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Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial lung disease with lesions
confined to the lungs. To identify meaningful microRNA (miRNA) and gene modules
related to the IPF progression, GSE32537 (RNA-sequencing data) and GSE32538
(miRNA-sequencing data) were downloaded and processed, and then weighted gene
co-expression network analysis (WGCNA) was applied to construct gene co-expression
networks and miRNA co-expression networks. GSE10667, GSE70866, and GSE27430
were used to make a reasonable validation for the results and evaluate the clinical
significance of the genes and the miRNAs. Six hub genes (COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-
5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-
26b-5p) were clarified and validated. Meanwhile, iteration network of hub miRNAs-hub
genes was constructed, and the emerging role of the network being involved in non-
small cell lung cancer (NSCLC) was also analyzed by several webtools. The expression
levels of hub genes were different between normal lung tissues and NSCLC tissues.
Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5) and three miRNAs
(hsa-miR-29c-3p, hsa-let-7c-5p, and hsa-miR-29b-3p) were related to the survival time
of lung adenocarcinoma (LUAD). The interaction network of hub miRNAs-hub genes
might provide common mechanisms involving in IPF and NSCLC. More importantly,
useful clues were provided for clinical treatment of both diseases based on novel
molecular advances.

Keywords: idiopathic pulmonary fibers, non-small cell lung cancer, weighted gene co-expression network
analysis, hub genes, hub miRNAs, interaction network

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic phlogistic interstitial lung disease with excessive
tissue scarring and loss of function, and most patients with IPF would die of organ failure eventually
(Datta et al., 2011; Lehtonen et al., 2016). To assess disease progression for the patients with
IPF, the scores of St. George’s Respiratory Questionnaire (SGRQ) are usually used, which have
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a strong correlation with lung function significantly (Swigris
et al., 2014, 2018; Lawrence et al., 2017). Besides, non-small cell
lung cancer (NSCLC), which can mainly be categorized into
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC), is commonly altering the course and mortality of IPF
(Ballester et al., 2019). IPF and NSCLC are coexistent and affect
each other, and majority of studies have shown that LUSC is
the most frequent type of NSCLC in IPF patients, while LUAD
is the second most frequent (Lee et al., 2014; Tomassetti et al.,
2015; Kato et al., 2018). Studies have shown that the risk of
NSCLC is higher in IPF patients, and it was reported that the
cumulative prevalence of NSCLC is increased from IPF diagnosis
(Kinoshita and Goto, 2019). Recent Studies indicated that the
occurrence of IPF and NSCLC share the same genetic mutations
and abnormal activation of signal pathways, suggesting potential
molecular mechanisms between IPF and NSCLC, and there
is speculation IPF could lead to cancer (Han et al., 2019;
Kinoshita and Goto, 2019). IPF, which has a poor prognosis and
a course that is unpredictable, thus needs for a more complete
understanding of its mechanisms, and further research for IPF-
NSCLC pathogenesis is also urgently needed.

MicroRNA (miRNA) is a class of gene regulator, and it
can repress the expression of target genes by binding to the
mRNAs (Taganov et al., 2007). In recent years, increasing
evidences have revealed that multiple miRNAs can play as
potential biomarkers for the prediction of IPF, including miR-
92a (Berschneider et al., 2014), miR-let-7d (Huleihel et al., 2014),
and miR-98 (Gao et al., 2014). However, studies of single miRNA
cannot meet the requirement for exploration of IPF progression.
miRNAs–mRNAs constitute networks, which are involved in
many important cellular pathways, are badly needed to clarify
exact mechanisms.

Though Fan has reported differently expressed genes and
differently expressed miRNAs between normal tissue and IPF
tissues (Fan et al., 2017), the relationships between hub genes
and important clinical traits, hub miRNAs, and important clinical
traits had not been rigorously studied. The weighted gene
co-expression network analysis (WGCNA), which provides an
effective way to explore the mechanisms behind certain traits, can
solve this problem elegantly (Langfelder and Horvath, 2008). To
fulfill these gaps, gene co-expression networks and miRNA co-
expression networks were constructed by WGCNA to identify the
gene and miRNA modules related to the scores of SGRQ in IPF,
and the relationships between genes and miRNAs were predicted
to construct miRNA–gene network, which would provide more
information about the mechanisms of IPF progression, even
IPF-NSCLC pathogenesis.

MATERIALS AND METHODS

Data Collection and Processing
A brief workflow for this study is indicated in Figure 1. Selection
criteria on the Gene Expression Omnibus (GEO) database1 are:
(1) The datasets contain miRNA expression profiles and gene

1https://www.ncbi.nlm.nih.gov/geo/

expression profiles; (2) there are normal group (normal tissue
samples) and IPF group (IPF tissue samples) in the datasets;
and (3) the number of samples in each group is more than
10. miRNA expression profiles (GSE32538 and GSE27430) and
gene expression profiles (GSE32537, GSE10667, and GSE70866)
related to IPF were downloaded from GEO database. All datasets
were normalized with quantile normalization. The data quality
was evaluated, and boxplot was used to compare before and
after being standardized. The details of these datasets are
listed in Supplementary Table S1. Among them, GSE32537
and GSE32538 were used to identify hub genes and hub
miRNAs by WGCNA separately. After doing analysis of variance
for GSE32537, we chose the top 25% most variant genes
(2987 genes) for constructing networks, while we did not to
do pretreatment for GSE32538 due to the small number of
miRNAs (1801 miRNAs).

Construction of Co-expression Networks
Weighted gene co-expression network analysis was used
to construct gene co-expression networks and miRNA co-
expression networks (Langfelder and Horvath, 2008). The
processes for constructing gene co-expression networks and
miRNA co-expression networks were similar. So, we took
the construction of weighted gene co-expression networks as
an example. First, a matrix of similarity was constructed by
calculating the correlations of the processed genes. Second, an
appropriate power of β was chosen as the soft-thresholding
parameter to construct a scale-free network. Third, the
adjacency was transformed into a topological overlap matrix
(TOM) by using TOM similarity, and the corresponding
dissimilarity (1-TOM) was figured and the dissimilarity of
module eigengenes (MEs) was estimated. Fourth, the genes with
similar expression levels were categorized into the same module
by DynamicTreeCut algorithm.

Identification of Clinically Significant
Modules
The clinical trait that we concerned was the scores of SGRQ in IPF
patients and key modules needed to be found in two networks
separately. Above all, we worked out the relationship between
clinical phenotype and MEs. MEs were deemed to represent the
expression levels of all genes or miRNAs in the related module. In
addition, mediated p-value of each gene or miRNA was calculated
and then we worked out gene significance or miRNA significance
(GS = lg P). Finally, we selected the most clinically significant
module according to module significance (MS), which was the
average GS of genes or miRNAs involved in the related module.

Functional and Pathway Enrichment
Analysis
The Database for Annotation, Visualization and Integrate
Discovery5 (DAVID)2 is a database for several kinds of functional
annotation (Huang et al., 2009). With the help of DAVID, we
identified biological meaning of the genes in a given module

2https://david.ncifcrf.gov/
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FIGURE 1 | Flow chart of data preparation, processing, analysis, and validation.

according to false discovery rate (FDR) < 0.05. GO includes three
terms: biological process (BP), cellular component (CC), and
molecular function (MF). Besides, GO (BP, CC, MF) and KEGG
enrichment analyses for the miRNAs in the selected module were
conducted using mirPath v.3, an online tool for miRNA pathway
analysis (Vlachos et al., 2015).

Identification and Validation of Hub
Genes and Hub miRNAs in IPF
The connectivity of module can be measured by absolute value
of the Pearson’s correlation. Besides, the relationship between
clinical trait and genes can be measured by absolute value of
the Pearson’s correlation. The genes that have high connectivity
with module and selected phenotype were selected as candidate
genes in hub module (cor.geneModuleMembership > 0.8
and cor.geneTraitSignificance > 0.2). Then the protein/gene
interactions for candidate genes were analyzed using STRING
(Szklarczyk et al., 2019) and the genes connected with more
than five nodes in PPI network were selected as hub genes
for further study. As for selecting hub miRNAs, two web

tools, microT-CDS3 and TargetScan4, were employed to predict
candidate miRNAs for hub genes (Paraskevopoulou et al., 2013;
Agarwal et al., 2015), and the score of microT-CDS > 0.9
and context + + score of TargetScan > 0.4 were selected as
threshold. Then the common candidate miRNAs in hub module
and prediction by microT-CDS and TargetScan were defined as
real hub miRNAs. To verify our results, GSE10667 (including
15 normal lung tissues and 31 IPF tissues) and GSE70866
(including 20 normal lung tissues and 110 IPF tissues), were
used to validate the different expression levels of hub genes
between normal tissue and IPF tissues with two-tailed student’s
t-tests, separately.

Gene Set Enrichment Analysis (GSEA)
and Guilt of Association for Hub Genes
Gene set enrichment analysis (GSEA) analysis was performed for
hub genes in GSE32537 (Subramanian et al., 2005). In GSE32537,
according to the median expression of this hub gene, 119 cases

3http://www.microrna.gr/microT-CDS/
4http://www.targetscan.org/
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were classified into high expression group and low expression
group (high group, n = 60; low group, n = 59). | ES| > 0.5,
nominal P < 0.05, and FDR ≥ 25% were chosen as the cut-off
criteria. Besides, Spearman correlation analysis was performed to
explore pair-wise gene expression correlation for hub genes in
GSE10667. We calculated correlation coefficient absolute values,
and the top 300 genes of each hub gene were selected for
functional enrichment analysis. Based on the results, the potential
functions of each hub gene were predicted, and the method thus
bore the name of “guilt of association.”

Construction of Hub miRNA and Hub
Gene Interaction Network
According to the score of microT-CDS and the context+ + score
of TargetScan, miRNA–gene interaction network was constructed
in Cytoscape (Shannon et al., 2003). And the interaction between
genes was also demonstrated from STRING. Furthermore, text
mining of hub genes and hub miRNAs was performed using
GenCLip 2.05. GenCLip 2.0 is an online text-mining server, which
can provide the analysis of gene and miRNA functions with free
terms generated by literature mining (Wang et al., 2014).

Analysis of the Role of the Interaction
Network Involved in IPF and NSCLC
To further understand the role of hub genes and hub
miRNAs in clinical practice, we selected two data sets
(GSE70866 and GSE27430) with clearer clinical information
to do clinicopathological correlation analysis separately. From
GSE70866, 110 samples with IPF were used to determine
the association between age and hub genes expression levels,
between gender and hub genes expression levels by Pearson
Chi-square test. From GSE27430, 13 samples with IPF were
used to determine the association between age and hub miRNAs
expression levels, gender, and hub miRNAs expression levels
with Fisher test due to small sample size. P-value < 0.05 was
considered as statistical significance. In addition, to explore the
role of the interaction network in NSCLC (mainly including
LUAD and LUSC), UALCAN6 was used to explore the different
expression levels of hub genes between normal tissues and cancer
tissues (including LUAD and LUSC), separately. UALCAN is
a useful online tool for analyzing cancer transcriptome data,
which is based on public cancer transcriptome data (TCGA and
MET500 transcriptome sequencing) (Chandrashekar et al., 2017).
Moreover, we evaluate the relationship between the expression
levels of hub genes and the prognosis of LUAD and LUSC, the
expression levels of hub miRNAs and the prognosis of LUAD and
LUSC. Kaplan Meier Plotter7, including the gene expression data
and survival information of GEO and TCGA repositories, was
used to explore the relationship between the expression levels of
hub genes and the survival time of LUAD and LUSC (Gyoerffy
et al., 2014). Besides, OncoLnc8, containing survival data from 21
cancer studies performed by TCGA and giving users the ability

5http://ci.smu.edu.cn/
6http://ualcan.path.uab.edu/
7http://kmplot.com/analysis/
8http://www.oncolnc.org/

to create publication-quality Kaplan–Meier plots, was used to
explore the relationship between the expression levels of hub
miRNAs and the survival time of LUAD and LUSC (Anaya, 2016).

RESULTS

Weighted Co-expression Networks
Construction and Key Modules
Identification
It is found that the median of miRNA/gene expression value
of each sample is approximately equal (Supplementary Figure
S1), and the results indicated that the processed datasets can be
used for further analysis. With the method of average linkage
hierarchical clustering, the samples of both data sets (GSE32537
and GSE32538) are well clustered separately. The clustering
dendrograms of the genes of GSE32537 are generated in
Figure 2A, while miRNAs of GSE32538 are shown in Figure 2B.
By “WGCNA” package in R, the genes and the miRNAs which
had similar expression levels were divided into modules to
construct co-expression networks. Power of β = 3 (scale free
R2 = 0.92) was selected as the soft-thresholding parameter for
gene co-expression networks (Supplementary Figure S2), and
power of β = 5 (scale free R2 = 0.89) was selected for miRNA
co-expression networks (Supplementary Figure S3). In gene
co-expression networks, 11 modules were identified and blue
module (GS = 0.38, p-value = 6.8e-282) showed the highest
correlation with the scores of SGRQ. In miRNA co-expression
networks, five modules were identified and turquoise module
(GS = 0.20, p-value = 7.9e-58) showed the highest correlation
with the scores of SGRQ (Figure 3). There are 285 genes in
blue module and 163 miRNAs in turquoise module. Blue module
(G blue) and turquoise module (M turquoise) were picked for
following analysis as the clinically significant module.

Pathway Enrichment Analysis of Genes
and miRNAs in Hub Modules
To explore the biological functions of the G blue, the genes
were categorized into BP, CC, and MF. The outcome of GO
and KEGG enrichment of the genes in blue module was shown
in Figure 4A. The genes in BP were generally enriched in cell
adhesion, extracellular matrix organization, signal transduction,
positive regulation of cell proliferation, and negative regulation of
cell proliferation; the genes in CC were mainly focused on plasma
membrane, extracellular region, extracellular space, extracellular
exosome, and extracellular matrix; the genes in MF were
significantly focused on calcium ion binding, heparin binding,
integrin binding, extracellular matrix structural constituent,
and growth factor activity. The top five significantly enriched
pathways in blue module were PI3K-Akt signaling pathway,
focal adhesion, pathways in cancer, ECM–receptor interaction,
and protein digestion and absorption. Top enriched GO terms
for the miRNAs in turquoise module were: BP, transport,
response to stress, cell death, and cell proliferation in BP;
organelle, protein complex, cytosol, CC, and focal adhesion
in CC; ion binding, MF, enzyme binding, RNA binding, and
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FIGURE 2 | Clustering dendrograms. (A) Clustering dendrograms of genes based on a dissimilarity measure (1-TOM). (B) Clustering dendrograms of miRNAs based
on a dissimilarity measure (1-TOM).

protein binding transcription factor activity in MF. The pathway
analysis was also performed for the miRNAs in turquoise
module. The top five significantly enriched pathways were
proteoglycans in cancer, protein processing in endoplasmic
reticulum, viral carcinogenesis, pathways in cancer, and focal
adhesion (Figure 4B).

Identification and Validation of Hub
Genes and miRNAs in IPF
Under the threshold of | MM| > 0.8 and | GS| > 0.2,
58 genes in blue module were considered as candidate genes.
Then the relationship between candidate genes was identified
from STRING (Supplementary Figure S4), and we calculated
the connectivity degree of each node in PPI. The nodes
with degrees =5 were COL3A1, COL1A2, OGN, COL15A1,
ASPN, and MXRA5, which were considered as real hub
gens because it interacted with more proteins. Based on the
prediction of microT-CDS and TargetScan, seven hub miRNAs
(hsa-let-7b-5p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-29c-
3p, hsa-let-7c-5p, hsa-miR-29b-3p, and hsa-miR-26b-5p) were
identified in turquoise module. In the blue module, COL3A1
and COL1A2 were the most central genes with the degrees
of 13, and they are involved in the process of other genes
regulating cell metabolism. As for the miRNAs, hsa-let-7b-
5p was considered as key miRNA with the highest MM
(MM = 0.915). The corresponding MM and GS of hub genes
and hub miRNAs are shown in Table 1. From the results of
two-tailed student’s t-tests for GSE10667 and GSE70866, the
expression levels of all hub genes (COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5) were significantly higher in IPF
tissues (Figure 5). And the ROC curve analysis for GSE10067
indicated that the hub genes exhibited excellent diagnostic
efficiency for normal tissues and IPF tissues (Supplementary
Figure S5).

GSEA and Guilt of Association
Gene set enrichment analysis was performed to identify
the lurking mechanisms related to IPF progression of six
hub genes. As shown in Supplementary Table S2, IPF
samples in COL3A1 high expression group were most
significantly enriched in cellular adhesion molecules; IPF
samples in COL1A2, OGN, COL15A1, ASPN, and MXRA5
high expression groups were most significantly enriched in
ECM receptor interaction (Supplementary Tables S2–S7).
Based on the analysis of guilt of association, we identified that
the hub genes were essential for extracellular environment
and ossification, and they mainly played important roles
in extracellular structure organization, extracellular matrix

TABLE 1 | The hub genes and hub miRNAs as well as the corresponding MM
and GS.

Symbol Degrees in PPI MM GS

Hub COL3A1 13 0.812933 0.582487

genes COL1A2 13 0.821623 0.555745

OGN 6 0.862299 0.475489

COL15A1 5 0.860161 0.600621

ASPN 5 0.854841 0.642866

MXRA5 5 0.805921 0.592231

Hub hsa-let-7b-5p − 0.915297 −0.35161

miRNAs hsa-miR-26a-5p − 0.825955 −0.44743

hsa-miR-25-3p − 0.793815 −0.31258

hsa-miR-29c-3p − 0.676672 −0.25468

hsa-let-7c-5p − 0.660136 −0.1454

hsa-miR-29b-3p − 0.622602 −0.19913

hsa-miR-26b-5p 0.577243 −0.13157

miRNAs: microRNAs. PPI: protein/gene interactions. MM:
cor.geneModuleMembership. GS: cor.geneTraitSignificance.
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FIGURE 3 | Identification of modules associated with the clinical traits of IPF. (A) Heatmap of the correlation between co-expressed gene module eigengenes and
clinical traits of IPF. (B) Heatmap of the correlation between co-expressed miRNA module eigengenes and clinical traits of IPF. (C) Distribution of average gene
significance and errors in the modules associated with the scores of SGRQ. (D) Distribution of average miRNA significance and errors in the modules associated
with the scores of SGRQ in IPF.

organization, and skeletal system development (Supplementary
Figure S6).

Construction of Hub miRNA and Hub
Gene Interaction Network
The hub genes and hub miRNAs interactions were predicted
by microT-CDS and Targetscan (Table 2), and the hub genes

and hub miRNAs interaction network was shown in Figure 6A.
Six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and
MXRA5) and seven miRNAs (hsa-let-7b-5p, hsa-miR-26a-5p,
hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p,
and hsa-miR-26b-5p) were involved in this interaction network.
Besides, the occurrence frequency of terms of corresponding
literature was demonstrated from GenCLip 2.0, including
extracellular matrix, transforming growth factor, squamous
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FIGURE 4 | Bioinformatics analysis of the genes in blue module and the miRNAs in turquoise module. (A) GO analysis and KEGG pathway enrichment of the genes
in blue module. (B) GO analysis and KEGG pathway enrichment of the miRNAs in turquoise module.
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FIGURE 5 | Hub gene expression levels between normal tissue and IPF tissue (based on GSE10667 and GSE70866). The gene expression levels of COL3A1,
COL1A2, OGN, COL15A1, ASPN, and MXRA5 in GSE10667 (A). The gene expression levels of COL3A1, COL1A2, OGN, COL15A1, ASPN, and MXRA5 in
GSE70866 (B).
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TABLE 2 | The prediction of the interaction of hub genes and hub miRNAs by
microT-CDS and Targetscan.

miRNA Target Score of Context + + score
gene microT-CDS of TargetScan

hsa-let-7b-5p COL3A1 0.99 −0.47

hsa-let-7b-5p COL1A2 0.99 −0.5

hsa-miR-26a-5p ASPN 0.99 −0.41

hsa-miR-25-3p ASPN 0.93 −0.44

hsa-miR-29c-3p COL3A1 0.99 −0.87

hsa-miR-29c-3p COL1A2 0.99 −0.61

hsa-miR-29c-3p COL15A1 0.99 −0.5

hsa-let-7c-5p COL3A1 0.99 −0.47

hsa-let-7c-5p COL1A2 0.99 −0.5

hsa-miR-29b-3p COL3A1 0.99 −0.87

hsa-miR-29b-3p COL1A2 0.99 −0.61

hsa-miR-29b-3p COL15A1 0.99 −0.52

hsa-miR-26b-5p ASPN 0.98 −0.4

miRNA: microRNA.

cell carcinoma, mesenchymal stem cell, fibrillar collagen,
procollagen, and osteoblast differentiation (Figure 6B).

Analysis of Hub Genes–Hub miRNAs
Interaction Network in IPF and NSCLC
Based on the results of clinicopathological correlation analysis,
there were no statistical differences in age distribution and
gender distribution between these high-expression and low-
expression groups of hub genes. And we also did not find any
substantial differences in age distribution and gender distribution
between these high-expression and low-expression groups of hub
miRNAs. More details are listed in Supplementary Table S8.
Furthermore, some databases were used to explore the role of
the interaction network in NSCLC (LUAD and LUSC). The levels
of the six genes (COL3A1, COL1A2, OGN, COL15A1, ASPN,
and MXRA5) expression were significantly different between
normal samples and LUAD samples from UALCAN (Figure 7A).
COL3A1, COL1A2, COL15A1, ASPN, and MXRA5 were higher
expressed in tumor samples, while OGN was lower expressed.
In LUSC tissues, the levels of COL3A1, COL1A2, OGN, ASPN,
and MXRA5 expressions were significantly different from normal
lung tissues, and there is no difference of COL15A1 between
normal tissues and LUSC tissues (Figure 7B). For the relationship
between hub genes expression levels and the prognosis of
NSCLC from Kaplan Meier Plotter, COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5 were associated with the overall
survival of LUAD (Figure 8A), but the expression levels of
these genes did not affect overall survival of LUSC patients.
Besides, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-3p were
identified to be related to the overall survival of LUAD from
OncoLnc (Figure 8B).

DISSCUSION

Idiopathic pulmonary fibrosis is a medically incurable disease
with complicated clinical manifestations. Nowadays, only two

medicines, nintedanib and pirfenidone, are approved for the
treatment to slow down the progression of IPF (Lehtonen et al.,
2016; Maher et al., 2017; Drakopanagiotakis et al., 2018). In order
to identify a meaningful biomarker, a part of previous studies
had focused too much on single miRNA or gene (Mizuno et al.,
2017), and this cannot meet the requirement for exploration
of molecular mechanisms in IPF progression. Though another
part of previous studies had reported differently expressed genes
and differently expressed miRNAs between normal tissue and
IPF tissues to further explore the molecular mechanisms, the
relationships between hubs and important clinical traits had not
been rigorously studied, which would make clinically significance
few. Besides, there are some previous studies focusing preclinical
models by aberrant gene expression; though these modules are
useful for clinical application, it did not make much sense in
exploration of pathogenesis in IPF and NSCLC. It is a pity that
the research on molecular mechanisms of IPF affecting NSCLC
occurrence and prognosis was little, especially in bioinformatics.
To fulfill these gaps, the interaction network of hub miRNAs-
hub genes was studied on this research, and WGCNA was used
to identify IPF gene and miRNA modules for the first time.
More importantly, it was the first time to explore the common
mechanisms and molecular targets between IPF and NSCLC in
bioinformatics, which would provide more information about
that IPF causing NSCLC and poor NSCLC prognosis, and this
more attention is to be called on IPF-NSCLC patients. Two
modules were found, including one gene module (blue module)
and one miRNA module (turquoise module), were significantly
related to the scores of SGRQ. We identified six hub genes and
seven hub miRNAs, and the hub miRNAs–hub genes interaction
network was constructed. In GenCLip 2.0, the BPs (extracellular
matrix, transforming growth factor, squamous cell carcinoma,
mesenchymal stem cell, etc.) were considered to be significantly
related to IPF and NSCLC.

Focal adhesion was considered as a key pathway shared by
blue module and turquoise module, and many gens/proteins
have been considered to be involved in the progression of
IPF through disordering focal adhesion (Gimenez et al., 2017;
Kathiriya et al., 2017; Molina-Molina et al., 2018). For example,
it has been reported that decreased expression of collagen VI, an
important kind of protein of ECM, would upregulate the focal
adhesion (Knueppel et al., 2018). For example, COL1A2, which
is a subtype of Type I collagen (Fang et al., 2019), is implicated
in the induction of epithelial–mesenchymal transition in many
fibroblasts (Cheng et al., 2017). Type I collagen could induce
the disruption of E−cadherin33 and SMADS to downregulate
E−cadherin (Koenig et al., 2006). Of course, there are still
potential pathways worth further study about hub genes in IPF.
In present study, the hub miRNAs, except hsa-miR-25-3p (Min
et al., 2016), were identified to be related to the progression of IPF
for the first time, which would be novel diagnostic biomarkers of
patients with IPF.

After analyzing and comparing the results of GSEA analysis
and guilt of association, we found that ECM–receptor interaction
is an important pathway shared by hub genes. Pulmonary
extracellular matrix, which is a complex system composed
of proteoglycans and glycosaminoglycans, is of importance in
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FIGURE 6 | The interaction network of hub miRNAs and hub genes. (A) The network of regulation of hub miRNAs and hub genes in IPF. (B) Text mining of the hub
genes and hub miRNAs from GenCLip 2.0 software.

tissue’s homeostasis and repair. Previous studies have revealed
that ECM protein expression plays an important role in the
fibrotic process in IPF lungs (Vicens-Zygmunt et al., 2015).
Excessive accumulation of ECM in the alveolar parenchyma and
progressive scarring of lung tissue are major characteristics of IPF
(Knudsen et al., 2017), and some studies have used this protein
expression level as a criterion for evaluating treatment outcomes
(Molina-Molina et al., 2018; Mullenbrock et al., 2018). Altogether,
migration is strongly influenced by topology and composition of
the ECM including integrin ligands, and the hub gens and hub
miRNAs might play an important role in IPF progression with
the change of ECM.

Evidence suggests that patients with NSCLC who develop IPF
have worse outcomes than patients without IPF (Han et al., 2019).
Clinical examples with both diseases are numerous, and they
are difficult to treat. In the treatment of patients suffered IPF
and NSCLC, physicians are reluctant to treat NSCLC because

of the poor prognosis of IPF (Kinoshita and Goto, 2019).
Therefore, the interaction network was analyzed between these
two types of diseases, which would provide more information
about that IPF causing NSCLC and poor NSCLC prognosis.
Though cancer was not taken as the main research topic at
first, with analysis continuing, we identified hub miRNAs and
hub genes may participate in the progression of NSCLC. And
the hub miRNAs–hub genes interaction network would help
us understand the pathogenesis of IPF-NSCLC. For example,
COL3A1 is highly expressed in both IPF and NSCLC tissues, so
it is speculated that COL3A1 is a key molecule of cross-linking
between IPF and NSCLC, and even a signal of IPF leading to
NSCLC. MXRA5 is upregulated in IPF, and it is found that the
higher the expression, the worse the prognosis of NSCLC. We
speculated that MXRA5 is an important intermediate molecule of
IPF leading to poor prognosis of NSCLC. Of course, these all need
further experimental verification later, and some experiments
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FIGURE 7 | Gene expression levels between normal lung and tumor samples (based on TCGA data in UALCAN). (A) The gene expression levels of COL3A1,
COL1A2, OGN, COL15A1, ASPN, and MXRA5 between normal lung tissues and LUAD tissues. (B) The gene expression levels of COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5 between normal lung tissues and LUSC tissues.
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FIGURE 8 | Survival analysis of the association between the expression levels
of hub genes and hub miRNAs in LUAD. COL3A1, COL1A2, OGN, COL15A1,
ASPN, and MXRA5 were identified to be related to the overall survival of LUAD
from Kaplan Meier Plotter (A). hsa-miR-29c-3p, hsa-let-7c-5p, and
hsa-miR-29b-3p were identified to be related to the overall survival of LUAD
from OncoLnc (B).

need to be done to confirm the hub genes. We will further explore
the hubs and its role in the progression of IPF-NSCLC by using
more in-depth bioinformatic analyses and experimental methods
in the future., In this study, OGN was identified to be related to
the progression of IPF for the first time. Most interestingly, we

found that OGN is highly expressed in IPF, but is lowly expressed
in cancer tissues. And low expression levels of OGN would
have an important impact on the prognosis of LUAD (Figure
8). Different signal pathways should be activated to regulate
or influence OGN. Although many studies identified that the
expression levels of OGN would alter in cancers, such as gastric
cancer (Lee et al., 2003), colorectal cancer (Hu et al., 2018), and
invasive ductal breast carcinoma (Roewer et al., 2011), functional
data about how OGN participating in cancer pathology are not
enough, and further studies are needed.

CONCLUSION

It was the first time to construct miRNA–gene interaction
network to explore the development of IPF and common
pathways between IPF and NSCLC by WGCNA. We identified
six hub genes (COL3A1, COL1A2, OGN, COL15A1, ASPN, and
MXRA5) and seven hub miRNAs (hsa-let-7b-5p, hsa-miR-26a-
5p, hsa-miR-25-3p, hsa-miR-29c-3p, hsa-let-7c-5p, hsa-miR-29b-
3p, and hsa-miR-26b-5p), which might be diagnostic biomarkers
for IPF. In the future, the pathogenic overlap of IPF and NSCLC
may help us to clarify the common molecular mechanisms
between both diseases, and may provide a potential treatment
strategy for both diseases.
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FIGURE S2 | Determination of soft-thresholding power in the weighted gene
co-expression network analysis (WGCNA). (a) Analysis of the scale-free fit index
for various soft-thresholding powers. (b) Analysis of the mean connectivity for
various soft-thresholding powers. (c) Histogram of connectivity distribution when
β = 3. (d) Checking the scale free topology when β = 3.

FIGURE S3 | Determination of soft-thresholding power in the weighted miRNA
co-expression network analysis. (a) Analysis of the scale-free fit index for various
soft-thresholding powers. (b) Analysis of the mean connectivity for various
soft-thresholding powers. (c) Histogram of connectivity distribution when β = 5.
(d) Checking the scale free topology when β = 5.

FIGURE S4 | Protein–protein interaction network of 58 candidate genes acquired
from STRING 9.1.

FIGURE S5 | ROC curve of COL3A1, COL1A2, OGN, COL15A1, ASPN, and
MXRA5 in GSE10067.

FIGURE S6 | Guilt of association for hub genes (COL3A1, COL1A2, OGN,
COL15A1, ASPN, and MXRA5).

TABLE S1 | Gene and miRNA expression microarray datasets related to IPF.

TABLE S2 | Gene set enriched in lung samples with COL3A1 high expression.

TABLE S3 | Gene set enriched in lung samples with COL1A2 high expression.

TABLE S4 | Gene set enriched in lung samples with OGN high expression.

TABLE S5 | Gene set enriched in lung samples with COL15A1 high expression.

TABLE S6 | Gene set enriched in lung samples with ASPN high expression.

TABLE S7 | Gene set enriched in lung samples with MXRA5 high expression.

TABLE S8 | Clinicopathological correlation analysis for hub genes and
hub miRNAs in IPF.
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