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Obesity is a complex disease attributable to many factors including genetics and
environmental influences. Growing evidence suggests that gut microbiota is a major
contributing factor to the pathogenesis of obesity and other metabolic disorders. This
article reviews the current understanding of the role of gut microbiota in the regulation of
energy balance and the development of obesity, and how the microbiota communicates
with host tissues, in particular adipose tissue. We discuss several external factors that
interfere with the interplay between gut microbiota and host tissue metabolism, including
cold exposure, diet regimens, and genetic manipulations. We also review the role of diet-
derived metabolites that regulate thermogenesis and thus energy homeostasis. Among
the gut microbial metabolites, we emphasize short-chain fatty acids, which could be
utilized by the host as a direct energy source while regulating the appetite of the host
through the gut-brain axis.
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INTRODUCTION

Obesity is a worldwide epidemic, with sedentary lifestyles and increased food intake likely the main
causes (Jebb and Moore, 1999; Hu, 2003). However, there are other mechanisms at work. The
microbiota in the human gut, also known as gastrointestinal microbiota or gut microflora, describes
the microorganisms that live in the digestive tract – the majority of which reside in the large
intestine (Thursby and Juge, 2017). Among the tens of trillions of microorganisms present, there
are at least 1,000 species of bacteria, consisting of over 3 million genes (Ley et al., 2006; Qin et al.,
2010). Remarkably, two thirds of the gut bacterial species are unique to each individual (Lloyd-Price
et al., 2016), with many factors influencing the gut microbiota such as hygiene, diet, geographical
locations, and host genotype (Chong et al., 2018). This microbial community plays important roles
in vital processes such as digestion, vitamin synthesis, and metabolism (Thursby and Juge, 2017).
The gut microbiota has gained broad attention in the last decade due to its association with a wide
range of diseases, from metabolic disorders, immune diseases, to neurodegenerative diseases and
even cancers (O’Keefe, 2016; Liang et al., 2018).

Recent studies suggest that the composition and activities of gut microbiota not only associate
with obesity but cause it. The gut microbiota not only contributes metabolites and energy to the
host but also controls the absorption of nutrients in the intestine, thereby influencing human
energetics (Thursby and Juge, 2017). Considering the possibility of modulating gut microbiome
activity through dietary or biological approaches, the microbiota is an attractive target for medical
intervention. This review describes how bacterial metabolites impact both the metabolism and
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function of adipose tissue, thereby regulating the energy
homeostasis of the host. We also discuss the proposed
mechanisms of how these bacteria affect the development
of obesity (Figure 1).

OBESITY AND GUT MICROBIOTA

In recent years, accumulating evidence has shown that gut
microbiota influences the pathophysiology of obesity and related
metabolic disorders. This started from the observation that
conventionally raised mice (i.e., mice raised in contact with
microbes) are fatter than germ-free mice (i.e., mice raised
in an isolator and without any exposure to microbes) even
though they consume fewer calories (Backhed et al., 2004).
Then, a mouse study demonstrated that transplanting distal
gut communities from genetically obese ob/ob mice (Turnbaugh
et al., 2006), or diet-induced obese C57BL/6J (Turnbaugh et al.,
2008), into germ-free mice is sufficient to recapitulate the obese
phenotype in the recipient mouse. Turnbaugh et al. (2009b)
conducted a similar study using a humanized mouse model,
in which mice received the microbiome of a healthy adult
human then underwent different diet regimens – a high-fat diet
or a control diet with low fat and abundant polysaccharides.
Germ-free mice that received the gut microbiome of humanized
mice fed high-fat chow gained significantly more adiposity
during the 2 weeks after transplantation than did the recipient
mice of the control diet (Turnbaugh et al., 2009b). Similarly,
transplanting the gut microbiome of patients after a Roux-en-Y
gastric bypass gives rise to reduced fat deposition in germ-free
mice (Tremaroli et al., 2015).

To address the causal role of the microbiome in obesity, the
microbiomes of human twin pairs discordant for obesity were
transplanted into C57BL/6 germ-free mice (Ridaura et al., 2013).
These humanized mouse models were fed diets low in fat and
rich in polysaccharides (Ridaura et al., 2013). Remarkably, the
recipients of the obese microbiota gained more fat than those
with the lean microbiota (Ridaura et al., 2013). These differences
in body composition were correlated with a different capacity
for fermenting nutrients. For instance, lean communities had
greater fermentation of short-chain fatty acids (SCFAs), whereas
obese communities had increased metabolism of branched-chain
amino acids – a difference that has been noted elsewhere to
impact the metabolic health the host (Newgard et al., 2009).
Interestingly, feeding the mice who received obese microbiota
with a diet containing low amounts of saturated fats and high
amounts of fruits and vegetables rescued the obese phenotypes
(Ridaura et al., 2013). In addition, when obese mice were co-
housed with lean mice for 5 days after transplantation, they had
less weight gain and a microbiota metabolic profile that leaned
toward a lean-like state (Ridaura et al., 2013).

Specific bacteria strains have been associated with obesity
and type 2 diabetes. Firmicutes and Bacteroidetes are the two
dominant gut microphyla (Qin et al., 2010), and their ratio (the
F/B ratio) has been suggested to be correlated with obesity and
metabolic health, albeit this remains controversial (Turnbaugh
et al., 2006, 2009a). A study on obesity-discordant twins by

FIGURE 1 | Model representation of the effects of environment-induced
altered microbiota on adipose tissue biology.

Turnbaugh et al. (2009a) found that the obese twin had more
Firmicutes and more microbiome genes associated with nutrient
transporters. The lean twin had a higher relative abundance of
Bacteroidetes and more genes linked to carbohydrate metabolism
(Turnbaugh et al., 2009a). Shifts in the F/B ratio are also observed
across mouse strains with different susceptibilities to diet-
induced obesity; the strains of high weight gainers from high-fat
feeding have a bigger shift in F/B compared to those with low
weight gain (Ley et al., 2005; Turnbaugh et al., 2006). However,
other investigations have failed to find significant differences in
the F/B ratio between lean and obese humans at both baseline
level and after weight loss (Duncan et al., 2008; Zhang et al.,
2009; Ismail et al., 2011; Karlsson et al., 2012). Other studies have
reported that fecal concentrations of Bacteroidetes are positively
correlated with body mass index (BMI) (Ignacio et al., 2016) and
that there’s a predominance of Bacteroidetes in obese individuals
(Schwiertz et al., 2010). Most likely, these differences are due
to different environmental influences including diet, physical
activity, and socioeconomic status (Dugas et al., 2016).

Approximately 90% of bacterial species belong to the
phyla Firmicutes and Bacteroidetes, with the other important
phyla being Actinobacteria, Proteobacteria, and Verrucomicrobia
(Jandhyala et al., 2015). While the F/B ratio remains controversial
as a determinant of obesity, other bacterial strains have attracted
growing interest for their health-promoting effects with less
uncertainty, among which Akkermansia muciniphila of class
Verrucomicrobia has been most extensively studied (Cani and de
Vos, 2017). This gram-negative bacterium represents 1–5% of the
microbial community and is inversely correlated with obesity-
related metabolic disturbances (Schneeberger et al., 2015; Dao
et al., 2016). In rodents, treatment with A. muciniphila reduces
the incidence of obesity and related disorders such as glucose
intolerance, insulin resistance, steatosis, and gut permeability
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(Everard et al., 2013; Plovier et al., 2017). Depommier et al. (2019)
found that pasteurized A. muciniphila has enhanced beneficial
effects on adiposity, glucose tolerance, and insulin resistance
when administered to mice (Plovier et al., 2017). The same
research team recently confirmed the feasibility of administering
A. muciniphila to humans by conducting a proof-of-concept
translational study in overweight/obese volunteers with insulin
resistance (Depommier et al., 2019). They demonstrated the
group supplemented with pasteurized A. muciniphila had
decreased body weight and fat mass, as well as reduced marker
levels for liver dysfunction and inflammation. Likewise, a
significant association was found between the abundance of
Prevotella and a human variant linked to a gene related to body
fat distribution and insulin sensitivity (Li J. et al., 2018). This
area of research deserves additional efforts to understand the
interactions of specific bacterial strains with host metabolism,
particularly in human subjects.

CROSSTALK BETWEEN GUT
MICROBIOTA AND ADIPOSE TISSUE

Adipose tissue is found in two different forms in mammals:
white and brown (Peirce et al., 2014). White fat stores energy
as triglycerides, whereas brown fat burns extra calories to create
heat (Peirce et al., 2014). Additionally, there are beige, or brite,
adipocytes, which are an inducible form of brown adipocytes
that are sporadically generated within white adipose tissue in
response to various stimuli such as cold temperatures (Sidossis
and Kajimura, 2015). Accumulating evidence suggests that the
gut microbiome affects the thermogenic capacity of brown fat
and the formation of beige adipocytes (Suárez-Zamorano et al.,
2015; Li et al., 2019). For example, when Suárez-Zamorano
et al. (2015) depleted the microbiota of wild-type C57Bl/6J mice
by administering antibiotic cocktails, the mice had more beige
adipocytes in subcutaneous and perigonadal white adipose tissues
(WATs) than did untreated controls. Concordantly, C57Bl/6
germ-free mice in sterile conditions had increased browning
(Suárez-Zamorano et al., 2015). Both germ-free and antibiotics-
treated mice had more UCP1-positive cells (a marker for
thermogenesis) and upregulated brown fat–specific markers in
their subcutaneous and visceral WATs (Suárez-Zamorano et al.,
2015). Notably, recolonization mostly reverted the metabolic
benefits induced by antibiotics treatment. Mechanistically, the
authors proposed that increased browning in microbe-depleted
mice is due to anti-inflammatory or alternatively activated M2
macrophages derived from upregulation of type 2 cytokines,
such as Interleukin 4 (IL 4), Interleukin 13 (IL 13), and
Interleukin 5 (IL 5), which promote beige adipogenesis (Martinez
et al., 2009; Ganeshan and Chawla, 2014; Qiu et al., 2014;
Lee et al., 2015).

However, Li et al. (2019) reported the opposite results. They
depleted the microbiota of C57BL/6 mice using a slightly different
mix of antibiotics, and unexpectedly, the mice had impaired cold
tolerance when exposed to 4◦C, accompanied by an impaired
ability to induce Ucp1 expression in BAT and subcutaneous
WAT (Li et al., 2019). Consistent with impaired thermogenic

gene regulation, the antibiotics-treated mice had reduced whole-
body energy expenditure (Li et al., 2019). Unlike the other
study, no significant difference was observed regarding M2
macrophage biology (Li et al., 2019). The authors proposed that,
instead of macrophage polarity, the gut microbiota influences
BAT metabolism by generating certain metabolites (i.e., butyrate)
(Li et al., 2019).

The contradictory results between the two studies could
arise for multiple reasons. First, despite the identical genetic
background, gender, and age of the mice, they were raised
in different facilities, meaning they were under unique
environmental conditions that may have differentially impacted
the microbiota composition before and after antibiotics. In
fact, Li et al. (2019) were not able to recapitulate the previous
findings, even when they treated the germ-free mice with the
same cocktail of antibiotics. However, the mice were treated for
different lengths of time. Mice were treated for 6 weeks in the first
study (Suárez-Zamorano et al., 2015) and 30 days in the latter
(Li et al., 2019), which could have resulted in varying degrees
of perturbing the gut microbiota. It is possible that incomplete
deletion of microbiota or imbalanced microbiota composition
could differentially impact host organs. Nevertheless, both
studies suggest that drastic perturbations of gut microbiota have
profound impacts on BAT function or the browning process.

In addition to adipocyte thermogenesis, the gut microbiome
may affect lipid metabolism (Backhed et al., 2004).
Conventionalizing germ-free C57BL/6J mice leads to a
rapid and significant increase in body fat content and the
development of insulin resistance (Backhed et al., 2004).
Moreover, colonization with a single saccharolytic bacterial
species, B. thetaiotaomicron, a prominent member of the
human distal gut microbiota with an extraordinary capacity for
acquiring and degrading plant polysaccharides (Xu et al., 2003),
also produces a significant increase in total body fat content
(Backhed et al., 2004). Mechanistically, it was proposed that
the increased adiposity in conventionalized germ-free mice
is partially due to the microbial suppression of the intestinal
expression of angiopoietin-like protein 4 (Angptl4), a secreted
protein that inhibits lipoprotein lipase activity (Backhed et al.,
2004). Notably, reduced adiposity in germ-free mice is associated
with an elevated level of ANGPTL4, accompanied by the
increased expression of Pparg coactivator 1 alpha (PGC1A)
and genes involved in fatty oxidation in muscle (Bäckhed et al.,
2007). Together, these results suggest that the microbiome
communicates with adipose and other metabolic tissues to
influence host lipid metabolism.

THE UPSTREAM SIGNALS THAT ELICIT
THE CROSSTALK BETWEEN
MICROBIOTA AND ADIPOCYTES

The gut microbiome is highly influenced by food intake and
various environmental and genetic factors. In this section, we
will discuss which external factors affect the gut microbiota
community and influence the metabolism of target tissues,
namely white and brown adipose depots (Table 1).
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TABLE 1 | A list of the previously identified key environmental factors that lead to gut microbiota-mediated biological changes in adipose tissue.

Environmental factors Changes in microbiota composition or
metabolite

Altered adipose tissue biology

Transplanting the microbiomes of
human twin pairs discordant for obesity
into C57BL/6 germ-free mice (Ridaura
et al., 2013)

• Lean communities had greater fermentation
of short-chain fatty acids (SCFAs)

• The recipients of the lean microbiota gained
less fat than those with the obese microbiota

Transplanting microbiota from mice
exposed to cold to germ-free mice
(Chevalier et al., 2015)

• Increased Bacteroidetes/Firmicutes ratio in
the donor gut

• Shifts in the major bacterial phyla in the donor
gut without changing the overall bacterial
diversity

• Enhanced browning and thermogenesis
• Promoted energy expenditure and cold

tolerance
• Improved insulin sensitivity

Reducing the ambient temperature
(Ziȩtak et al., 2016)

• Increased Firmicutes/Bacteroidetes ratio
• Shifts in the microbiome composition at the

phylum and family levels in response to cold
exposure

• Elevated conjugated bile acid levels
associated with the upregulated Cyp7b1
in liver

• Activated TGR5 receptors
• Increased browning in white adipose depots
• Higher thermogenic gene expression level in

interscapular BAT
• Increased overall insulin sensitivity in

germ-free mice who received microbiota
from cold-exposed mice

An every-other-day fasting (EODF)
regimen performed in diet-induced
obese mice
(Li et al., 2017)

• A reduced Firmicutes to Bacteroidetes ratio • Weight loss and an improved metabolic profile
• Increased beige fat development

Adipose-specific deletion of Napepld
(Geurts et al., 2015)

• Changes in the abundance of 64 operational
taxonomic units

• Increased fat mass and decreased expression
of BAT-specific genes in Germ-free mice
receiving the KO microbiota

β-Klotho deficiency (Somm et al., 2017) • Increased production of the secondary bile
acid deoxycholic acid, an activator of TGR5
receptor

• The Klb-KO mice exhibited lean phenotypes
with enhanced thermogenesis

Gpr43 knockout (Kimura et al., 2013) • Increased gut population of SCFA-producing
phylum Firmicutes, increased fecal and
plasma acetate concentrations in Gpr43-KO
mice

• The body weights and WAT weights of both
NC- and HFD-fed Gpr43 KO mice were
significantly higher, accompanied by
significantly increased insulin resistance

Ambient Temperature
A change in ambient temperature is one of the strongest
physiological stimuli for increasing thermogenic adipose
formation and activity (Cypess et al., 2009; Lee et al., 2014).
A recent study by Chevalier et al. (2015) found that a prolonged
cold exposure in C57BL6 mice led to a marked change in
the composition of gut microbiota, especially increasing the
Firmicutes abundance over Bacteroidetes from 18.6% at RT up
to 60.5%. Furthermore, transplanting microbiota from a mouse
exposed to cold increased browning in white adipose depots
and increased insulin sensitivity in recipient mice (Chevalier
et al., 2015). Another study reported similar findings, showing
that gut microbiota from cold-conditioned mice modulated
fat accumulation by promoting thermogenesis (Ziȩtak et al.,
2016). Recipient mice colonized with microbiota from donors
that were fed with a high-fat diet and kept at 12◦C had reduced
fat mass as well as significantly higher mRNA and protein
expression of thermogenic genes like Mitochondrial uncoupling
proteins1 (Ucp1) and Type II Iodothyronine Deiodinase (Dio2)
in their interscapular BAT compared to mice that received
microbiota from donors housed at thermoneutrality (29◦C)
(Ziȩtak et al., 2016). The role of gut microbiota as a mediator of
cold-induced thermogenesis was further explored by Bo et al.
(2019) using male Brandt’s voles. They verified that cold exposure

modified gut microbiota and increased the concentration of
SCFAs. In addition, norepinephrine injection also induced a
long-term decrease in food intake and body mass in the treated
group, paralleled by altered gut microbiota composition. They
confirmed that transplantation of cold-acclimated microbiota
triggered thermogenesis in the recipient by activating the cAMP–
PKA–pCREB signaling pathway. Therefore, gut microbiota may
interact with host neurotransmitters to regulate thermogenesis
and energy expenditure during cold acclimation.

Diet Composition and Diet Regimens
A direct link has been established between gut microbiota and
diet-induced obesity (Bäckhed et al., 2007). For instance, bacterial
lipopolysaccharide, or endotoxin, has long been identified as
an inflammatory factor triggering the onset of obesity, insulin
resistance, and diabetes (Cani et al., 2007; Harte et al., 2012).
Bacterial endotoxin is abundant in the human gut and circulates
at low concentrations in the blood of all healthy individuals,
whereas an elevated concentration of endotoxin has been
demonstrated to affect the function of the major organs involved
in maintaining glucose and lipid homeostasis, including adipose
tissue (Caesar et al., 2015; Schroeder and Bäckhed, 2016). Obese
and diabetic people have increased plasmatic lipopolysaccharide
levels (Harte et al., 2012). The increase in the proportion of
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gram-negative microbiota, increased gut mucosal permeability,
and the consumption of high-fat diets increase the plasmatic
lipopolysaccharide levels, which will elicit local inflammatory
signals that can further deteriorate the gut barrier and promote
bacterial translocation. Cani et al. reported that a 4-week high-fat
diet chronically increased the proportion of an LPS-containing
microbiota as well as the plasma LPS concentration in mice
by two to threefold (Cani et al., 2007). The induction of
the elevated plasma LPS level, often referred to as metabolic
endotoxemia, in mice is followed by the onset of liver insulin
resistance and an increased expression of inflammatory markers
in the adipose tissue. Another study also confirmed the onset of
insulin resistance induced by low-dose LPS infusion in healthy
humans, which is exclusively associated with stimulation of
inflammatory pathways as opposed to the insulin resistance
caused by intravenous fat or glycerol treatment (Nowotny
et al., 2012). This demonstrates that metabolic endotoxemia
dysregulates the inflammatory profiles, and triggers body weight
gain and insulin resistance. These findings suggest to lower
plasma LPS concentration could be a strategy for the control
of metabolic diseases. Overall, the gut microbiome may be a
potential target for improving metabolic homeostasis.

Diet-induced weight-loss intervention improves low gut
microbial gene richness, thus mitigating the dysmetabolism
of obese patients (Cotillard et al., 2013). Considering that
gut microbiota is, to a large extent, modulated by diet in
humans, dietary interventions are a potential means to prevent
or treat obesity via modifying gut microbiota composition
(David et al., 2014). Obesity is associated with reduced
brown adipose activity, which is characterized by impaired β-
adrenergic signaling, vascular rarefaction, larger lipid droplets,
inflammation, and decreased mitochondrial respiration (Orava
et al., 2013). Paradoxically, increased UCP1 expression (a marker
for brown adipose) is observed after feeding rodents a high-fat
diet (Surwit et al., 1998). Yet, whether this induction of UCP1
serves to “buffer” metabolic dysfunction is unknown. High-fat
foods alter the microbiome composition to favor the proliferation
of gram-negative bacteria strains (Kasselman et al., 2018) that
produce SCFAs, which have been proposed to be associated with
increased energy expenditure and thermogenesis (Gao et al.,
2009). Thus, it is plausible that the microbiome is the mechanism
for high fat diet–induced Ucp1 expression.

In addition, germ-free mice are resistant to high-fat diet-
induced obesity, accompanied by malabsorption of dietary
lipids, while HFD-fed SPF mice develop obesity and exhibit
an increased abundance of the family Clostridiaceae in their
intestines (Martinez-Guryn et al., 2018). The fact that treatment
with Clostridiaceae directly upregulates lipid transport genes
both in vivo and in vitro indicates that gut microbiota plays a role
in shaping host adaptability to dietary lipid uptake, possibly as
early as in the digestive phase.

The ketogenic diet consists of high fat, very low carbohydrate,
and moderate protein (Dashti et al., 2004; Paoli, 2014) amounts
and has become a popular dietary choice for treating epilepsy,
obesity, or neurodegenerative disorders (Paoli, 2014). This
diet phenocopies several biochemical characteristics of fasting
including reduced insulin level, Forkhead box O (FoxO)

signaling, and inhibition of the mammalian target of rapamycin
(mTor), and activation of AMP-activated protein kinase (AMPK)
(Veech et al., 2017). Recent studies suggest the ketogenic diet
significantly impacts gut microbiota, but with mixed results. For
example, a mouse study noted that the ketogenic diet increased
beneficial species of gut microbiota including A. muciniphila
and Lactobacillus bacteria, which are capable of producing
small-chain fatty acids (SCFAs) that may provide the host
with beneficial health outcomes (Ma et al., 2018). However,
these changes occurred at the expense of reduced overall
microbial diversity, possibly due to the minimized carbohydrate
intake, which can disrupt other beneficial microbes (Swidsinski
et al., 2017). Human studies also point out some potential
negative effects on the gut microbiota. For example, overweight
and obese subjects following the ketogenic diet for 8 weeks
had a significantly reduced amount of a beneficial bacterium,
Bifidobacterium, in their colon and decreased plasma levels of
SCFAs (Brinkworth et al., 2009). Future studies are warranted to
establish with more accuracy the effects of high fat–containing
diet regimens on microbiota composition and diversity and the
mechanisms whereby this microbiota affects adipose biology.

Intermittent fasting has also caught mainstream attention
for its many benefits including weight loss. For example, an
every-other-day fasting (EODF) regimen in diet-induced obese
mice results in weight loss and an improved metabolic profile
associated with increased beige fat development (Li et al., 2017).
Notably, this was accompanied by a reduced F/B ratio. Moreover,
the microbiota seems to play a causal role, as mice that received
the microbiota from EODF mice recapitulated the beneficial
phenotype while microbiota-depleted mice did not (Li et al.,
2017). Another dietary pattern that has beneficial effects on
host health is the Mediterranean diet. Chronic intake of the
Mediterranean diet or a low-fat diet over a year is associated
with an improved insulin profile and modified lipid metabolism
in obese patients with coronary heart disease, an effect which
is linked to an increased abundance of Roseburia genus and
F. prausnitzii in the gut (Haro et al., 2016). Consistently,
other studies have shown that obese patients with metabolic
dysfunction have reversed microbiota dysbiosis upon long-term
consumption of the Mediterranean diet (Haro et al., 2017).

However, short-term dietary interventions appear to have no
effect. A randomized 1-week-long dietary intervention found no
effects of different types of bread on clinical parameters nor
on gut microbial composition (Korem et al., 2017). Another
study comparing the effect of consuming a high-cholesterol diet
for 12 weeks also detected no major differences in microbial
composition between control and treated mice (Dimova et al.,
2017). Together, these results suggest that short-term dietary
intervention may not overcome interpersonal variability in
gut microbiota composition, and understanding dietary effects
requires integration of person-specific factors.

Genetic Manipulation
Several studies have proposed that some of the metabolic
phenotypes in certain genetic mouse models are derived from
altered gut microbiota. For example, the endocannabinoid system
consists of ubiquitous bioactive lipids that regulate glucose and
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lipid metabolism, food intake, and inflammation through
various receptors in autocrine and paracrine manners (Di Marzo
and Matias, 2005; Horn et al., 2018). N-acylethanolamines
(NAEs) are the best characterized endocannabinoids, and
increased NAE levels are associated with obesity and metabolic
comorbidities (Tsuboi et al., 2018). Unexpectedly, a mutant
mouse carrying an adipose-specific deletion of Napepld, which
encodes N-acylphosphatidylethanolamine phospholipase D
(NAPE-PLD), the NAE endocannabinoid synthesizing enzyme,
is more susceptible to diet-induced obesity and metabolic
dysregulation (Geurts et al., 2015). In these mice, the gut
microbiota composition changes in the abundance of 64
operational taxonomic units (Geurts et al., 2015). Germ-free
mice receiving the KO microbiota have significantly increased
fat mass and decreased expression of BAT-specific genes
compared to those who received WT microbiota (Geurts et al.,
2015). Similarly, another study (Somm et al., 2017) attributed
the altered microbiome as the reason behind the surprising
metabolic phenotype in the global knock-out of Klb that
encodes β-Klotho, which is an obligate co-receptor for FGF21, a
hepatokine that stimulates thermogenesis, glucose uptake, and
lipolysis (Kharitonenkov et al., 2005; Hondares et al., 2011).
Thus, Klb KO mice were expected to be resistant to the beneficial
action of FGF21 treatment. However, the Klb-KO mice are leaner
and have more brown adipose activity compared to controls on a
high-fat diet (Somm et al., 2017). The authors proposed that the
surprising body weight phenotype is attributable to the changes
in the host bile acid metabolism (Somm et al., 2017), which
is discussed later in this review. These examples illustrate that
there are intricate interactions among the microbiome, adipose
tissue, and genetics.

SIGNALS THAT MEDIATE THE
CROSSTALK BETWEEN MICROBIOTA
AND HOST TISSUES

It has been proposed that the microbiota employs microbial
and host metabolites for microbiome-to-tissue communication
to regulate cellular function. The short-chain fatty acids (SCFAs)
acetate (C2), propionate (C3), and butyrate (C4), which are the
major end products of microbial fermentation of dietary fiber,
serve as the primary energy source for colonic epithelium (Boffa
et al., 1978; Candido et al., 1978). A randomized clinical study
found that deficiency in SCFA production is associated with
type 2 diabetes (Zhao et al., 2018). Zhao et al. (2018) observed
that a high-fiber diet promoted the growth of specific SCFA-
producing strains in diabetic patients. Participants exhibited
better improvement in their blood glucose profiles when they had
fiber-promoted SCFA producers in higher abundance and greater
diversity. This could partially be mediated by increased glucagon-
like peptide-1 production. However, it could be challenging
to measure the contribution of each subtype of SCFAs during
this process accurately (Zhang et al., 2019). Even if their levels
can be measured in feces, they may not adequately reflect the
total amount processed by microbiota. For instance, much of
the butyrate pool is consumed for energy by the cells lining

the colon and so will not enter the fecal pool (O’Keefe, 2016).
Considering these constraints, Sanna et al. (2019) adopted
Mendelian Randomization to establish the causal relationships
between SCFAs and obesity and type 2 diabetes. They found that
increased gut microbial activity producing butyrate is positively
associated with insulin sensitivity, whereas a higher production
of propionate is associated with increased risk of type 2 diabetes
(Sanna et al., 2019). Therefore, targeted restoration of certain
producers of SCFA subtypes may be a promising approach
for managing T2DM.

Several studies suggest that SCFAs activate G protein–coupled
receptors (GPCR) to affect the target organ of the host. For
example, Gpr43, which has a strong affinity to acetate and
propionate, plays an important role in mediating the microbial
input in WAT metabolism (Brown et al., 2003; Hong et al.,
2005). Gpr43-KO mice are obese compared to their wild-
type counterparts on both chow and high-fat diet, whereas
adipose-specific Grp43-transgenic mice are leaner and more
insulin sensitive (Kimura et al., 2013). Remarkably, the body
weight phenotype was abolished under germ-free conditions,
demonstrating the importance of microbial metabolism in
forming ligands for adipose GPR43 signaling (Kimura et al.,
2013). Analysis of the gut microbiota communities revealed
that Gpr43-KO mice display an increased gut population
of Firmicutes (Kimura et al., 2013), which is an SCFA-
producing phylum (Macfarlane and Macfarlane, 2003). This
was also accompanied by increased fecal and plasma acetate
concentrations in the KO mice (Kimura et al., 2013). In support
of the role of Gpr43 and acetate, anti-lipolytic activity of
GPR43 in WAT was reported (Robertson et al., 2005). Moreover,
acetate-dependent GPR43 stimulation in the WAT, but not in
muscles or liver, improves glucose and lipid metabolism (Kimura
et al., 2013). Together, these findings suggest that acetate-
mediated GPR43 signaling in WAT may have metabolically
beneficial functions.

A recent study proposed that butyrate mediates the
thermogenic stimulation of BAT, as administering butyrate
sodium to microbiota-depleted mice partially rescues impaired
thermogenesis and promotes fat oxidation (Li et al., 2019).
Other studies have revealed the association between butyrate
administration and improved blood glucose profiles (Xu et al.,
2018), obesity-related lipid accumulation, and low-grade chronic
inflammation (Fang et al., 2019). Fang et al. (2019) confirmed
that administering sodium butyrate to mice re-shapes their gut
microbiota composition to favor an improved intestinal barrier,
leading to lower serum lipopolysaccharide concentrations.
However, it is worth noting that oral butyrate treatment does not
seem to improve human BAT activity when it is administered
to lean or metabolic syndrome subjects in spite of a significant
improvement the butyrate administration resulted in lean
subjects’ insulin sensitivity (Bouter et al., 2018). As the butyrate
dose used in this study was lower than the that usually given in
mouse studies, a sub-therapeutical dose of sodium butyrate might
be an explanation for the less optimal response by the metabolic
syndrome subjects. Therefore, larger placebo-controlled trials
with different dosage and age-matched subjects are needed to
better understand the potential of oral butyrate treatment as
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an effective means for glucose regulation in human subjects
with metabolic syndrome and/or Type 2 Diabetes Mellitus.
Though most of the butyrate in the cecum may be used by
mitochondria as an energy substrate in the colon (den Besten
et al., 2013), some enters the circulation system and crosses the
blood-brain barrier via monocarboxylate transporters (MCTs)
(Vijay and Morris, 2014). Of note, isotope tracing revealed that
gut-produced butyrate is mainly routed to the brain rather
than peripheral tissues, suggesting that gut-derived butyrate
activates BAT via the gut-brain neural circuit, rather than
working on adipose directly (Li et al., 2019). This was further
supported by the finding that butyrate administration decreases
food intake and inhibits orexigenic neuron activity in the
hypothalamus (Frost et al., 2014; Li Z. et al., 2018). In line with
this study, high-fat-diet-fed mice that receive dietary butyrate
for 12 weeks upregulate the expression of UCP1 and PGC1α

and have increased mitochondrial function and biogenesis in
BAT (Gao et al., 2009). It is noteworthy that butyrate, and to
a lesser degree, propionate, are histone deacetylate (HDAC)
inhibitors (Waldecker et al., 2008), and pharmacological and
genetic inhibition of class I HDAC in particular, has the
same effect. Administration of propionate and butyrate to the
stromal vascular fraction of porcine adipose tissue enhanced
adipocyte differentiation, which could be partially mediated
by their inhibitory effect on histone deacetylase activity (Li
et al., 2014). Moreover, Krautkramer et al. (2016) demonstrate
that administration of SCFAs to germ-free mice retrieved
chromatin modification and transcriptional responses associated
with microbial colonization. Thus, it is conceivable that the
microbiome may affect the epigenome of target tissues.

Other gut microbial metabolites are involved in epigenetic
regulation. Exposure of mouse ileal organoids to SCFAs
and products generated by A. muciniphila modulates histone
deacetylase level and the expression of genes involved in satiety
and host lipid metabolism (Lukovac et al., 2014). Furthermore,
Virtue et al. (2019) identified the importance of tryptophan-
derived metabolite indole-3-carboxylic acid (I3CA) produced
by the gut microbiota. HFD upregulates adipocyte miR-181
expression during obesity, which is a microbiota-dependent
process. Through controlling the expression of the miR-181
family in white adipocytes in mice, the gut microbial metabolite
I3CA plays a role in regulating the energy expenditure and
insulin sensitivity of the host. These results indicate that gut
microbiota–derived metabolites could be part of the epigenetic
mechanisms that regulate host metabolism and adipocyte
function in response to dietary modification. In addition to
gut microbiota-derived metabolites, the predominant bacterial
phyla in the gut has also been shown to correlate with DNA
methylation patterns. Although most of the existing evidence
focus on the influence of gut microbiome on the epigenetic
regulation of host genes involved in maintaining intestinal
homeostasis and regulating the mucosal immune system in
the gut (Takahashi et al., 2011; Takahashi, 2014), there are a
few reports underlining the association of the gut microbiota
with differentially methylated genes linked to metabolic diseases.
A whole-genome methylation analysis conducted by Kumar et al.
(2014) revealed a clear correlation of blood DNA methylation

profiles with gut microbiota patterns in pregnant women. Eight
pregnant women were classified into two groups depending on
their dominant gut microbiota, i.e., Bacteroidetes, Proteobacteria,
and Firmicutes. Next-generation sequencing of DNA methylomes
indicated that the genes with differentially methylated promoters
in the High Firm group was functionally associated with lipid
metabolism, obesity, and the inflammatory response. Another
genome-wide analysis of DNA methylation also demonstrate that
the DNA methylation status is associated with gut microbiota
composition in obese subjects (Ramos-Molina et al., 2019).
Ramos-Molina et al. (2019) found that in adipose tissue, both
HDAC7 and IGF2BP2 were hypomethylated and overexpressed
in the obese subjects with low Bacteroidetes-to-Firmicutes (BFR)
ratio compared with the high BFR obese group. This finding
indicates that the expression levels of genes implicated in glucose
and energy homeostasis in adipose tissue could be epigenetically
regulated by gut bacterial populations. In support of this,
Remely et al. (2014) discovered that the promoter region of
Free Fatty Acid Receptor 3 (FFAR3) showed a significant lower
methylation in obese and type 2 diabetics subjects who had a
reduced microbial diversity and abundance of Faecalibacterium
prausnitzii. Their results disclosed the influence of different
composition of gut microbiota in obesity and type 2 diabetes
on the epigenetic regulation of genes. On the other hand, some
reports have demonstrated that fecal micro-RNAs (miRNAs)
can shape the composition of the gut microbiome (Liu et al.,
2016), showing a potential role for miRNAs in mediating the
host-microbiome interaction. Together, these insights are pivotal
pieces of information revealing the associations between gut
microbiota composition and epigenetic status contributing to
host metabolism regulation.

It is well-established that the bacterial-derived metabolite
Trimethylamine N-oxide (TMAO) is strongly associated with
cardiovascular risks and host inflammation (Zhu et al., 2016).
Choline and L-carnitine are the major precursors of TMAO,
and they are highly abundant in the Western diet (Koeth et al.,
2013; Chen et al., 2017). Western diets consumption result in the
production of TMA in gut microbiota, which is metabolized to
trimethylamine-N-oxide (TMAO) by host hepatic enzyme flavin-
containing monooxygenase 3 (FMO3) (Koeth et al., 2014; Chen
et al., 2017). Of note, TMAO is also upregulated in type 2 diabetes,
and is associated with obesity traits (Gao et al., 2014). Schugar
et al. (2017) proposed that the TMA/FMO3/TMAO pathway
is a microbe-to-host endocrine axis that mediates the crosstalk
with adipose tissue, as deleting TMAO-producing Fmo3 increases
browning of gonadal WAT and protects against obesity in mice.
Complimentary mouse and human studies indicate a negative
regulatory role for FMO3 in the browning of white adipose tissue
(Ussar et al., 2014). Since TMA results from nutrients commonly
consumed in a high-fat diet and is exclusively generated by
certain communities of the gut microbiome, dietary intervention
or targeting the specific microbes that generate TMAO may have
therapeutic implications.

In addition to SCFAs, bile acids appear to play an important
role in mediating the interactions between microbiota and
host tissues. Bile acids are synthesized from cholesterol by
a process orchestrated by multiple liver enzymes (Russell,
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2009). Afterward, the gut microbiota promotes deconjugation,
dehydrogenation, and dehydroxylation of primary bile acids in
the distal small intestine and colon, thus forming secondary bile
acids and affecting bacterial composition (Ridlon et al., 2006;
Sayin et al., 2013). For instance, conjugated bile acid has been
shown to decrease bacterial overgrowth, bacterial translocation,
and endotoxemia in rats (Lorenzo-Zúñiga et al., 2003). Bacterial
translocation was less in cirrhotic animals receiving conjugated
bile acids, while endotoxemia was also reduced by conjugated
bile acid feeding (Lorenzo-Zúñiga et al., 2003). A recent study
by Ziȩtak et al. (2016) found that cold exposure activates
an alternative bile acid synthesis pathway by increasing the
expression of Cytochrome P450 Family 7 Subfamily B Member
1 (Cyp7b1), a hepatic enzyme that mediates alternative bile acid
synthesis. The elevated bile acid secretion changed the microbiota
composition and increased adipocyte thermogenesis (Ziȩtak
et al., 2016). Confirming this, Worthmann et al. (2017) reported
that cold exposure in mice triggers the hepatic conversion of
cholesterol to bile acids via the alternative synthesis pathway.
At the same time, cold results in accelerated fecal excretion of
bile acids via increased CYP7B1. This process is accompanied
by alterations in gut microbiota and promotes thermogenesis
(Worthmann et al., 2017). In line with these results, it was
proposed that the lean phenotype of the Klb-KO mice is due
to increased production of the secondary bile acid deoxycholic
acid, which is produced by microbiota from hepatic cholic acid
(Somm et al., 2017). Notably, deoxycholic acid signals through
a G-protein coupled bile acid receptor TGR5 in the BAT to
enhance thermogenesis (Somm et al., 2017). Furthermore, KO
mice treated with vancomycin, which preferentially targets gram-
positive bacteria, including the Clostridium species, which is
classically described as being responsible for the conversion
of primary bile acids into secondary bile acids, reversed the
metabolic phenotypes in the KO mice (Somm et al., 2017). This
result supports the role of bile acids as mediators of microbiota-
mediated thermogenesis. Therefore, interventions targeting the
synthesis and/or excretion of bile acids could alter gut bacterial
composition, thereby modulating host energy expenditure.

Miyamoto et al. (2019) proposed that gut microbiota confers
host resistance to HFD-induced obesity by modulating dietary
PUFAs metabolism. Supplementing the diet with 10-hydroxy-
cis-12-octadecenoic acid (HYA), a dietary linoleic acid–derived
gut-microbial metabolite whose level is significantly reduced
by HFD feeding, attenuates various aspects of HFD-induced
obesity in mice, including their appetite, body weight, WAT
adipocyte size, and blood glucose and insulin level, by promoting
GLP-1 secretion via GPCRs. Furthermore, HYA treatment
does not elicit adipose inflammation, as opposed to regular
linoleic acid supplementation, which is known to be involved
in mediating inflammatory responses via the arachidonic acid
cascade. Moreover, Lactobacillus-colonized mice show similar
effects with elevated HYA levels. The findings illustrate the
interplay between gut microbiota and host energy metabolism
via the metabolites of dietary omega-6-FAs, thereby shedding
light on the prevention and treatment of metabolic disorders
by targeting gut microbial metabolites. Another metabolite of
linoleic acid that is involved in the regulation of host energy

metabolism is 10-oxo-12(Z)-octadecenoic acid (Goto et al., 2015;
Kim et al., 2017). It is produced by lactic acid bacteria in
the intestine. This production has been linked to activation of
adipogenesis (Goto et al., 2015), the mitigation of obesity-related
metabolic dysfunction (Goto et al., 2015; Kim et al., 2017), as well
as the upregulation of UCP1 expression in WAT via the activation
of transient receptor potential vanilloid 1 (Kim et al., 2017).

Another nutrient whose gut microbial metabolites have been
associated with adipocyte function is resveratrol. Resveratrol is a
non-flavonoid polyphenol compound that is naturally found in
a wide variety of plants, such as grapes and peanut skin (Liao
et al., 2018). Besides its multiple benefits to host health, such
as antioxidation and anti-inflammation, resveratrol potentially
alters the composition of gut microbiota to ameliorate adiposity
and improve glucose homeostasis in HFD-fed mice (Qiao et al.,
2014; Sung et al., 2017). Wang et al. (2020) confirmed the
effect of resveratrol-induced gut microbiota by transplanting
the microbiota from donors treated with a resveratrol diet
for 16 weeks to the HFD-fed mice. They found that the
recipient mice showed decreased body weight and improved
insulin resistance. In addition, resveratrol-microbiota could
modulate lipid metabolism and induce WAT browning in the
high-fat diet-fed recipient. Similarly, Liao et al. (2018) found
that resveratrol treatment significantly alleviates gut microbiota
dysbiosis in HFD-fed mice while promoting WAT browning.
This observation is also consistent with previous findings of the
promoting effect of resveratrol on brown and beige adipocyte
development (Wang et al., 2015; Bird et al., 2017; Zou et al.,
2017). Furthermore, similar effects have also been reported for
other polyphenol-rich dietary compounds, like cranberry extract
(Anhê et al., 2015; NCT03754504, 2018). Likewise, gut-produced
vanillic acid, the metabolite of another antioxidant, anthocyanins,
has also been shown to activate thermogenesis and promote
browning in HFD-fed mice (Han et al., 2018).

CONCLUDING REMARKS

The evidence strongly suggests that alterations in gut microbiota
diversity and composition contribute to the pathogenesis of
obesity and obesity-related metabolic disorders. However, the
limitations and pitfalls of the studies should be noted. Many
of these studies are observational. In addition, differences in
the lab environment could contribute to differences in the
microbiome and its effects. Also, many studies used mice, which
have gut anatomies that are different from humans. Future
studies are needed to gain a more accurate understanding of host-
microbiome communications. Based on the existing preliminary
data identifying epigenetic mechanisms as a regulator of gut
microbiota composition, a dietary approach targeted to favor
a more beneficial bacterial population and thus epigenetic
changes might be effective in the prevention of obesity.
For this, the accurate analysis of microbiome diversity and
composition will be key. Large-scale sequencing studies have
already identified organisms and their relative abundance in
purified DNA by sequencing specific regions of the 16S or
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18S ribosomal genes (Qin et al., 2010; Tkacz et al., 2018). In
parallel, comprehensive biochemical and metabolomic profiling
approaches will be needed to understand the mechanistic basis of
host-microbiome interactions.

Accumulating studies have started to examine the effect of gut
microbiota transplantation on insulin sensitivity and microbiota
composition in humans. Vrieze et al. (2012) reported that
infusing microbiota from lean donors to obese male recipients
with metabolic syndrome significantly increased their insulin
sensitivity. Also, case reports have suggested that intestinal
bacteria upon fecal microbiotiota transplantation might affect
bodyweight and insulin sensitivity of the recipient (Kootte et al.,
2017; De Groot et al., 2019). The duration of thereapeutic effect
of FMT is not clear yet; Till then, dietary intake is probably
the easiest way to influence intestinal microbiome composition
and may even restore pathological disturbances. Considering the

causal role of the gut microbiome in human obesity and its
manageability through dietary or biological approaches, targeting
the microbiome may present a new avenue for therapeutic
interventions for preventing and treating obesity and its related
metabolic disorders.
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