts, but have
small cell throughput and are somewhat expensive (Picelli et al.,
2013; Sheng et al., 2017). Recently developed droplet-based
sequencing technologies, such as 10x Chromium and Drop-seq,
can efficiently profile a large number of cells in parallel with
high throughput in a single experiment (Svensson et al., 2017;
Zheng et al., 2017). High efficiency and low consumption make
it possible for such technologies to bring revolutionary insight,
and they have thus gained popularity. In addition, droplet-based
sequencing technologies utilize a Unique Molecular Identifier
(UMI) to annotate the 3’-end of the transcript, resulting
in the reduction of amplification bias of polymerase chain
reaction(PCR) (Islam et al., 2014). Therefore, in this article, we
have focused on the research and analysis of single-cell RNA-seq
UMI count data.

Proper execution of scRNA-seq data analysis requires the
identification and characterization of cell subtypes (Macosko
et al., 2015), which contributes to the appraisal of differentially
expressed genes (Kharchenko et al., 2014; Finak et al., 2015)
and construction of a gene expression regulation network (Aibar
et al., 2017; Fiers et al., 2018). However, an inefficient RNA
capture procedure leads to a failure to detect low-expressed
genes, defined as a dropout event, resulting in substantial
zero counts in data (Grün et al., 2014; Hebenstreit, 2018).
Thus, clustering for extremely noisy, high-dimensional, and
massive single-cell transcription profiles poses a severe challenge
to researchers (Kiselev et al., 2019). Most existing clustering
algorithms customized for single-cell analysis do not model and
denoise such data. Typically, they first learn the predefined
distance measure and similarity metric based on an original
data matrix directly or a reduced data matrix by simple linear
dimension reduction methods, like PCA and ICA, and then
utilize the traditional hard clustering methods, such as standard
k-means clustering (Marco et al., 2014; Grün et al., 2016),
graph-based spectral clustering (Wang et al., 2017; Zhu et al.,
2019) or community detection (Levine et al., 2015; Satija et al.,
2015), density-based clustering (Jiang et al., 2016), integrated
learning clustering (Kiselev et al., 2017; Yang et al., 2018),
and hierarchical clustering (Zeisel et al., 2015; Lin et al.,
2017). However, in addition to the possibility of spurious
identification of cell subtypes by separating dimension reduction
and clustering, expensive computation limits their performance
on large-scale datasets.

Understanding the generating mechanism of UMI count
data is essential to developing model-based statistical methods
for single-cell transcriptome analysis. Log-normal, poisson,
negative binomial distributions are several mainstreammodeling
distributions in studying single-cell transcriptome profiles

(Pierson and Yau, 2015; Risso et al., 2018). To account for
redundant zero counts, researchers are motivated to design
mixture version distributions with a zero-inflation component,
such as zero-inflated lognormal, zero-inflated poisson, and
zero-inflated negative binomial models. Recently, however,
studies have shown that single-cell UMI count data follow
multinomial distribution without zero-inflation and that current
normalization procedure distort UMI count data (Townes et al.,
2019). Sun et al. (2017) proposed a dirichlet multinomial
bayesian mixture model named DIMM-SC for droplet-based
single-cell transcriptomic data clustering. However, DIMM-SC
requires a sophisticated numerical algorithm to reduce the high
computational cost, and it ignores the measurement errors and
uncertainties buried in the UMI count data.

Deep learning technology has shown amazing capabilities in
unsupervised representation learning, which can efficiently learn
potentially vital non-linear features in data (Eraslan et al., 2019a;
Zou et al., 2019). An autoencoder is a commonly used neural
network structure composed of an encoder and a decoder, which
is specifically designed for feature extraction and dimension
reduction of high-dimensional data (Hinton and Salakhutdinov,
2006). The encoder is responsible for compressing and mapping
the input vector to obtain low-dimensional representation,
and the decoder maps this representation back to the high-
dimensional space to gain a reconstructed vector. Thanks to
the non-linear gating unit function, autoencoders can learn
the underlying low-dimensional manifold structure of high-
dimensional data and effectively capture non-linear complex
dependencies among samples and features. According to variety
of reconstruction loss functions and latent space assumptions,
autoencoders can be divided into different categories. Amodio
et al. (2019) proposed a deep multitasking neural network
model called SAUCIE and utilized the standard mean square
error as data denoising loss function, which may underfit the
single cell RNA-seq data and is unable to recover the cell
types (Eraslan et al., 2019b). Deng et al. (2019) proposed
an iterative deep recurrent learning model called scScope
to simultaneously realize the imputation and clustering for
single-cell transcriptome data. ScScope utilized the mask mean
square error as the reconstruction loss function, but it did not
explicitly aggregate the clustering function into the training
process. Arisdakessian et al. (2019) proposed the DeepImpute
model for fast imputation of single-cell RNA-seq data. Its
reconstruction loss function was a weighted mean square error
objective function. Similarly, DeepImpute did not consider
adding clustering learning procedure in latent space. Eraslan
et al. (2019b) proposed a denoising autoencoder model called
DCA for single-cell counts data, which assumed that single-
cell UMI count data followed negative binomial or zero-
inflated negative binomial distribution. On the basis of DCA,
Tian et al. (2019) proposed scDeepCluster and used a self-
trained objective function to achieve the clustering target
in the learned low-dimensional latent space. However, they
did not consider pre-selecting informative genes as inputs,
resulting in high requirements of memory and running time.
Moreover, Hafemeister and Satija (2019) have recently pointed
out that an unconstrained negative binomial model may overfit
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the scRNA-seq data by the constraints of genes with similar
abundances. Grønbech et al. (2018) proposed a variational
autoencoder model called scVAE for single-cell count data
clustering. ScVAE presupposed that the feature distribution of the
latent space followed Gaussian or mixture Gaussian distribution,
and then applied variational inference to derive a learnable ELBO
objective function. However, the Gaussian or mixture Gaussian
assumption may put too many constraints on the latent space.
Besides, variational inference has high requirements for the
optimization technique.

In this paper, we combined statistical modeling and deep
learning techniques to learn a more appropriate latent space
representation suitable for clustering. We have proposed a
model called scDMFK that simultaneously performs data
denoising, dimensionality reduction, and clustering. We first
utilized multinomial distribution to characterize single-cell UMI
count data, where the proportional parameters of multinomial
distribution are learned using deep autoencoder. In latent
space, we have proposed a fuzzy weighted k-means clustering
algorithmwith adaptive loss function and entropy regularization.
The cluster membership assignment probability of cells can
be derived by soft assignment criterion explicitly in closed
form instead of being updated by a stochastic gradient descent
of the neural network back-propagation algorithm. Different
simulation scenarios and several real dataset results show that our
model is superior to other benchmarked methods for scRNA-seq
data clustering. Moreover, modeling UMI count data based on
multinomial distribution is more effective than the commonly
used negative binomial distribution and non-parametric mean
square error with respect to cell type identification.

2. METHODS

2.1. Multinomial Modeling for Single-Cell
UMI Count Data
We begin with some notations. Suppose single-cell UMI count
data matrix is Xij(1 ≤ i ≤ n, 1 ≤ j ≤ m), n is cell number, and
m is the feature(gene) number. Then ni =

∑m
j=1 Xij represents

the total UMI counts in the i-th cell. Assume that the i-th
cell contains ti total mRNA transcripts and that Yij(1 ≤ i ≤

n, 1 ≤ j ≤ m) is the underlying mRNA transcripts matrix.
Then, when we process and lyse the i-th cell on the sequencing
protocol, ti mRNA transcripts are attached by barcodes andUMIs
such that they are transformed to cDNA molecules by reverse
transcription. After removing PCR duplicates, we generate the
ni UMI counts in the i-th cell. Because reverse transcriptase is
an inefficient and error-prone enzyme, causing some fraction of
the cDNA molecules to be lost, ni is usually much less than ti.
Thus, the process of successfully converting mRNA to UMI is
actually a random sampling process. We defined pij as the relative
abundance of the amount of mRNA expressed by j-th gene shared
in total mRNA of i-th cell, namely,

pij =
yij

ti
=

yij∑m
j=1 yij

(1)

Considering ni ≪ ti and true transcripts counts yij are unknown,
we supposed that UMI counts Xij are samples of yij with
relative abundances remaining constant; thus, the probability
distribution function of Xi = (Xi1,Xi2, . . . ,Xim) is multinomial
distribution with parameter vector pi = (pi1, pi2, . . . , pim) to
be estimated,

fi(Xi) =
ni!

Xi1!Xi2! . . .Xim!

m∏

j=1

p
Xij

ij (2)

Because of non-linear dependencies among genes and complex
associations between cells, the parameter vectors pi(1 ≤ i ≤ n)
corresponding to each cell are not completely free from statistical
theory. However, these dependencies cannot be captured by a
simple generalized linear model because unknown parameters
pij(1 ≤ i ≤ n, 1 ≤ j ≤ m) actually fall on a low-dimensional
manifold. Therefore, instead of designing a specific non-linear
association expression or bayesian priors, like mixture dirichlet
distribution, we utilized deep autoencoders to approximate the
underlying manifold and learn parameter vectors pi(1 ≤ i ≤ n).
Furthermore, owing to frequent dropout events, we could not
ignore the impact of this extra noise on parameter estimation.
To model the dropout events, we introduced binary random
variables Uij, where Uij = 0 represents that the j-th gene drops
out in the i-th cell. Letting πij = P(Uij = 1), we have

Uij ∼ Bernoulli(πij) (3)

Obviously, low-expressed genes have high probabilities of
dropping out, which implies that πij is positively correlated with
true expression level of j-th gene in i-th cell. Assume thatVij is the
expected relative expression level of j-th gene in i-th cell. Then,
given the dropout phenomenon, pij should be the element-wise
product of πij and Vij and then normalized to sum to one.

pij =
πijVij∑m
j=1 πijVij

(4)

In this case, (πij,Vij)(1 ≤ i ≤ n, 1 ≤ j ≤ m) make up the
parameters to be estimated.

Autoencoders are widely utilized to realize data compression
coding and data reconstruction coding in representation
learning. Suppose the latent space that the encoder maps the
input into is Z: we adopted denoising autoencoder architecture
similar to that of DCA (Eraslan et al., 2019b) and outputted two
groups of tensors, one for π and another for V . Specifically,

Z = Encoder(X) (5)

X̂ = Decoder(Z) (6)

π = sigmoid(X̂Wπ ) (7)

V = exp(X̂WV ) (8)

where Wπ and WV are neural network parameters. We utilized
the sigmoid function as the activator of π because the dropout
probability ranges from zero to one. In fact, this motivation stems
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from the observable probability that πij = P(Uij = 1) can
be modeled as a logistic regression function of underlying true
relative expression level. We selected the exponential function as
the activation function of V for its non-negativity. To construct
the data reconstruction loss function, we assumed that, given
latent variable Z, the samples X are conditionally independent.
Therefore, we can naturally took the negative log-likelihood of
multinomial distribution as the reconstruction loss, as

L1 = − log Pmultinomial(X|π ,V ,Z) (9)

= − log
n∏

i=1

ni!

Xi1!Xi2! . . .Xim!

m∏

j=1

p
Xij

ij (10)

∝ −

n∑

i=1

m∑

j=1

Xij log pij (11)

where the value of pij can be calculated by Equation (4). When
the proportion of zero counts in the data is not so high, we
also considered estimating pij directly; that is to say, we chose
the softmax activation function at the last layer of decoder and
outputted the estimation of pij directly. For distinguishing, we
called the standard model scDMFK and the alternative model D-
scDMFK.

2.2. Fuzzy k-Means Clustering With
Adaptive Loss
Instead of performing the cell clustering procedure in denoising
reconstruction space, we took full advantage of the low-
dimensional latent space Z learned by the encoder. The K-means
algorithm and its extensions have been the most commonly
used clustering methods because of their efficiency. Assuming
K subpopulations in latent space, we utilized a fuzzy k-means
algorithm with adaptive distance measurement and entropy
regularization to perform clustering (Zhang et al., 2019). Its
optimization objective function can be written as

min
W,µj

n∑

i=1

K∑

j=1

wij
(1+ σ )||zi − µj||

2
2

||zi − µj||2 + σ
+ λwij logwij (12)

s.t.
K∑

j=1

wij = 1, 0 < wij < 1, 1 < i < n. (13)

where µj is the j-th cluster center, and zi represents the low-
dimensional representation of the i-th cell. wij can be regarded
as the probability that the i-th cell belongs to the j-th cluster.
Besides, σ and λ are two non-negative hyperparameters. For

convenience, we denoted
(1+σ )||zi−µj||

2
2

||zi−µj||2+σ
as ||zi − µj||σ . When

σ → 0, then ||zi − µj||σ → ||zi − µj||2. In turn, when
σ → ∞, we have ||zi − µj||σ → ||zi − µj||

2
2. Thus, σ is a

trade-off parameter that controls the robustness to various outlier
types (see Supplementary Material). The entropy regularization
is introduced for avoiding trivial solution, i.e., wij = 1 if zi
is assigned to the j-th cluster and wij = 0, otherwise. This
hard assignment procedure makes us update the cluster label
to each data point manually, which does not contribute to the

efficiency of stochastic gradient descent and may lead to collapse
of different clusters. Based on information theory, larger entropy
represents higher disorder. So λ is one trade-off parameter that
controls the distribution of wij. Actually, when latent space
representation zi(1 ≤ i ≤ n) and cluster center µj(1 ≤ j ≤

K) are known, wij has an explicit close-form solution for above
optimization problem, which is

wij =
exp(−

||zi−µj||σ
λ

)
∑K

l=1 exp(−
||zi−µl||σ

λ
)

(14)

Therefore, we naturally constructed the following adaptive fuzzy
k-means loss function,

L2 =

n∑

i=1

K∑

j=1

wij||zi − µj||σ (15)

where wij is given by Equation (14) and is the adaptive
weighted coefficient representing the soft allocation probability
of assigning the i-th cell to the j-th cluster membership. After
each iteration of training, we can assign the i-th cell to the cluster
label corresponding to the largest wij(1 ≤ j ≤ K).

2.3. Training Objective and Parameter
Setting
Having finished whole model construction, we summarize the
two components: denoising autoencoder based on multinomial
modeling and fuzzy soft k-means clustering with adaptive loss.
The total training objective function is given as

L(π ,V ,Z|X) = L1 + αL2 (16)

where hyperparameter α controls the relative importance of
data generation and data clustering. A simple model schematic
is shown in Figure 1. When we input data to the network, it
obtains the latent representation Z through the encoder and
hidden layer, which can calculate the L2 clustering loss. Then
the low-dimensional representation Z forwards to the model
output through the decoder, which is brought into L1 loss
to calculate the negative log-likelihood. The weight of neural
network and cluster centers can be jointly optimized and updated
by stochastic gradient descent and a back-propagation algorithm.
We implement our model in Python 3 using deep learning
software Tensorflow. During the following simulation and real
data experiments, we took α as 1 by default. The default values of
hyperparameter σ and λ were also 1, and their optimal setting
for particular datasets have been discussed in section 3. The
optimizer for whole model is Adam with a learning rate 0.0001.
For autoencoder network architecture, the sizes of two hidden
layers were set to 256 and 64 in the encoder. The decoder is
the reverse structure of the encoder, and the bottleneck layer
(the latent space) had a size of 32. The minibatch size was set
to 256 during the training process. As for the model training
strategy, we first pre-trained L1 loss by 1,000 epochs and then
initialize cluster centers µj(1 ≤ j ≤ K) by standard k-means
algorithm in the learned latent space. Lastly, we trained the whole
L(π ,V ,Z|X) loss function until cluster membership assignments
did not change.
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FIGURE 1 | Schematic diagram of antecedent neural network architecture for scDMFK. The encoder and decoder are symmetrical structures, and the outputs are

multinomial modeling parameters. In latent space, embedded points are clustered using an adaptive fuzzy k-means clustering algorithm. The overall training objective

is to maximize log-likelihood function and minimize adaptive fuzzy k-means clustering loss function simultaneously.

2.4. Data Preprocessing
We collected the scRNA-seq UMI count data matrix (cells by
genes) after passing quality control. We first discarded the genes
that are not expressed in any cell and then filtered the cells
without gene expression. Then, we calculated the normalized
dispersion value of each gene and pick the top 500 highly
variable genes from the original whole genes based on dispersion
ranking. The expression of these genes was used as input to the
model. Based on the consideration of neural network numerical
stability, we transformed discrete count data into continuous
smooth data. Specifically, we first normalized the total count
amount of each cell to their median value level and then
utilized a log-transformation for data. Finally, we transformed
the logarithm data into z-score data, which means that each
selected gene has zero mean and unit variance. All the above
preprocessing procedures can be accomplished by using the
scanpy package (Wolf et al., 2018).

3. RESULTS

3.1. Competing Methods and Evaluation
Index
We selected two traditional statistic-based scRNA-seq clustering
algorithms, SIMLR (Kiselev et al., 2017) and CIDR (Lin et al.,
2017), as competing methods. Considering the high time

consumption, we used a close version of SIMLR during large-
scale dataset experiments. For deep learning-based methods, we
chose recently published scDeepCluster (Tian et al., 2019) as
the competitor since it also combines dimensionality reduction
and clustering. These three methods were tested with their
default procedure and parameter setting in both simulation and
real data analysis. In addition, to demonstrate the advantages
of multinomial distribution modeling, we compared it with
three other existing deep learning based scRNA-seq data
denoising models: DCA (Eraslan et al., 2019b), scScope (Deng
et al., 2019), and DeepImpute (Arisdakessian et al., 2019). We
substituted the zero-inflated negative binomial model, masked
MSE, and weighed MSE for the multinomial denoising model,
respectively (see Supplementary Material). These three models
were combined with our proposed adaptive fuzzy k-means
clustering algorithm to organize three competitors and we
denoted them as ZINB, maskMSE, and weightMSE, respectively.
All competing methods were run on the same computer sever
with Ubuntu 16.04. We use two metrics, adjusted Rand index
(ARI) and normalizedmutual information (NMI), to evaluate the
clustering performance of each algorithm. A larger ARI and NMI
value dreflect better performance of the cluster algorithm.

3.2. Splatter Simulation
We first used the most popular simulation package, Splatter
(Zappia et al., 2017), to generate our simulation data. The core
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of the Splatter model is a gamma-poisson distribution where
mean expression levels for each gene are simulated from a gamma
distribution, and the biological coefficient of variation is used to
enforce a mean-variance trend before counts are simulated from
a poisson distribution. Our simulation experiments were mainly
divided into two parts: balanced experiment and imbalanced
experiment. The main difference between them was whether the
number of cells in each cluster was consistent. In the balanced
experiment, the number of cells in each cluster was 500. We
explored the performance of each method under different cluster
numbers and dropout ratios, where the number of clusters
ranged from 5 to 9, and the dropout ratio changed from 5
to 25% (by parameter dropout.mid control, from –1.5 to 0.5,
and dropout.shape = –1, de.facScale = 0.2). In the imbalanced
experiment, we set the number of clusters to five and the total
number of cells to 2,500. The cell number in each cluster presents
a proportional series, where the proportional coefficient ranges
from 0.6 to 1. A smaller proportional coefficient implies that
rare cell types are more likely to exist. The number of genes
in both experiments was set to be 2500. For the reliability
of the experimental results, we generated 10 datasets for each
parameter setting and calculated the median of ARI and NMI
values in 10 datasets for evaluation. From the overall results

of the 25 scenarios in the balanced experiment (see Figure 2A,
Figure S1A, and Table 1), the mean ARI(NMI) value of D-
scDMFK and scDMFK was 0.87(0.85) and 0.81(0.80), while
ZINB, mask MSE, weight MSE and scDeepCluster are 0.79(0.80),
0.39(0.45), 0.76(0.78), and 0.25(0.30), respectively. As for the
two other traditional statistical methods, the corresponding
values of CIDR and SIMLR were 0.19(0.24) and 0.19(0.34).
We could see that D-scDMFK and scDMFK achieved the best
performance in both ARI or NMI. Models based on deep-
learning and fuzzy k-means algorithm are significantly superior
to traditional statistical methods customized for scRNA-seq data.
However, another deep learning-based method, scDeepCluseter,
showed no obvious advantage. Moreover, based on a fixed
dropout ratio, as the number of clusters increased, our two
models exhibited better performance in larger cluster number
(see Figure 3A and Figure S2A). Conversely, when the cluster
number is fixed, then, as dropout ratio increases, the ARI
and NMI value of each methods decreases distinctly, but D-
scDMFK and scDMFK always came out as the best of three (see
Figure 2C and Figure S1C). For the imbalanced experiment (see
Figures 2B, 3B, Figures S1B, S2B, and Table 1), the ARI(NMI)
values of 15 scenarios for D-scDMFK and scDMFK were
0.86(0.87) and 0.89(0.84). Only weight MSE (ARI 0.87, NMI

FIGURE 2 | Simulation analysis. (A,B) Boxplots of ARI values in Splatter balanced and imbalanced simulation, respectively. (C) Change of ARI values with the

increasing dropout rate in Splatter balanced experiment.
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TABLE 1 | Average performance of eight methods in two groups of simulation

datasets and 10 real datasets.

Simulation and real data

Splat balance Splat imbalance Real dataset

ARI NMI ARI NMI ARI NMI

CIDR 0.19 0.24 0.35 0.37 0.41 0.50

SIMLR 0.19 0.34 0.20 0.34 0.55 0.67

scDeepCluster 0.25 0.30 0.46 0.54 0.49 0.69

mask MSE 0.39 0.45 0.57 0.58 0.71 0.69

weight MSE 0.76 0.78 0.86 0.85 0.71 0.69

ZINB 0.79 0.80 0.81 0.87 0.76 0.77

D-scDMFK 0.87 0.85 0.86 0.87 0.79 0.80

scDMFK 0.81 0.80 0.89 0.84 0.84 0.82

The bold values represent the maximum value of the corresponding column.

0.85) and ZINB (ARI 0.81, NMI 0.87) can match these values,
but other methods fall below 0.6. By fixing the dropout rates, as
the proportional coefficient decreases, the values of ARI and
NMI show a decreasing trend (see Figure 3C and Figure S2C).
Despite the existence of rare categories in a small proportional
coefficient situation, compared to other methods, D-scDMFK
and scDMFK can better address this problem and achieve the
best clustering performance. In principle, negative binomial (or
adding zero-inflated) distribution is more suitable for fitting
Splatter simulation data than multinomial distribution since
it is a mixture of poisson distribution with gamma mixing
weights. However, our results rebut that idea inasmuch as
multinomial modeling is not inferior to the commonly used
ZINBmodel, especially in large cluster number and high dropout
rate situations.

3.3. Analysis of 10 Real Datasets
To validate the effectiveness of our model on real data, we
benchmarked it against other algorithms on 10 published single-
cell UMI count datasets from various organs, such as the brain,
kidney, pancreas, and so on. The scale of cell number ranges
from thousands to tens of thousands, and the proportion of zero
counts is above 85%. We used the cell types given by authors
as our referenced gold standard labels, which have been verified
experimentally. The detailed information for each dataset can be
found in Table S1. Considering the influence of random number
on the experimental results, we ran each dataset 10 times under
different random numbers, and we then took the median value
of these ten results as our comparison values (see Figures 4A,B).
The average ARI(NMI) value of the 10 datasets taken together
(see Table 1) reveals that our models scDMFK and D-scDMFK
ranked as the top two with specific values of 0.84(0.82) and
0.79(0.80), respectively, higher than ZINB(ARI 0.76, NMI 0.77),
mask MSE(ARI 0.71, NMI 0.69), weight MSE(ARI 0.71, NMI
0.69), scDeepCluster(ARI 0.49, NMI 0.69), and SIMLR(ARI 0.55,
NMI 0.67). CIDR performed unsatisfactorily since none of its
ARI or NMI values exceeded 0.6. Moreover, our methods ranked
in the top three in more than two-thirds of the data and
never fell into the last three (see Figure 4C and Figure S3A).

A challenging task was the performance of clustering on the
“Chen” dataset with 46 cell types, implying many rare cell
types. However, scDMFK could achieve ARI 0.82 on it, while
other clustering algorithms only gave less than 0.7, illustrating
that scDMFK learns a more clustering-friendly low-dimensional
representation. Besides, scDMFK also performed well on other
datasets with large cluster number, such as “Park”(16 cell types)
and “Young”(11 cell types).

We also drew the 2D visualization plots of three 10x
genomics datasets, including “Qx_Limb_Muscle,” “Qx_Spleen,”
and “Qx_Kidney,” using the t-SNE (Maaten and Hinton,
2008). For deep learning-based methods, we first took their
low-dimensional latent space representation and then used
t-SNE to reduce it to two dimensions for visualization.
For CIDR and SIMLR, we utilized the default visualization
procedures in their R packages. Figures 5A,B show the results
of “Qx_Limb_Muscle” and “Qx_Spleen” datasets, respectively.
For the “Qx_Limb_Muscle” dataset, we can see that D-scDMFK
and scDMFK separated those six cell types clearly, while ZINB
and mask MSE divided the endothelial cell type into two parts.
Besides, ZINB and scDeepCluster could not distinguish B cells
and T cells very well, and two MSE-based models encountered
a similar situation. CIDR gave the worst visualization since it
mixed up the whole cells entirely. For the “Qx_Spleen” dataset,
we can see that only D-scDMFK and scDMFK aggregated
the B cell and macrophage cell types successfully, while other
methods split one or both of them into multiple parts. Another
representative example of the “Qx_Kidney” dataset can be found
in Figure S3B. Overall, our twomodels D-scDMFK and scDMFK
outperformed other methods in 2D visualization analysis.

3.4. Robustness and Scalability
Stability and robustness are essential indicators for evaluating
the quality of a clustering algorithm because some algorithms
are very sensitive to data disturbances. In this regard,
we selected three datasets(“Qx_Bladder,” “Qx_Kidney,” and
“Qx_LimbMuscle”) by 10x Genomics sequencing and designed
two groups of noise experiments, one to sample a portion of the
cells for clustering and another to randomly add zero elements.
For the former, we downsampled 60 and 80% cells apart from
the total dataset and then ran each clustering algorithm again.
For the latter, we randomly masked some non-zero counts into
zeros with probability 0.15. We repeated these procedures 10
times and then calculated the median ARI and NMI value to
compare with the undisturbed original dataset. In downsampling
experiments (see Figure 6A and Figure S4A), scDMFK and D-
scDMFK did not show any change in performance, and they
were still superior to others. However, the ARI value of CIDR
decreased significantly as the downsample proportion increased
in the “Qx_LimbMuscle” dataset. In dropout experiments
(see Figure 6B and Figure S4B), although almost all methods
performed a little worse than noise-free scenarios, scDMFK, D-
scDMFK, and ZINB were still the three best models. In general,
our proposed models are robust to data disturbances.

With the rapid development of single-cell sequencing
technology, the scale of single-cell RNA sequencing data is
getting larger and larger, challenging the scalability of clustering
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FIGURE 3 | Simulation analysis. (A) Change in ARI values with the increasing cluster number in Splatter balanced experiment. (B,C) Change in ARI values with the

increasing dropout rate and geometric in Splatter imbalanced experiment.

algorithms. We therefore chose a mouse kidney dataset, “Park”
(Park et al., 2018), as our benchmark dataset, which has
43,745 cells and 16 cell types. We selected 2,000, 5,000,
10,000, 20,000, and total cells, in turn, for clustering analysis,
and calculated the ARI and NMI values while recording the
running time of each algorithm. No matter the number of
cells, we could see that scDMFK always had the highest
ARI and NMI value (see Figure 6C). From the point of
view of time consumption (see Figure 6D), SIMLR took the
least time but got unsatisfactory ARI and NMI values owing

to its approximation on large-scale dataset. Our proposed
models and MSE-based models also accomplished the whole
clustering experiments in the ideal time frame, while ZINB
consumed more time since it needs to estimate more parameters
and solve more complex likelihood function. CIDR and
scDeepCluster are time-consuming, and the latter mainly so
due to the absence of preselecting a portion of the genes.
Overall, D-scDMFK and scDMFK possess excellent scalability
with satisfactory clustering accuracy in large-scale scRNA-seq
data analysis.
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FIGURE 4 | Real data analysis. (A,B) Boxplots of ARI and NMI values in 10 real datasets, respectively. (C) Dotplot of 10 real datasets. Every point in x-axis stands for

a dataset and in y-axis a method. The scatter reflects the corresponding performance of a method in a dataset where the color stands for its ARI value, and the size

stands for its ranking according to ARI value among the eight methods. The blue scatter implies that its ARI value is less than 0.2.

3.5. Disturbance Analysis of Cluster
Number
In fact, the number of clusters for real datasets can be changed
according to the demand of data providers. They can merge
some small subclusters into large ones and can also subdivide
small ones from some large clusters. In previous experiments,
it is worth noting that we used the fine division (46 cell
types) provided by the author on the “Chen” dataset. We
also performed clustering analysis on its coarse division (11
cell types) given by the author (see Figures 7A,B). Except for
mask MSE, CIDR, and SIMLR, other methods have improved
the clustering performance when using coarse division as the
reference gold standard. In addition, scDMFK performs best
in both fine and coarse divisions, indicating that scDMFK has
favorable stability when the task involves various fine-grain
divisions. Estimating the number of clusters has always been an
open problem for statisticians and machine learning researchers.
In real data analysis, it is always difficult to obtain a true
cluster number in advance. For some datasets, the estimated
cluster number by applying gap statistic (Tibshirani et al.,
2001) in the learned latent space can be the same as the
true cluster number (see Figure S5), while it is overestimated

or underestimated in most cases. Therefore, instead of setting
a unique number of clusters, we can implement experiments
with different cluster numbers for each real dataset. Specially,
assuming the true cluster number is K, we can utilize scDMFK
to perform clustering in referenced cluster number from {K −

2,K − 1,K,K + 1,K + 2}. From the ARI and NMI results in
Figure 7C and Figure S6, we can see that slight perturbation of
cluster number hardly affects the clustering results of scDMFK
for those datasets with large true cluster number, such as “Bach,”
“Park,” and “Young,” However, for some datasets with a small
true cluster number, such as “Qx_Bladder” and “Enge,” changing
the referenced cluster number has a more significant effect on
the clustering performance, which is reasonable assuming the
dataset has only two or three clusters, which will seriously
damage its structure. In addition, on some datasets, such as
“Qx_Kidney” and “Qx_Spleen,” it can be seen that the referenced
cluster number with the optimal clustering performance is
not necessarily the true cluster number provided by their
authors. This conclusion is consistent with the previously
published article (Duó et al., 2018). In general, scDMFK
shows satisfactory stability and robustness for perturbation of
cluster number.
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FIGURE 5 | Data visualization in 2D plane. (A) Visualization of “Quake_10x_Limb_Muscle” dataset. (B) Visualization of “Quake_10x_Spleen” dataset.

3.6. Effectiveness of Fuzzy Adaptive
k-Means Algorithm
So far, we have not discussed the effect of the fuzzy
adaptive k-means clustering on the model because scDMFK,
D-scDMFK, ZINB, mask MSE, and weight MSE in the previous
experiments were embedded with the fuzzy k-means clustering
algorithm simultaneously, which, to a certain extent, explains the
superiority of multinomial modeling. Therefore, in this section,
we have compared scDMFK and D-scDMFK with the deep
multinomial modeling collocating standard k-means clustering
algorithm. Specifically, for the latter, we applied only L1 loss
as model optimization objective function and then extracted
the well-trained latent representation to perform cell clustering
by a standard k-means algorithm. For convenience, we called
them scDM+kmeans and D-scDM+kmeans, respectively. Based
on the results of 10 real datasets (see Table 2 and Table S2),
we found that the average ARI(NMI) values of 10 datasets
for D-scDM+kmeans and scDM+kmeans were 0.67(0.73) and
0.70(0.75), respectively, about 10% lower than D-scDMFK(ARI
0.79, NMI 0.80) and scDMFK(ARI 0.84, NMI 0.82). Moreover,
D-scDMFK and scDMFK both improve dclustering performance

on the basis of D-scDM+kmeans and scDM+kmeans for each
dataset (see Figure 8A and Figure S7A), which fully illustrates
the necessity of the fuzzy adaptive k-means algorithm.

In fuzzy adaptive k-means loss function, σ and λ are two
tuning parameters where σ is a distance parameter and controls
robustness to outliers, and λ is a weight parameter and controls
the distribution of cluster assignment (also controls algorithm
convergence speed to some extent). Although we set them both
as 1.0 in default, they may not be the optimal parameter setting
for some datasets in terms of clustering performance. Thus, we
used the popular grid search method in the deep learning model
fine-tuning strategy to determine the optimal parameter setting
of six small real datasets. Specifically, σ was searched for in the
grid of [0.01, 0.1, 1.0, 10, 100], and λ was searched for in the grid
of [0.01, 0.1, 1.0]. Table 3 reports the performance comparison
between the optimal parameter setting and default scenario. We
can easily discover that the ARI and NMI values have been
greatly improved under the optimal parameter setting for every
real dataset, and saw an average increase of nearly 8%. It is no
secret that the model’s hyperparameters will affect the clustering
effect. Therefore, in the previous method comparison, we used
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FIGURE 6 | Robustness and scalability experiments of real dataset. (A) Downsampling experiments: histogram of ARI values under different sample size of three

datasets. (B) Dropout experiments: histogram of ARI values for raw data and disturbance data with 15% artificial dropout. (C) Scalability experiments. ARI and NMI

values in different scale of "Park" data, respectively. (D) Scalability experiments. Time consumption in different scale of “Park” data, respectively.

the default parameters of each algorithm, repeatedly ran each
method 10 times, and then took their median value to make a
more reliable evaluation.

4. DISCUSSION AND CONCLUSION

Single-cell sequencing technology allows researchers to
explore tissue heterogeneity at the cellular level; of these,
transcriptome sequencing is the most commonly used one
since it can identify cell types by directly analyzing gene
expression data and then discover the key regulatory genes
that cause cell heterogeneity. During this process, clustering
analysis of cell population is an essential and indispensable
procedure. Therefore, in this paper, we have combined deep
learning with statistical modeling to construct a novel model
that fuses data denoising, data dimensionality reduction,
and clustering. For data modeling, we made full use of

the generation mechanism of UMI count data and adapt
multinomial distribution modeling instead of the widely used
negative binomial distribution or its zero-inflation version.

For data dimensionality reduction, we used the neural
network (autoencoder) that can efficiently capture the inherent
non-linear structure of the data to learn the low-dimensional
manifolds where those marker genes are located instead of the
linear dimensionality reduction method, PCA, or local structure
preservation dimensionality reduction algorithm t-SNE. For cell
clustering, we used soft clustering with an adaptive loss function
instead of hard clustering. In multiple groups of simulation data
generated by the Splatter simulator, including various numbers
of cell types, different degrees of sparsity, and different sizes
of cell types, our methods were more effective and robust
than other deep learning-based and traditional statistic-based
scRNA-seq data clustering algorithms. In terms of real data
analysis, we selected datasets from different organs, which have
diverse population sizes and cell type number. The performance
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FIGURE 7 | Robustness experiments for changing cluster number. (A,B) Comparison of ARI and NMI values in “Chen” dataset with coarse and fine divisions. (C)

Change of ARI values with the disturbed cluster number in eight real data sets.

TABLE 2 | Comparison of ARI values among scDMFK, D-scDMFK and

scDM+kmeans, D-scDM+kmeans in 10 real datasets.

ARI value of real data

D-scDM+kmeans D-scDMFK scDM+kmeans scDMFK

Bach 0.82 0.91 0.81 0.87

Chen 0.33 0.56 0.38 0.81

Enge 0.63 0.68 0.75 0.79

Park 0.24 0.72 0.30 0.83

Bladder 0.98 0.99 0.98 0.99

Kidney 0.79 0.82 0.86 0.87

LimbMuscle 0.95 0.97 0.96 0.97

Spleen 0.91 0.92 0.91 0.92

Tosches_turtle 0.41 0.68 0.39 0.68

Young 0.62 0.65 0.65 0.72

Bladder, Kidney, LimbMuscle, and Spleen refer to Qx_Bladder, Qx_Kidney,

Qx_LimbMuscle, and Qx_Spleen, respectively.

of our methods always ranked in the top three, whether by
overall comparison, downsampling comparison, or disturbance
factor comparison. On large-scale datasets, our model scDMFK
was fast, accurate, and has perfect scalability. It is an effective
algorithm for the rapid development of single-cell transcriptome
data clustering analysis.

During the analysis of the whole real datasets, we selected
500 highly variable genes as the input of the neural network.
We filtered out those genes carrying insufficient information for
identifying cell types owing to high noise, and we also hoped to
speed up the model calculation process. In fact, we tested the
clustering performance of selecting 300, 1,000, 1,500, and 2,000
highly variable genes on real datasets. From the ARI and NMI
results in Figure 8B, the results of selecting 500 and 1,000 highly
variable genes were superior to other cases on the whole. Specific
to each dataset (Figure 8C), selecting 300 or 2,000 highly variable
genes would most likely reduce clustering performance to some
extent.We recommend that users consider performing clustering
experiments on 500 to 1000 highly variable genes.

Frontiers in Genetics | www.frontiersin.org 12 April 2020 | Volume 11 | Article 295

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. scDMFK

FIGURE 8 | Additional comparison experiments in real datasets. (A) Comparison of ARI values between adaptive fuzzy k-means and hard k-means clustering in 10

real datasets. (B,C) Boxplot and dotplot of ARI and NMI values in various highly variable genes for 10 real datasets, respectively.

In addition to CIDR and SIMLR, we also compared scDMFK
with other commonly used scRNA-seq data clustering methods,
such as Seurat (Satija et al., 2015), SC3 (Kiselev et al., 2017),
Raceid (Herman and Grün, 2018), and SOUP (Zhu et al.,
2019). Considering that the Seurat method cannot give a specific
number of clusters in advance, we ran it several times with
its parameter “resolution” changing from 0.5 to 1.5 by 0.1 and
took the best ARI and NMI value as its result and recorded
the corresponding estimated cluster number. For SC3, we

used the approximate version given by the author to test it
on large-scale datasets since it was time-consuming on those
datasets. In order to reflect the advantage of neural network
for dimension reduction, we combined another non-linear
dimension reduction algorithm t-SNEwith the standard k-means
algorithm to perform cell clustering. In addition, considering that
scDeepCluster did not perform well in the previous comparative
analysis, we suspect that this may be related to its selection of
all genes as network inputs; thus here we selected 500 highly
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variable genes (the same as in scDMFK) as its model input. From
the results of Figure S8, scDMFK still performed better than
Seurat, SC3, SOUP, Raceid, t-SNE+k-means, and scDeepCluster,
with eight datasets ranked first and never dropped out of the top
three on all 10 datasets. We found that SC3 performed much
worse on large datasets than it does on some small datasets.
The unsatisfactory result of Seurat can likely be attributed to
its tendency to overestimate cluster number (see Figure S9).
The performance of scDeepCluster after selecting highly variable
genes has been greatly improved compared to its default version,
which fully reflects the importance of selecting informative genes.

From the experimental results, multinomial modeling and
fuzzy k-means clustering are indispensable. We replaced the
data reconstruction loss with ZINB, mask MSE, and weight
MSE for comparison where the overall performance showed that
multinomial modeling can better characterize the data structure
and facilitate the autoencoder to learn a more appropriate
embedded low-dimensional space, and thus be more clustering-
friendly. The impact of proper data modeling on clustering
analysis is apparent. For example, when mask MSE is utilized as
the reconstruction loss, some results of simulation experiments
cannot even be compared with CIDR and SIMLR. The fuzzy k-
means algorithm is also obviously beneficial to improving the
clustering effect. We compared the clustering results between use
of standard hard k-means method alone and adaptive fuzzy k-
means algorithm where ARI and NMI values of the latter have
improved the former by approximately 10%. This is reasonable
since the fuzzy k-means algorithm is a probability allocation
algorithm and can redress the bias caused by incorrect allocation
to a certain extent. On the other hand, the continuity of objective
function for clustering is conducive to the optimization process
of the overall loss function, thereby avoiding some unnecessary
local extreme. The adaptive distance representation can also
encourage the model to promote the robustness to outliers

and effectively identify rare cell types. Another fascinating
phenomenon is that adaptive fuzzy k-means clustering has the
potential to be extended to perform trajectory analysis, which can
be validated in further research.

Actually, taking advantage of neural network to estimate
model parameters is an extraordinarily intriguing method
because it relaxes the limitations of the previous bayesian priors
(especially conjugate priors) or generalized linear model fitting
estimation. DIMM-SC is a such method for single-cell UMI
count data clustering based on mixture dirichlet multinomial
distribution (Sun et al., 2017).We applied it to perform clustering
on six small real datasets and found that it was far less
effective than scDMFK where all ARI and NMI values of the
six datasets were significantly inferior to scDMFK (see Table 4

and Figure S7B). This fully illustrates the powerful ability in
parameter estimation of deep learning technology, which can
realize searching the optimal solution in broader solution space.

TABLE 4 | Comparison between scDMFK and DIMMSC on six small real datasets.

Small real data

DIMMSC scDMFK

ARI NMI ARI NMI

Enge 0.00 0.01 0.79 0.75

Bladder 0.62 0.67 0.98 0.96

Kidney 0.56 0.72 0.87 0.84

LimbMuscle 0.64 0.75 0.97 0.94

Spleen 0.47 0.59 0.92 0.82

Young 0.45 0.59 0.72 0.76

Bladder, Kidney, LimbMuscle, and Spleen refer to Qx_Bladder, Qx_Kidney,

Qx_LimbMuscle, and Qx_Spleen, respectively.

TABLE 3 | Optimal parameter settings of scDMFK and D-scDMFK for real datasets.

Sigma Lambda ARI(def) ARI NMI(def) NMI

scDMFK

Enge 1.0 0.01 0.79 0.84 0.75 0.81

Bladder 1.0 0.01 0.98 0.99 0.96 0.98

Kidney 1.0 0.1 0.87 0.96 0.84 0.91

LimbMuscle 0.01 1.0 0.97 0.99 0.94 0.98

Spleen 1.0 1.0 0.92 0.95 0.82 0.87

Young 1.0 1.0 0.72 0.79 0.76 0.81

D-scDMFK

Enge 100 0.01 0.68 0.82 0.73 0.80

Bladder 0.1 0.1 0.99 0.99 0.97 0.98

Kidney 0.01 1.0 0.82 0.98 0.82 0.95

LimbMuscle 0.1 1.0 0.97 0.98 0.94 0.97

Spleen 1.0 0.01 0.92 0.94 0.84 0.87

Young 1.0 1.0 0.65 0.77 0.73 0.80

The default(abbreviated as def) value of ARI and NMI refers to the median value of 10 repeated tests under default parameter setting. Bladder, Kidney, LimbMuscle, and Spleen refer to

Qx_Bladder, Qx_Kidney, Qx_LimbMuscle, and Qx_Spleen, respectively.

Frontiers in Genetics | www.frontiersin.org 14 April 2020 | Volume 11 | Article 295

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. scDMFK

Nowadays, increasingly mature single-cell sequencing
technologies can simultaneously profile genetic, epigenetic,
proteomic, and spatial information in individual cells, enabling
us to uncover the underlying basis for cellular function and
infer causal relationships between various modalities. This
provides opportunities and poses challenges for integrative
analysis of multiple sources of single-cell data. In the future,
we are interested in developing a novel method for single-
cell clustering by integrating information from multiple
cellular modalities.
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